导航:首页 > 网络数据 > 运营商大数据责任

运营商大数据责任

发布时间:2023-01-28 18:05:53

Ⅰ 运营商的大数据问题出在哪

问题如下:
1、运营数据不统一,难以发挥整体性的作用。
2、数据分级管理平台分隔的情况下,大数据应用时依然很难整体操作。在解决一些全局性问题的时候就无能为力。
3、场景不够,缺乏突破点,不知道大数据应用到何方,对商业社会的各个方面了解缺乏,手中有数据也不知道应该用到什么地方。

Ⅱ 大数据时代,运营商的身法与心法

大数据时代,运营商的身法与心法
我始终相信,无论在哪里,有什么职位,做什么工作,如果内心没有足够的动力、期盼与爱的话,一个人是无法产生强烈的使命感与责任感的,或者说,没有幸福感。
最近读完了《幸福的方法》,对书中一段话非常有感触:"忙碌奔波型是未来的奴隶,享乐主义型是现在的奴隶,而虚无主义型则是过去的奴隶。"在运营商工作的我们都经历过从通信业黄金十年带来的"金饭碗"、行业遭遇"高原平台期"的铜饭碗,甚至全社会"人人得而诛之以后快"的"纸饭碗",无论是企业还是身处其中的个人,都在感受着巨大的压力与阻力。
于是,一些人选择了"享乐主义"式生存,日复一日在单位混日子;一些人则选择了"虚无主义"式生存,沉浸在过去的辉煌,躺在功劳簿上过日子;还有一些人选择"忙碌奔波"式生存,开不完的会、做不够的汇报、写不尽的方案,虽终日忙忙碌碌却无所作为。正是如此,才有了我上篇文章中写到的"四种人"——那些想走又能走的人最终选择了离开这里,那些想走却不能走的整日抱怨体制,那些不想走也不能走的昏昏度日,剩下那些能走却不想走的痛苦挣扎……
一、运营商正在经历什么?
借用双城记那段经典开场白:这是一个最好的时代,这是一个最坏的时代。对于运营商这样天生依靠人口红利、规模红利的传统企业,未来的日子或许并不好走。无论是从媒体的口诛笔伐,还是用户的人人喊打,亦或是员工的纷纷出离,种种迹象都在表明这个行业早已从大象快跑的“神坛”跌落,变得迟钝、缓慢甚至有些狼狈了。
可十年前绝不是这样。三十年前更加不是。
《大跨越:中国电信业三十春秋》的开篇语这样写道:从经济瓶颈到社会先导,从全球末游到用户总量世界第一,改革开放三十年中国电信业实现了举世瞩目的大跨越!这一切是怎么得来的?这本生动再现改革开放30年来中国通信业辉煌历程的著作选择了两个有意义的时间点,1978年跟2008年,前者是中国正式吹响改革开放号角的关键一年,而后者则是代表了通信业黄金十年的关键一年。
字里行间都可以读到中国通信业经历过怎样的辉煌,可以感受到从业者那种由衷的自信与荣耀。时代巨变,昔日巨头创造了比以往更加令人瞩目的经营业绩,却在政治地位以及行业形象上连连败走麦城。
时至今日当我们再次谈论运营商,你想到了什么?是财务报表上无比闪耀的光辉业绩,还是面对行业内外竞争暗战的困惑焦虑;是建成一张张4G、4G 网络的骄傲欣喜,还是管道化、低值化、边缘化的郁闷心酸;是对KPI下多少就能完成多少的自信得意,还是对基层不断涌现离职潮的始料未及。
是运营商真的做错了什么吗?可能并不是。
放眼看看这个时代吧!这是一个在和同行不断抗衡,却无奈被OTT抄了后路的时代;一个到处充斥着机会,细看时却满目危机的时代;一个传统大机构失势瓦解,个人自由连接全面崛起的时代……
这是一个唯变不破的大时代。在这个时代里,竞争对手变了、游戏规则变了、用户习惯也变了,曾经习以为常的一切突然间发生了天翻地覆的变化。话音、短信这些传统业务正在加速下滑,流量虽然成为新的增长点,却不得不面临着“提速降费”的巨大压力。可以说,在这样的时代背景下,运营商像是被困的巨兽,想挣扎却又充满无力感,想改变却又害怕不确定,想突破却又找不到突破口……
唯一的方法大概就剩下三个字:豁出去。
二、运营商该怎么办?
