1. “大数据” 到底有多大
截止到2012年,数据量已经从TB(1024GB=1TB)级别跃升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别。
内国际数据公司(IDC)的研容究结果表明,2008年全球产生的数据量为0.49ZB,2009年的数据量为0.8ZB,2010年增长为
1.2ZB,2011年的数量更是高达1.82ZB,相当于全球每人产生200GB以上的数据。而到2012年为止,人类生产的所有印刷材料的数据量是
200PB,全人类历史上说过的所有话的数据量大约是5EB。
IBM的研究称,整个人类文明所获得的全部数据中,有90%是过去两年内产生的。而到了2020年,全世界所产生的数据规模将达到今天的44
倍。每一天,全世界会上传超过5亿张图片,每分钟就有20小时时长的视频被分享。然而,即使是人们每天创造的全部信息——包括语音通话、电子邮件和信息在
内的各种通信,以及上传的全部图片、视频与音乐,其信息量也无法匹及每一天所创造出的关于人们自身的数字信息量。这样的趋势会持续下去。
2. 对大数据的理解,哪些是正确的
在麦肯锡全球研究所给出的定义中指出:大数据即是一种规模大到在获取,存储,管理,分析方面大大超出了传统数据库软件工具能力范围的数据集合。简单而言大数据是数据多到爆表。大数据的单位一般以PB衡量。那么PB是多大呢?1GB=1024MB ,1PB=1024GB才足以称为大数据。
其次,大数据具有什么样的特点和结构呢?
大数据从整体上看分为四个特点,
第一,大量。
衡量单位PB级别,存储内容多。
第二,高速。
大数据需要在获取速度和分析速度上要及时迅速。保证在短时间内更多的人接收到信息。
第二,多样。
数据的来源是各种渠道上获取的,有文本数据,图片数据,视频数据等。因此数据是多种多样的。
第三,价值。
大数据不仅仅拥有本身的信息价值,还拥有商业价值。大数据在结构上还分为:结构化,半结构化,非结构化。结构化简单来讲是数据库,是由二维表来逻辑表达和实现的数据。非结构化即数据结构不规则或不完整,没有预定义的数据模型。由人类产生的数据大部分是非结构化数据。
那我们身边有哪些东西是大数据呢?
在生产生活中常见的有电信数据:通话数据、短信数据、手机浏览数据。银行数据,微信聊天数据等。
最后,大数据能做什么?
人们的生活离不开它,因为他在日常生活中发挥的作用逐渐加强。例如:用户画像,帮助人们制定个性化的需求,知识图谱。人工智能例如:谷歌的“阿尔法狗”在围棋大赛中赢得、阿里巴巴的ET、网络的无人驾驶汽车等。数字货币,物联网等。
3. 大数据为什么会有那么多数据
因为我们平时在用的各个软件,无时无刻都在收集着我们的个人信息、数据,所以大数据会有越来越多的数据。
大数据这个概念出现的几率越来越多,是因为现在我们所处于这个时代上,很多信息都已经突发猛进,人们的生活水平都已经改善了,很多东西都是要通过大数据来统计,包括我们现在互联网的一个进步之后。我们所处的一些东西之后,全部都是变成数字化,只有大数据才能够实行。
大数据的来源非常广泛,如信息管理系统、网络信息系统、物联网系统、科学实验系统等,其数据类型包括结构化数据、半结构化数据和非结构化数据。大数据的主要来源。
(1)信息管理系统:企业内部使用的信息系统,包括办公自动化等。信息管理系统主要通过用户数据和系统二次加工的方式产生数据,其产生的大数据大多数为结构化数据,通常存储在数据库中。大数据的主要来源。
(2)网络信息系统:基于网络运行的信息系统即网络信息系统是大数据产生的重要方式,如电子商务系统、社交网络、社会媒体、搜索引擎等都是常见的网络信息系统。网络信息系统产生的大数据多为半结构化或非结构化的数据。
4. 大数据是否不代表数据多
