导航:首页 > 网络数据 > 企业大数据规划

企业大数据规划

发布时间:2023-01-28 18:37:01

大数据系统体系建设规划包括哪些内容

(1)内部控制组织抄
组织是体系运行的基本保障。其中,是否设置专职的内控部门是企业界关注的焦点,通常的设置方式包括三种:
方式一:单独设置内控部门。
方式二:由内部审计部门牵头负责内控工作。
方式三:在内部控制建设集中期设立内部控制建设办公室,该办公室从各主要部门抽调人员专职从事内控体系建设工作,待体系正式运行时,办公室解散,人员归位到各经营管理部门,且牵头职能也归位至内审部门。
(2)内部环境的诊断与完善
(3)动态的风险评估
(4)控制活动的设计
内控手册分模块设计,每一模块一般包括五个方面的内容:
第一,管理目标。
第二,管理机构及职责。
第三,授权审批矩阵。
第四,控制活动要求。
第五,比照上述几部分,各经营管理部门应当重新梳理与完善业务流程,针对关键风险点强化控制措施,确保组织职责、授权审批、内控要求落实到经营流程中,保证管理目标的实现。
(5)信息与沟通贯穿始终
(6)内部监督手段。

㈡ 怎样搭建企业大数据平台

步骤一:开展大数据咨询


规划合理的统筹规划与科学的顶层设计是大数据建设和应用的基础。通过大数据咨询规划服务,可以帮助企业明晰大数据建设的发展目标、重点任务和蓝图架构,并将蓝图架构的实现分解为可操作、可落地的实施路径和行动计划,有效指导企业大数据战略的落地实施。


步骤二:强化组织制度保障


企业信息化领导小组是企业大数据建设的强有力保障。企业需要从项目启动前就开始筹备组建以高层领导为核心的企业信息化领导小组。除了高层领导,还充分调动业务部门积极性,组织的执行层面由业务部门和IT部门共同组建,并确立决策层、管理层和执行层三级的项目组织机构,每个小组各司其职,完成项目的具体执行工作。


步骤三:建设企业大数据平台


基于大数据平台咨询规划的成果,进行大数据的建设和实施。由于大数据技术的复杂性,因此企业级大数据平台的建设不是一蹴而就,需循序渐进,分步实施,是一个持续迭代的工程,需本着开放、平等、协作、分享的互联网精神,构建大数据平台生态圈,形成相互协同、相互促进的良好的态势。


步骤四:进行大数据挖掘与分析


在企业级大数据平台的基础上,进行大数据的挖掘与分析。随着时代的发展,大数据挖掘与分析也会逐渐成为大数据技术的核心。大数据的价值体现在对大规模数据集合的智能处理方面,进而在大规模的数据中获取有用的信息,要想逐步实现这个功能,就必须对数据进行分析和挖掘,通过进行数据分析得到的结果,应用于企业经营管理的各个领域。


步骤五:利用大数据进行辅助决策


通过大数据的分析,为企业领导提供辅助决策。利用大数据决策将成为企业决策的必然,系统通过提供一个开放的、动态的、以全方位数据深度融合为基础的辅助决策环境,在适当的时机、以适当的方式提供指标、算法、模型、数据、知识等各种决策资源,供决策者选择,最大程度帮助企业决策者实现数据驱动的科学决策。


关于怎样搭建企业大数据平台,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

㈢ 咨询管理公司有哪些关于大数据规划的业务

我之前在中大咨询的官网了解过大数据的业务,他们的核心咨询业务包括:
一、大数据版战略咨询服权务
根据客户业务需求和战略目标,通过设计大数据策略路线图,帮助企业确定流程和数据选择的优先级,分析评估其对业务的影响,构建起最佳数据架构,获取大数据价值。
二、大数据系统建设服务
根据客户的业务目标,设计、开发和交付为客户量身定做的解决方案,以满足客户对生产经营系统以及外部环境的数据服务需求。
三、大数据分析科学服务
帮助客户完成对现存的业务问题从数据可视化向管理图像化的描述与刻画,并运用前沿的数据分析技术,创新的数据分析方法,发掘全新的商业机会。
四、大数据管理服务和培训
通过各种形式的大数据分析与大数据系统管理的培训,助力企业提高数据分析效率和洞察力。