对于眼下的运营商来说,出路无非两条,要么精耕存量客户,挖掘更大的价值点;要么开辟新市场,寻找行业的破局地。关于精耕存量市场,已经有太多这方面的文章,这里不再赘述。我想重点谈谈新市场。
1.新市场在哪里?
日前,互联网教父、科技商业预言家的凯文·凯利在斯坦福大学进行长达3小时的分享,畅谈他对未来20年重大科技商业潮流的见解。我对其中一个观点很感兴趣,他说不管你现在做什么行业,你做的生意都是数据生意。
数据!
无论是风生水起的移动互联网,还是改变世界的芸芸众生,他们都在通过运营商的网络来获取信息。
2014年三月在北京举行的一场大数据产业推介会上,阿里巴巴集团创始人马云在主题演讲中发表了他的观点——“人类正从IT时代走向DT时代。IT时代是以自我控制、自我管理为主,而DT时代,它是以服务大众、激发生产力为主的技术。”
我们都知道,今年的双11全球狂欢节中,阿里巴巴天猫用时不到12小时就打破了去年创下的571亿元的交易额,最终将记录锁定在912亿,其中无线交易占比71%,全球产生成交的国家和地区达到205个。
巨量交易额的背后是什么?是阿里越来越强大的供货和物流系统?还是传统零售业的全面没落?其实都不是的。我以为这背后体现了阿里巴巴强大的数据分析和挖掘能力。在这样的购物节中,最重要的问题是商家要备多少货?而这可以通过平台历史销售大数据,预测货品需求,为商户提供库存依据,提升库存效率和有效性。
而在百货商店时代,购物数据只有通过人工才有可能统计完并且不一定准确,但是阿里巴巴会把每个人的历史购物和浏览数据都留在云上。因此,淘宝可不光是一个电商平台,更是顾客的大数据平台。
阿里巴巴集团副总裁涂子沛在讲到这个概念的时候举了一个更容易理解的案例:请你预测全国哪些地区会有更多的二孩出生?按照传统的数据统计,估计只能依靠人口普查、各地市区县统计部门的层层上报,不但会有偏差而且还会滞后。而在阿里巴巴,只需要统计哪些区域的孕婴用品销量激增就可以了,不但真实而且更加便捷。
运营商也是一样的。你以为运营商只是通信管道的提供者?其实或许还是信息适配的服务商。在过去,我们使用的文件、文件夹、桌面这些东西都是停留在本地的。我还记得那个时候最好的备份工具大概是移动硬盘或者是蓝光光盘之类的东西。而进入网络时代之后,数据就出现在网页上、链接里。现在的云上有标签、有流量、有新闻,还有各种各样我们需要的信息。云、数据化才是这个时代的关键词。要知道,这些所有的信息都是通过运营商的网络传输的,就和从淘宝上销售的商品信息一样,除了信息本身,它的发送端和接收端或许才是我们关心的重点。
于是,将合适的信息主动推送给需要的人,就是运营商能提供的大数据服务了。
2.新市场有多大?
中国云计算技术与产业联盟理事长吴基传曾指出:大数据是云计算服务的基础,是构架云平台最基本的要素,没有对海量信息的分析的大数据,就没有为所有信息消费者获取有价值的信息的可能性。
因此在商业界,大数据已经开始成为很多企业的生意。《2015年中国大数据交易白皮书》显示,预计到2020年,中国大数据产业市场规模将超过这个市场去年规模的10倍,由2014年的767亿元扩大至8228.81亿元。
2015年8月19日,国务院常务会议通过《关于促进大数据发展的行动纲要》,这或许意味着,大数据在中国将逐渐步入正轨,进入到顶层设计时代,这无疑将加速经济发展引擎的进一步开发。
从运营商的角度来看呢?以中国移动为例,我们有超过8.2亿用户,110万4G基站,经营分析系统里有10B以上的数据,我们的10086每分钟都有海量用户的呼叫,实际上所有这些动作每天都在产生大量的数据。那么,这些数据到底有多大,集中以后会是个什么效果?
有人曾经做过测算,一个省公司一天的数据要上百P,这些数据集中在一点传输到中国移动(贵安)大数据中心,需要重建一个中国移动的CMNET,也就是中国移动Internet的骨干网。
所以某种意义上来说,运营商拥有采之不尽用之不绝的数据富矿,站在金矿上总比无矿可挖强,这也是我判断运营商或许会在大数据时代“触底反弹”的依据之一。