通常意义上来说,是的,大数据属于IT行业中新兴的产物,从就业上讲,大数据已经成了IT行业中的一个新的就业方向。大数据是一种在获取、存储、管理、分析等方面大大超出了传统数据库软件工具能力范围的数据集合。它具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。专家预测截止到2020年,各个行业大数据相关人才缺口将达到100万,仅在spark大数据开发人才方面,将出现近30万的岗位需求。
5. 大数据仅仅是指数据的体量大对吗
大数据,通俗的讲就是数据体量庞大的意思
6. 大数据是什么多大的数据叫大数据
你好
多大的数据才算“大数据”
什么是大数据有一个故事,说的是一位顾客订购披萨时,披萨店可以立即调出这位顾客的许多信息,比如送披萨上门必有的家庭、单位等地址和电话,顾客的消费习惯从而推荐适合他的披萨种类,顾客名下的银行卡透支情况从而确定他的支付方式,甚至顾客要自取披萨时,还能根据顾客名下车辆的停放位置预估他的到店时间等等。
从这个故事,我们可以看出大数据的一些关键特征,比如容量大、类型多、关联性强、有价值等等。“大数据是以高容量、多样性、存取速度快、应用价值高为主要特征的数据集合,正快速发展为对数量巨大、来源分散、格式多样的数据进行采集、存储和关联分析,从中发现新知识、创造新价值、提升新能力的新一代信息技术和服务业态。”工信部信息化和软件服务业司副司长李冠宇接受经济日报·中国经济网记者采访时说。
若能给你带来帮助,请帮忙点击采纳,谢谢!!!
7. 本讲认为,"大数据"并不意味着数据越多越好,数据要以是否什么为标准.
数据的“大”或“小”并不是关键,重要的是从数据中挖掘价值,创造价值。
举例而言,医学应用上研究心脏疾病,想知道病人怎么做才能更加健康,于是搜集大数据。但一个人每天产生的各类数据是海量的,大量的数据跟病理反应本质上毫无关系,你去搜集、去分析,不但做了无用功,还可能得出错误的分析结论。一个反面案例是,在美国拉斯维加斯的赌场,红黑转盘边都用一个大屏幕显示之前的开奖信息。很多人看着前面出现“红色”次数较多就下注“黑色”,这就是典型的“数据噪声”——搞统计的都知道,这完全是随机的,这些所谓的“大数据”是无效的甚至干扰的。
“开展大数据分析一定要有‘应用场景’,讲求数据的精准性和关联度,数据本身的‘大’或‘小’并不是关键。” 凌晓峰说,盲目追求数据之大,产生不了“有用的结果”,反而容易“自我迷惑”,这也是当下大数据产业存在的普遍误区。
这一观点有极强的现实针对性。当下,不少制造企业言必称“大数据”,无论搞什么产品,都接入光纤,加上传感器,每时每刻产生一大堆“数据”。问题在于,数据有了,但哪些有效哪些无效,无从辨别。不但造成硬件设备和统计计算资源的浪费,还可能因“数据噪音”的干扰得出错误结论,反而削弱市场竞争力。
“我们把大而无当的数据称作‘低价值密度’的数据。”中国工程院院士谭建荣告诉记者,以前专业术语就叫“数据挖掘”“数据分析”,现在为何要给数据加上“大”的前缀?在他看来,所谓的大,一是强调数据的时效性,以前数据报表都是延时的,新的物联传感技术手段提供的数据更实时,也更有价值。二是强调关联化。他调研发现,长三角企业推进信息化,普遍采用生产管理软件。但这些通用软件数量多达几十上百种,不同软件产生的数据是不共享的。如果产生不了关联效应,再多的数据都只能算是“小数据”。三是要强调“个性化”。数据模型越大,越能得到个性化的特征,如何将客户模糊的个性化需求数据转化为设计技术指标,将是工业大数据应用的下一个“风口”。
“大数据真正要义不在于大,而在于多元。”大数据产业大咖、零点研究咨询集团董事袁岳说,如何使多元数据在汇聚的过程中,通过软件处理最终得到科学的分析结果,变成有用的数据源,这才是生产制造和社会管理领域建立大数据决策系统的意义。“就像挖矿过程中,大数据是其中的原油,只有经过精细的提炼变成精数据才有价值。”
一场“头脑风暴”,历时三四个小时。唇枪舌剑中,一项项共识逐渐成型——大数据≠“大”的数据;大数据产业发展要“应用导向”;数据将是未来发展最重要的资源,甚至“驱动未来”……