㈣ 企业大数据规划需要的三种能力和五个步骤

企业大数据规划需要的三种能力和五个步骤
大数据规划有五个步骤,首先从业务驱动的角度,相关部门选择要解决和产生的业务场景。针对需求处理和采取整合这些场景需要的大数据。当然选择的重点是怎么使信息快速产生价值。
数据分析的未来将朝着更为普及化、更为实时的数据分析去迈进,也就是说“针对正确的人,在正确的时间,获得正确的信息”,从这个意义来说,它已经超越了技术本身,是更为接近业务层面的实时分析。
对于一个成功企业来说,数据整合能力、分析能力和行动能力不可或缺。如果不具备完善的数据整合、分析和行动能力的企业迟早面临被淘汰的风险。在经营环境发生巨变的情况下,任何企业都必须在大数据规划上做好准备,这样才能抢先竞争对手发现市场新的趋势。
三种能力
我们建议企业和政府机构进行数据整合能力、分析能力和行动能力的建设。对于任何公司的管理层来说,要充分认识到数据的重要性,在管理层充分认识到数据的重要性之后,内部要有足够的人员和能力去整合、搭建和完善数据管理基础架构。有了海量数据之后,数据分析师能够对其进行分析和挖掘,使其产生理想的价值。
数据分析能力通过一定的方法论可以获得。这个方法论从宏观的角度来看,是通过数据整合探索出有效的业务价值,进而精确地协助制定商业策略或服务提升的策略,有效地采取正确的行动,来协助业务和服务质量的增长,或是解决业务已知、不确定或发现未知的问题。
另外,数据要实现普及化,不仅掌握在管理层手中,在数据安全和权限管理的机制下,企业或单位的每一个人都要了解自己的业务具体发生了什么,为何发生,预测将要发生什么情况,从而更快、更好地做出决策,最终达到智慧型的管理,通过一些主动式的事件,产生正确的行动,如业务增长的价值措施和办法,来精确有效地提升业务的增长。
五个步骤
如今大数据已经远远超出了IT的范畴,也就是说所有部门都在大数据运用的范畴中。
大数据规划有五个步骤,首先从业务驱动的角度,相关部门选择要解决和产生的业务场景。针对需求处理和采取整合这些场景需要的大数据。当然选择的重点是怎么使信息快速产生价值。场景因需求不同而包罗万象:例如企业在精确营销方面提升业务增长,对于其客户在购买哪些产品前的黄金路径统计分析等等。
其次,直接产生的价值需要与已有的客户关系管理、客户交易等数据进行结合和关联,从而为企业产生总体的关键价值效益。例如,哪些用户在购买前确实通过上述统计总结的黄金路径,而这些用户和该企业的历史关系为何,以提供企业下一步精确行动的优先顺序等等。
第三,整个企业要建立大数据分析的支持体系、分析的文化、分析数据的人才,彻底形成企业对大数据的综合管理、探索、共识。大数据能力的建设是企业或政府单位内上下及跨部门就如何提供更加智慧型服务和产品给用户的议题。
第四,随着大数据探索范围的扩大,企业要建立大数据的标准,统一数据格式、采集方法、使用方式,设定一个共享的愿景和目的,然后按照阶段化的目标去实现愿景。例如,有关数据的存储和处理长期围绕在关系型的结构数据中,提供更加智慧型服务和产品是需要结合过去难以处理分析的数据,如文本、图像等等。数据内容快速演变,因此对数据的标准、格式、采集、工具、方法等的治理能力必须与时俱进。
第五,最终建成企业或政府单位内的“统一数据架构”,从各类所需的多元的结构化数据源建立整合能力(采集、存储、粗加工)。在此基础上,建设数据探索和分析能力(从整合出来的海量数据里快速探索出价值),之后如何有效、实时、精确地与已有的业务数据结合,产生精确的业务行动能力(进行更深度的利用和提供更智慧型的服务),从而达到“针对正确的人,在正确的时间,正确的方式,提供正确的信息”的目标。

㈤ 大数据产业顶层规划出炉,如何实现

大数据产业顶层规划出炉,如何实现

国务院印发《促进大数据发展行动纲要》,从顶层规划角度系统部署我国大数据产业发展。

业内分析认为,我国应通过聚焦行业应用、创新产学研机制、加强人才培养、促进成果转化等方面加快推动大数据及其相关产业发展。

数据成战略资源

国务院印发的《促进大数据发展行动纲要》指出,数据已成为国家基础性战略资源。深化大数据应用已成为稳增长、促改革、调结构、惠民生和推动政府治理能力现代化的内在需要和必然选择。