3.还有什么不确定因素?
虽说前途可期,但毕竟是一个全新的领域。在新领域就一定有新的游戏规则,也会有相应的规则适应过程。
在过去的几年中,大数据的概念在产业界引发了无数的争议和讨论,甚至长期出现在Gartner的新兴技术成熟度曲线(也称新兴技术炒作周期报告)中。原因非常简单,一项新技术多被谈及概念,虽然在媒体上屡屡曝光,但应用案例寥寥。
因此,大数据越来越被看做是评论界的谈资,而非真正意义上的产业。
在贵阳成立的全球第一家大数据交易所,通过电子系统面向全球提供数据交易服务,计划2020年数据清洗交易量年达1万PB、年总额3万亿。然而,成立至今,这个深孚众望的机构撮合的交易记录也不过3000多笔。“有意愿交易大数据的企业和机构还不多。”交易所工作人员如是说。
除此之外,还有几个关键不确定因素在影响着大数据产业发展。
A.技术能力不足。IT作为后端的支撑手段,大量通过外包或采购方式实现,所以在自身软件开发和大数据平台运维、大数据新技术应用、大数据分析挖掘方面能力相当有限。
B.数据“墙”大量存在。很多数据是分散在不同的系统中的,经过长时间的“竖井”式运作,已经形成了难以突破的壁垒。以中国移动为例,B域主要是经营分析数据、O域主要是网络运维数据、M域主要是管理信息数据,但这三域的IT系统分别由三个不同的部门负责,整合难度较大,较难形成“1 1>2”的数据融合效果。
C.组织架构不匹配。目前看,很少有机构会设置专门的部门去集中各种散落的数据,更别提对这些数据进行标准化的管理和维护了。
D.思维观念的滞后。如果说技术、资金、人才方面的劣势都可以通过后天的努力来补足,那么意识层面的缺失就需要相当长时间的培育了。
除了以上说的几点,大数据交易的安全性、定价的合理性、客户信息的保密性,都在一定程度上影响着大数据业务的规模和发展空间。
三、运营商玩大数据的心法与身法
运营商究竟该怎么玩儿大数据呢?窃以为先要回答好三个问题:一是数据在哪里?二是数据放哪里?三是数据怎么用?
1.数据在哪里?
都说我们正在经历一个全新的商业时代——分享经济的时代,消费者正在放弃传统的、效率低下的企业,转而投入分享型企业的怀抱,来获取他们想要的产品和服务。Uber让座驾更好地分享,Airbnb让空闲的房屋更好地分享,八戒网让创意和设计更好地分享……现在看,一切可以分享的都是价值数据。
在分享经济的时代,真正分享的是有效的供需关系。因此,在分享经济中,更重要的其实是创建供需场景,建立供需联系。
数据也是相同的道理。随着移动互联网、云计算、物联网等新一代信息技术的爆发式发展,智能手机、平板电脑、可穿戴设备以及遍布各个角落的传感器,正在越来越多地接入到运营商网络。各种交互数据、传感数据正源源不断从各行各业迅速生成。这些数量庞大、种类广泛、迅速产生和更新的大数据,蕴含着前所未有的社会价值和商业价值。
如何能够有效挖掘并体现出数据的价值是亟待解决的问题。窃以为,关键就在于建立数据使用的场景并搭建数据交易平台。
比如说,城市规划设计院需要对新区进行商业价值评估,可以通过运营商的网格数据分析提供区域人口及经济状况解析;再比如,医疗机构需要在一段时期对药物及医疗设备做储备,可以通过医保报账平台统计该区域的医疗诊断及药物使用情况,预测出该区域可以发生的大规模疾病,从而及时储备相关资源。
重要的是,帮助数据消费者更加迅速有效地找到他们需要的数据,并促成双方交易。
2.数据放哪里?
如此大规模的数据存放在哪里也是考验大数据产业的要素之一。要知道并不是所有的机构都有足够的资源去建设自己的数据中心。而在这方面,运营商恰好可以提供服务。
通信行业有个词叫做“电信级服务”,意思是通信服务要具备不间断运行、大容量、高稳定性、可靠性等特点。而要达到这些条件,就需要完备的QoS保障机制,而其中重要一环就是设施先进、管理规范的通信机房。