大数据产业发展顶层规划也给出了明确的“创新导向”:计划在未来5至10年打造精准治理、多方协作的社会治理新模式,建立运行平稳、安全高效的经济运行新机制,构建以人为本、惠及全民的民生服务新体系,开启大众创业、万众创新的创新驱动新格局,培育高端智能、新兴繁荣的产业发展新生态。

纲要的出炉也被认为是我国继“互联网+”行动后,进一步从顶层规划上明晰大数据、云计算、移动互联、人工智能等前沿技术发展规划。

用友网络董事长王文京认为,移动互联网、云计算、大数据等正成为社会发展、经济增长的重要驱动,数据资产也成为人类社会继财富资产、人力资产等之后的“第四种资产”,其重要性不言而喻。

中国科学院院士、北京大学教授鄂维南认为,大数据正改变着实体经济与产业格局。例如,基于大数据的计算广告学改变了传统广告行业;一些企业正深入研究非结构化数据处理,以改变传统产业。

聚焦人才培养

各界人士认为,大数据作为新的计算方式,其对产业、实体经济的影响将极其深远。然而,以产业需求为导向的创新研发亟待提升,国内“数据人才”培养也需要进一步优化,以适应市场需求。

首先,以产业需求为导向,成果及时落地转化,企业主体创新力量须得到调动。

“在中国,数据科学发展的很多研究源于市场需求。比如,监控视频处理就是很重要的应用场景。如何让电脑对图像数据进行突破,可以智能判断,这就是很好的大数据科研突破口。”鄂维南说,尽管目前国内大数据产业发展很快,但也存在着缺乏以市场需求为导向的创新突破等问题。

各方认为,唯有释放企业的创新活力,才能推动大数据关键领域取得突破,促进大数据科研成果转化为实际成果。

其次,符合市场需求的人才培养应得到重视。

北京大学校长林建华认为,进入数据时代,人们对获取、存储、分析、处理数据的能力亟待提升。因此,数据科学人才培养成为急需加强的方面。“可以看到产业内很多大企业用非常大的资源,争取学术界数据人才,各方面拉人才。可以说,大数据能否做成,关键在能不能聚焦人才培养。”

而高校和产业界普遍认为,当前对大数据人才的培养仍相对滞后。北京航空航天大学软件学院院长孙伟认为,传统it教育很难将前沿技术和课堂传授知识结合起来,培养人才很难及时与产业接轨。高校创新人才培养应更加面向市场需求、技术前沿。

以新模式助大数据产业突破

分析认为,国内产业界对数据科学的前沿探索已经加速推进,部分高校也开始了“数据科学家”的培养。在此背景下,我国应进一步打通壁垒,以新模式探索产学研用结合,培育数据人才、助推以市场为导向的数据科学研究突破,促进产业加速发展。

调查发现,以北京中关村为例,大数据已经在商业、金融、交通、医疗、教育等行业示范应用,100多家大数据创新企业从不同领域深植数据资源。

同时,北京航空航天大学、浙江大学等高校与阿里云、慧科教育达成合作,计划3年内培养和认证5万名云计算和数据科学工作者。这些为数据人才培养提供产业与教育基础。

模式的探索已现雏形。北京中关村管委会、海淀区政府、北京大学和北京工业大学等四方启动“北京大数据研究院”,启动建立大数据高精尖创新中心,推动人才培养和科研突破;并成立股份制技术成果转化中心,围绕热点领域产业需求,推动关键共性技术研发、行业大数据分析、成果转化等。

鄂维南透露,研究院将主要聚焦包括交通大数据、金融大数据、移动互联网大数据、医疗大数据等方面,整合分析资源,支撑决策与产业发展。计划一到两年内,研究院将建立数据金融、医疗健康、交通数据、智慧城市、能源环境和气象等分中心,涉及数据与生物、化学、天体、神经科学等学科的交叉研究。

各界认为,这种灵活的产学研结合机制将成为推动大数据快速发展的有效手段。

王文京说,创新机制将有助于创新人才及时对接市场需求,让大数据切实影响改变产业现状。

以上是小编为大家分享的关于大数据产业顶层规划出炉,如何实现的相关内容,更多信息可以关注环球青藤分享更多干货

㈥ 大数据系统体系建设规划包括哪些内容是什么

大数据系统体系建设规划包括的内容是:强化大数据技术产品研发,深化工业内大数据创新应用,促进行容业大数据应用发展,加快大数据产业主体培育,推进大数据标准体系建设,完善大数据产业支撑体系,提升大数据安全保障能力。

指以数据生产、采集、存储、加工、分析、服务为主,进行的相关经济活动称为大数据产业,目前我国的大数据产业体系已初具雏形,大数据系统体系的发展建设有利于全面提升我国大数据的资源掌控、技术支撑和价值挖掘各方面的能力,加快我国称为数据强国的步伐,同时有利支撑着我国成为制造强国、网络强国的建设工作。

(6)企业大数据规划扩展阅读

大数据系统体系建设规划发展原则:

创新驱动、应用引领、开放共享、统筹协调、安全规范。

大数据系统体系建设规划发展目标:

技术产品先进可控、应用能力显著增强、生态体系繁荣发展、支撑能力不断增强、数据安全保障有力。

㈦ 企业数字化转型如何进行数据资源规划

题主您好,本人曾经就这个问题询问过中大咨询的专家,专家给出以下几点建议:
1、统一信息资源模式,强化数据标准建设
以业务为导向,建立统一的企业数据架构。依托企业主数据管理(MDM)和数据资源规划(IRP),强化数据标准化建设,实现信息资源模式的统一。企业主数据管理,就是将企业的多个业务系统中整合最核心的、最需要共享的数据(主数据),集中进行数据的清 洗和丰富,并且以服务的方式把统一的、完整的、准确的、具有权威性的主数据分发给企业内需要使用这些数据的应用。围绕流程再造,从业务到数据,构建企业数据架构基线,建立数据架构管理机制。
2、推进结构化和非结构化数据的融合发
推进结构化和非结构化数据的融合式发展,将超文本、超媒体数据模型和面向对象数据模型进行融合,构建适合结构化和非结构数据统一组织和管理的数据模型。
3、积极部署大数据应用,驱动信息资源的有效利用
加大 大数据技术的应用部署力度,综合运用云计算、分布式计算、数据交换、数据仓库、数据挖掘以及非结构化的数据处理等多层次的大数据技术搭建大数据平台。
4、重视数据安全管理,确保大数据生态圈信息安全
在信息资源整合过程中以数据安全管理为前提,与上下游企业以及安全管理机构、评测机构等第三方机构开展广泛合作,从企业管理制度、流程和技术手段等多方面协作确保大数据生态圈的数据信息安全,如果回答能够帮助到你,请给予采纳哈,谢谢了。。