因此可以说,在数据机房方面,通信运营商具有先天的优势。
能否将此作为运营商进入大数据市场的切入点呢?开放、合作就成了这个部分的关键词。前文说过,传统机构中有很多数据与信息孤岛,要想打破不断构筑的“数据墙”,首先是要将他们集中化的存储、管理、运营。因此,运营商的高标准数据中心或许只是一个必要而非充分条件,要让源自不同领域的数据发生“化合作用”的前提是将这些数据存放在运营商的数据中心。
ICT基础设施有连接和存储的作用,其产生的数据通过不同的终端存储下来,这些数据在应用程序中使用才会有价值。而运营商同时具备连接和存储两项功能。
面向未来,运营商数据中心将成为网络的中心,构建面向业务的敏捷、柔性、绿色的云IT基础架构将使运营商数据中心成为新一代ICT基础设施的驱动中心。
3.数据怎么用?
运营商现在最大的挑战是什么?是端到端的质量保障不足导致用户体验还不够好吗?是受到OTT业务的冲击导致传统业务快速下滑吗?还是业务量收剪刀差不断加大、投资压力日趋吃紧吗?个人认为都不是的。我们最大的挑战在于用户往往满足于现有的业务。这会让我们产生严重的路径依赖,从而也会形成“自满”情绪。
事实上,运营商现在面临着三大重要转变:一是从关注功能向关注最终用户体验转变;二是从提供语音和带宽向提供丰富、开放的ICT融合信息服务转变;三是从基于人口红利的增长向应用创新增长转变。这三个转变带来了商业模式、运营模式、研发模式和科技创新的转变,将驱动电信行业从封闭走向开放的数字化运营。
数字化运营,至少有三件事可以做:一是盘点数据资产;二是建立计算能力;三是开放数据平台。按照贵州移动芈大伟总经理的思路,运营商大数据发展路径分为1.0、2.0和3.0三个版本
大数据1.0主要针对运营商内部分析,建设重点以数据整合和能力构建为主,为数据价值发掘奠定基础,重点支撑精准营销和精确建网;大数据2.0主要针对数据价值提升,重点是逐步拓展对内对外数据价值挖掘的能力;大数据3.0主要针对数据变现,聚焦重点客户和行业,构建数据生态系统,逐步凸显外部收入。
目前,运营商在IT系统和网络系统上积累了很多数据资产(当然如果处置不当也可能会变成数据遗产……),通过SDN和NFV等IT技术重构的通信网络,将会形成全新的弹性、智能的网络架构。而网络IT化,就要求建立以云数据中心为核心的网络架构,数据中心将成为ICT基础设施的核心,数据中心的布局和规划决定未来网络的架构,也决定了未来的竞争力。
伴随20多年的互联网发展,掌握未来的“联接一代”和“数字元人”已经长成。相比上一代人,他们的沟通、交友、娱乐、消费、工作、学习等行为方式和思维模式,已经发生深刻的变化,他们对于数字社会和互联网的依赖与生俱来,代表着互联网时代的新消费行为。
运营商新的业务运营系统不再是简单的支持系统,更不是简单的营销界面在线化,而是连接运营商、客户和合作伙伴,连接网络、应用和内容的价值创造系统和生态链系统。传统的线下营业厅或将大幅减少甚至消失,取而代之的,是用户可以全在线模式按需、实时定制享受各项服务,运营商通过大数据分析洞察客户和精确营销,提供更加智能的客户服务。
从购买产品走向购买服务,商业世界的游戏规则正在发生根本上的变化,商家和用户之间的关系从交付那一刻才刚刚开始。
互联网之父劳伦斯·罗伯茨曾讲过:“自网络诞生以来,我们只实现了网速的提高,而在提升网络性能及其他方面毫无进步。”在这方面,运营商正在积极从消费体验出发打造新型的业务运营系统,新系统不再是简单的业支系统和网管系统,更不是简单的营销在线化,而是连接运营商、客户和合作伙伴,连接网络、应用和内容的价值创造系统。
后记
对于运营商来说,传统通信的黄金十年也早已过去,创新增长的白金十年或许才刚开始。站在时代交替的十字路口,我满脑子都只有一个想法——“或许我没有赶上通信业的黄金十年,但我一定不会再错过大数据时代的白金十年”。