㈧ 电商企业怎样用好大数据

电商企业怎样用好大数据
大数据正在促生新的蓝海,催生新的经济增长点,正在成为政府和企业竞争的新焦点。2012年,瑞士达沃斯论坛发布《大数据,大影响》报告,称“数据已经成为一种新的经济资产类别,就像货币或黄金一样”。2012年,美国政府启动“大数据研究和发展计划”,将大数据上升到了国家战略层面。对于企业来说,数据正在取代人才成为企业的核心竞争力。
在众多领域中,显然电商企业比传统零售企业在这方面会更有优势,因为电商企业本身就是通过数据平台为用户提供零售服务的。那么,电商企业如何应用好这一优势?
电商企业具备先天优势
当前,我国电子商务正处于快速发展期。以阿里巴巴为例,2012年,淘宝和天猫成交量之和超过一万亿元。根据国家统计局数据,2012年全国社会消费品零售总额为20.17万亿元,一万亿元相当于其总量的4.8%。我国电子商务井喷式发展的背后是消费者数据的几何级增长,电子商务龙头企业也积极部署、探索和挖掘大数据相关应用。
——电商企业通过大数据应用创新商业模式
大数据的重要趋势就是数据服务的变革,把人分成很多群体,对每个群体甚至每个人提供针对性的服务。消费数据量的增加为电商企业提供了精确把握用户群体和个体网络行为模式的基础。电商企业通过大数据应用,可以进行个人化、个性化、精确化和智能化广告推送与推广服务的探索,创立比现有广告和产品推广形式性价比更高的全新商业模式。同时,电商企业也可以通过对大数据的把握,寻找更多更好的增加用户黏性、开发新产品和新服务、降低运营成本的方法与途径。
实际上,国外传统零售巨头早已开始大数据的应用和实践。Tesco是全球利润第二大零售商,其从会员卡的用户购买记录中,充分了解用户的行为,并基于此进行一系列的业务活动,例如通过邮件或信件寄给用户的促销可以变得更个性化,店内的商家商品及促销也可以根据周围人群的喜好、消费时段来更加有针对性,从而提高货品的流通。这样的做法为Tesco获得了丰厚的回报,仅在市场宣传一项,就能帮助其每年节省3.5亿英镑的费用。
从国内来看,我国电商企业已逐步认识到大数据应用对于电商发展的重要性。以凡客诚品为例,经过近几年的高速发展,凡客每年的销售量成倍增长,库存问题逐渐成为制约其发展的主要因素。2011年,凡客成立了数据中心,针对企业经营数据,包括库存、进货周期、周转、订单等,研究分析新产品的上架与新用户增长的关系,每上线一个新产品与它能够带来的用户二次购买的关系等,开展大数据应用实践。凡客的高库存问题目前已得到了缓解,库存周转周期由100天下降为50天~30天,有效降低了运营成本。
——电商企业通过大数据应用推动差异化竞争
当前,我国电子商务发展面临的两大突出问题是成本和同质化竞争。而大数据时代的到来将为其发展和竞争提供新的出路,包括具体产品和服务形式,通过个性化创新提升企业竞争力。
阿里巴巴通过对旗下的淘宝、天猫、阿里云、支付宝、万网等业务平台进行资源整合,形成了强大的电子商务客户群及消费者行为的全产业链信息,造就了独一无二的数据处理能力,这是目前其他电子商务公司无法模仿与跟随的。同时,也将电子商务的竞争从简单的价格战上升了一个层次,形成了差异化竞争。目前,淘宝已形成的数据平台产品,包括数据魔方、量子恒道、超级分析、金牌统计、云镜数据等100余款,功能包括店铺基础经营分析、商品分析、营销效果分析、买家分析、订单分析、供应链分析、行业分析、财务分析和预测分析等。
此外,电商企业通过大数据应用积极开拓发展新蓝海——互联网金融业务。目前阿里、京东、苏宁三大主流电商企业已相继试水。除“阿里小贷”模式比较成功之外,“京东模式”也渐出效果。2012年,京东通过与中国银行合作,推出“供应链金融服务”,供应商凭借其在京东的订单、入库单等向京东提出融资申请,核准后递交银行,再由银行给予放款。此服务可以帮助京东供应商大幅度缩短账期,资金回报率由原来的60%左右提高到226%。
警惕隐私风险
虽然电子商务企业已经走在大数据时代的前列,但在开始规划大数据美好蓝图的同时也要警惕其面临的挑战和风险。
企业信息化投资将规模化发展。电商企业内部的经营交易信息,包括商品、物流信息,以及用户的社交信息、位置信息等将构成企业大数据的主要来源。其信息量远远超越了现有企业IT架构和基础设施的承载能力,其实时性要求大大超越现有的计算能力。此外,电商企业还将面临数据孤岛、数据质量、数据格局等数据治理问题。要想依靠大数据获益,我国电商企业必将进行新一轮的信息化投资和建设。
相关管理政策尚不明确。大数据时代下,云计算必将成为电商企业选择的业务模式,其本质是数据处理技术。数据是资产,云为数据资产提供了保管、访问的场所和渠道。云计算所提供的服务,既包括软件服务和应用平台服务,又包括基础设施服务,但目前我国针对云计算服务的管理政策和技术标准尚未明确。
数据安全与隐私问题突出。一方面,大量的数据汇集,包括大量的企业运营数据、客户信息、个人的隐私和各种行为的细节记录,面临的数据泄露风险将会增大。电商企业既要防止数据在云上丢掉,也要防止数据在端上被窃取和篡改。另一方面,一些敏感数据的所有权和使用权还没有明确的界定,很多基于大数据的分析都未考虑到其中涉及的个人隐私问题。

阅读全文

与企业大数据规划相关的资料

热点内容
epg文件格式 浏览:699
wordpress分类描述 浏览:177
python用代码转文件xy格式 浏览:802
教育门户网站模板 浏览:331
四光感巡线程序乐高 浏览:989
怎么标记文件 浏览:972
为什么副卡数据打不开 浏览:109
苹果voiceover永久关闭 浏览:749
梦幻西游新版本普陀山 浏览:453
win10选择其他系统文件类型 浏览:980
pythonjson数组 浏览:227
乐翻儿歌历史版本 浏览:216
为什么删除文件很慢 浏览:527
压缩包里面的cad文件保存去哪里了 浏览:735
聚合产业促升级 浏览:207
魅蓝系统升级50 浏览:92
xp支持文件名路径 浏览:330
两融最新数据什么时候更新 浏览:462
pe模式win10桌面文件在哪 浏览:388
产品ooba文件是什么 浏览:68

友情链接