Ⅲ 运营商发展大数据的核心价值在于商业化

运营商发展大数据的核心价值在于商业化
近年来,电信运营商利润率增幅放缓甚至下降,传统话音业务收入增长乏力,日趋边缘化、管道化;数据业务占比迅速增长,但量收的剪刀差持续扩大,投入多回报少。
在运营商转型路上,大数据技术的深入应用与商业模式的开发大有可为,可以说是运营商规避同质化竞争,打造智能数据管道,寻找差异化经营“蓝海”的必由之路。大数据的技术架构寻求高性能与低成本的统一,可以降低电信运营商庞大的IT资本开支压力。大数据的商业应用促使电信运营商从单纯提供网络资源、前向收费方式转变为基于网络资源和依据海量数据资源提供服务的灵活多样的混合模式,是一种新的商业模式。
国内运营商大数据应用受限
国内电信运营商在大数据应用方面主要受到了以下方面的限制。
第一,数据采集散乱、深度不足:电信运营商拥有海量数据的来源,但采集渠道散乱,通常分级、分地区、分系统建设,整体规划不足,数据标准化程度低,汇聚困难,无法形成有效的数据资产。
第二,数据分析能力不足:电信运营商建有以数据仓库为核心的经营分析系统,通常采用小型机加高性能存储架构建设,针对传统话单日志等结构化数据设计,还不具备非结构化数据与流数据的分析处理能力。
第三,数据商业应用不足:电信运营商大量数据尚没有充分发掘数据应有的价值,智能管道的建设正处在初期阶段。现有分析系统仅对内部提供服务,缺乏对外数据开放平台,大量数据未能有效进行商业利用。
电信运营商大数据发展探析
(1)大数据的政策支撑
电信运营商应积极寻求政府的支持,推动政府为大数据产业发展提供积极的政策支撑与引导、对关键技术的研发提供专项财政资金支持、对重点工程项目的实施提供支持与保障。电信运营商应高度重视大数据信息安全,推动政府部门牵头启动大数据立法,解决大数据信息权属与隐私保护问题;制定大数据技术标准与运营标准,规范大数据安全体系。通过政策支撑保障大数据产业的可持续发展。
2012年10月,中国计算机学会和中国通信学会均成立了大数据专家委员会,从行业学会的层面来组织和推动大数据的相关产学研用活动。运营商可以依托该平台推动企业内部大数据的发展。
(2)大数据技术架构与算法的研发
根据2012年美国市场调查咨询公司(Gartner)发布的新兴技术曲线,大数据技术正处于“期望膨胀期”,距离真正成熟尚需2~5年。电信运营商应抓住机遇加强技术研发,在开源技术的基础上,发展适合运营商的大数据技术;同时应积极对技术标准做出贡献,掌握技术主动权。在技术的拓展可主要集中在三个方面:(a)大数据的采集与传输技术。采集技术是指基于智能管道和物联网的大数据获取技术和算法;大数据传输技术研究应注重海量数据传输的安全可靠性,解决调度与控制问题。(b)大数据的存储与分析技术。存储技术主要指面向海量数据文件的有效存储与读取能力、大数据的新型表示方法和去冗降噪算法;分析技术的拓展方向应包括数据可用性和可计算性,计算复杂性问题,研究求解算法,进行高效处理等。(c)大数据的隐私安全技术。在大数据时代,如何保护用户隐私安全不仅是法规层面需要解决的问题,也是电信运营商在技术层面亟待解决的问题。
(3)大数据支撑运营中心
运营商要充分发挥大数据的价值,首要条件是具备采集、融合、存储、分析海量数据的能力。电信运营商可以在现有经分系统或数据仓库的基础上,针对目前数据采集散乱、采集深度不足、分析能力不足的问题,构建数据集中、平台统一的省级或全国级大数据支撑运营中心,为大数据的应用与商业化提供精确支撑。大数据支撑运营中心可以设置如下逻辑架构。
数据采集层:通过建设数据采集聚合网关,汇聚跨地区、跨系统的采集的丰富数据源。
数据融合层:建设海量结构化数据、非结构化数据以及流数据处理能力,建立数据标准化体系,进行统一处理和存储。
数据应用层:通过构建不同的数据挖掘与分析模型,融合结构化数据,形成数据仓库,对外提供统一服务能力。
资源管理层:提供统一监控、资源管理与运营等功能。
(4)大数据应用与商业化
大数据应用与商业化是大数据发展的核心价值与落脚点。电信运营商拥有极其丰富的数据资源,相比互联网公司更具天然优势。对大数据进行全面、深入、实时的分析和应用,以客户体验为核心发展流量经营,是电信运营商应对新形势下挑战避免沦为哑管道的关键。
通过大数据助力业务创新,提供市场营销与客户服务的精准支撑能力。在互联网社会中,拥有数据,就拥有了了解用户行为的基础,从足够多数据的叠加中可以探知一个人的过往行为,同时可以精准的预测出其未来的需求。通过对海量的行为和内容数据处理,可以获得用户的时间、位置、业务、终端等基础信息,分析出用户的身份、兴趣、社交圈等,这样可以开发出很多新的增值业务。
通过大数据提升企业管理水平,提供透明管控与科学运营的精准支撑能力。运营商可以融合市场、财务、网络等多个系统产生的海量数据,将相关联的数据进行处理分析,有利于运营商更全面、更准确、更快速地获得企业运营数据,为投资决策和网络优化方案提供更多视角。
通过大数据发展开放合作平台,开辟新的商业模式,助力电信运营商转型。电信运营商可以通过大数据支撑运营中心发展开放合作平台,为广大开发者提供海量数据资源,发挥大数据的价值,将数据作为资源,进而提升的运营商利润增长点。
大数据技术的发展及规模商用,使得电信运营商能够充分挖掘管道内容,创造新的业务增长模式,应对“去电信化”的趋势,转型为综合信息服务提供商,成为未来大数据时代中最大的赢家。但在推动商业化应用的过程中还应全面认识大数据的内涵,避免陷入单纯的计算能力和存储能力建设,要清醒认识大数据发展的成熟度,客观分析用户的应用需求,避免过度建设

Ⅳ 运营商大数据到底如何应用

运营商大数据到底如何应用?

运营商大数据,可以根据不同行业和不同企业,分配和分析内符合容自己行业的精准客户数据资源!

相关企业搜集自己行业的网站,app,400电话,固话提供过来,就可以建模实时抓取,获取精准客户数据,相关企业可以通过外呼,短信等触达方式去转化和成交。

需要合作看评论

Ⅳ 运营商大数据可以为企业精准营销

以客户为中心,依托强大的数据库资源,通过对数据的分析整合,对客户进行精确的分析定位,做到合适的时间、合适的地点、合适的价格、通过合适的营销渠道,向准确的顾客提供需要的产品,实现企业效益的最大化。精准营销的实质是根据目标客户的个性化需求设计产品和服务,而大数据就是手段。
1,以用户为导向。真正的营销从来都是以用户为中心的,而大数据把用户实实在在“画”在了眼前,营销者可以根据数据库内的数据构建用户画像,来了解用户消费行为习惯、以及年龄、收入等各种情况,从而对产品、用户定位、营销做出指导性的调整。
2,一对一个性化营销。很多销售在推销产品时常常会遇到这样的问题:产品是一样的,但是用户的需求是各不相同的,如何把相同的产品卖给不同的用户?这就需要我们进行“一对一”个性化营销。利用大数据分析,可以构建完善的用户画像,了解消费者,从而做出精准的个性化营销。
3,深度洞察用户。深度洞察用户,挖掘用户潜在需求,是数据营销的基础。利用数据标签,可以准确获知用户的潜在消费需求,例如:我们得知一位用户曾购买过奶粉,那么我们可以得知,家里有小孩,相应的可以向他推送早教课程等适合婴幼儿的产品。洞察消费者需求后再进行投放,营销的效果将比撒网式有效且更易成交。
4,营销的科学性。实践证明,数据指导下的精准营销相对与传统营销来说更具有科学性。向用户“投其所好”,向意向客户推荐他们感兴趣的东西,远远要比毫无目标的被动式营销更具成效。

Ⅵ 运营商看待大数据最易陷入的四大误区

运营商看待大数据最易陷入的四大误区
在大数据概念迅速普及、产业快速发展的今天,运营商仍以传统的通信思维看待大数据业务的发展,导致其在发展中陷入了某些误区。
误区1:大数据项目应当“做成产品”
最容易形成这种误区的就是运营商的政企服务机构。在他们的工作中,有一大部分的时间是用来联合设备厂商或服务支撑方满足客户各种需求,尤其是在一些ICT项目中,“运营商+服务方”联合投标的模式屡见不鲜。
在这种背景下,运营商习惯于打包提供“整体解决方案”的模式。这里面一个非常核心的点是:运营商要在摸清客户需求的情况下,协同服务支撑方事先提供一套产品/服务方案,这套方案的顶层设计、解决方案、落地服务都是由运营商或者服务商单方面提供,客户主要负责定方向以及政策指导。而在这种思维模式下,运营商更愿意将项目做成“产品”提供给客户。
然而在大数据合作项目中,笔者更愿意称之为“服务”。一个巨大的差异点在于:客户需要全程参与项目设计,在模型训练及数据验证的过程中要进行实战演练,在一些关键模型、核心参数的设定上要有明确的意见。而在此过程中有一个心态和理念上的重大区别,如果说在政企的ICT项目上,运营商扮演的是“包工头”角色大包大揽,那么在大数据项目中,运营商更多应该充当“开放平台”,将数据作为能力开放出来,数据应用的事交给更专业的行业用户。这样既可以为运营商提供广阔的思路、积攒宝贵的经验,又可以在合作过程中探索和实践出一套互信机制。
误区2:大数据项目应当“做大做强”
在运营商发展大数据的过程中,一个比较突出的现象是做大数据项目,往往都是“大”项目。一方面,大项目的影响力更大,更容易出彩;另一方面,运营商政企机构“对等服务”的设置也在某种程度上决定了高层级政企机构只愿意做高层级客户,无论从职责还是意愿上,他们都不太可能去找低层级客户。
基于此,对于高层级客户肯定要“高大上”,功能越多、越全、越高级越好,界面越酷、越炫、越缤纷越好,对于重要客户,“面子”是一定要给足的,至于报价,通常都是“鉴于双方深厚的合作基础或一定要着眼未来,不要太在意短期收益,适当收点费就可以了。”
但这样做最有可能导致的后果就是快速透支新型业务的价值,有可能导致这个业务线迅速进入枯水期。事实上,运营商的流量经营就是让流量快速贬值,从而迅速见顶。
所以笔者认为,运营商的大数据项目应该做小、做精、做深、做透、做实,真正在客户的实战场景中发挥作用。让客户用了就说好、用了就离不开。如此,才能真正深入用户,让功能变成服务、再让服务变成收入。
误区3:大数据项目应当“由内向外”
有一种观点认为,运营商的大数据项目就应该“从内到外”,也就是说主要服务内部,然后再逐步考虑外部应用。理由也非常简单,如果连自己的稀饭都“吹不冷”,又怎么能做好外部的事情?更何况,还有一把“用户隐私”的“达摩克利斯之剑”高高悬在头顶。
事实上,这种逻辑未必成立。在笔者看来,大数据项目真正成功的关键往往是部门与部门之间、行业与行业之间打破数据壁垒,产生融通价值。让人感到遗憾的是,尽管运营商拥有海量数据,但这些数据多是散落在M/B/O三域当中,经过多年的发展,不同的IT系统像是一个个高高的烟囱,随之而起的还有部门之间越来越厚重的“部门墙”。
相比之下,外部则有所不同。对于其他行业来说,通信数据是一个完全陌生的领域。从概率上来说,这种“结构洞”式的机会往往会带来“跨界交叉的意外惊喜”。两个完全不同的行业数据碰撞得出有趣结论的可能性的确会更高一些。更何况,通信数据本身就蕴含着十分丰富的内涵。
因此,只要找到合适、可靠的行业,将两者的数据打通、解构、清洗、再结构化并进行交叉分析,有很大的机会可以做出某个特定场景下的“神奇功能”。当然,这里的场景一定是基于行业用户的自身实际应用,绝非是那些“面子工程”。
误区4:大数据项目应当“自上而下”
按照运营商拓展政企市场的思路,通常更习惯于“自上而下”的策略,即与垂直行业的上级管理机构签订战略框架合作协议,再由运营商各级分公司与属地机构签订业务协议。
其实,“自上而下”部署项目是一把双刃剑。好处在于,一旦项目签约成功,可在相对较短的时间内完成某个行业的全面部署;坏处在于,客户需求不易收敛,项目极有可能失控,同时,通过行政命令强压下级机构执行时,下级单位处于被动接受的状态,或许会出现“消极怠工”的现象。
所以,笔者更倾向于“自下而上”去推动大数据的发展,原因非常简单:基层单位往往更接地气,可以在一些特定的场景、特定的行业以及特定的区域中形成收敛的需求,容易形成单点突破和饱和度攻击,最终直接产生“实战”效果。更加深层次的原因在于,基层单位主动创新提出的项目,往往在落地执行过程中更具主动性,一旦项目具备规模推广的可能性,无疑将为基层单位在上级管理机构那里变成加分项。

Ⅶ 运营商迎来大数据时代 管理和分析是大挑战

运营商迎来大数据时代:管理和分析是大挑战
大数据不是新的概念,在移动互联网发展起来后,数据增长速度加快,整个产业压力突出,传统数据库技术已无法满足运营商对大数据充分利用的需求的背景下,大数据成为近年来的热点。对运营商来说,数据爆发性增长后,带来的收入并未改观,因此,运营商面临着数据流的附加值被互联网公司赚走的挑战,同时面临沦为管道化的尴尬,如何利用好运营商手中的大数据,成为需要面对的问题。

运营商面临数据管理和分析挑战
易观国际分析师黄萌表示,大数据发展时间不长,随着云概念和3G的深入发展,运营商数据压力增大,同时IDC扩容,偏向以存储为主的云服务业务。
运营商新业务的涌现,导致数据暴增。信令数据、互联网数据其规模已经达到数百TB,甚至PB规模。此外,据EMC数据计算事业部大中国区总经理刘伟光介绍,数据的价值除了与数据规模相关,还与数据处理周期成正比关系。也就是,数据处理的速度越快、越及时,其价值越大,发挥的效能越大。而除了分析传统结构化数据外,随着新增值业务拓展,运营商对实现跨结构化、半结构化、非结构化数据进行高效分析有着愈发强烈的诉求。
而运营商面对海量数据和数据结构的变化,不仅是成本,还有管理和分析的挑战。黄萌认为,运营商相对互联网企业有优势,具有雄厚的资源和庞大的IDC集群,拥有电信级的运营网络,具有保证大数据实时、畅通传送的能力,同时具有网络资源和运营能力。而相对互联网企业劣势的地方在于上层应用,尤其是在Saas层面。
大数据有待深挖掘
南京邮电大学卢扞华教授认为,大数据时代主要是对技术的综合运用和对数据的深度挖掘。对运营商来说,大数据带来的机会大于挑战。运营商有自己的网络,积累了大量非常有价值的数据,可以进行客户分析。利用网络收集数据,对运营商运营方式的改变是个机会。
真正实现精准化营销和精细化运营的秘诀就在于如何利用好运营商手中的大数据。海量话单、信令、互联网数据本身就是一笔宝贵的财富。利用好这些数据,充分、及时地对这些数据进行深度分析挖掘,不仅可以进一步提升服务质量、提高客户忠诚度、挖掘新商机、增加收入,还可以通过优化资源配置、减少浪费来提升运营效率,有效降低运营成本。
此外,电信运营商信息化实施比较早,本身大数据积累的也多,例如以前的日志信息,包含用户信息和设备信息,可以进行挖掘使用。运营商越来越重视对数据的挖掘,可以获得未来开发业务和开拓市场的机会。另一方面,分析结果不会涉及隐私,管理好了可以更少产生法律纠纷。此外,电信运营商通过数据分析还可以提供面向社会的信息应用。[page]
卢扞华教授认为,大数据是对技术的综合应用,要有开放、融合、服务和创新的心态,大数据可以为运营商创造另一片天地。例如一个大数据的应用通过收集数据,对大量图片进行分析,最终形成一个场景图。这就是对数据分析、统计技术、图片处理技术和人工智能合成技术的综合运用。据悉,南邮正在开发这方面的应用。
据了解,目前中国三个电信运营商在业务支撑领域、网管IT支撑领域包括增值业务领域,已经随着市场的需求诞生了很多新的大数据实时分析的项目。目前,大数据主要应用在运营商的"信令"系统分析上,此外,运营商还可以通过"用户行为分析"系统,进行精准营销。运营商还提供IDC服务,通过"云"中心的方式为互联网企业提供服务。
对公市场前景巨大
黄萌表示,单批、单次数据爆发性增长,对其进行的可知的时间处理能力是关键点。对运营商来说,IDC服务在对政府和高校、企业等非个人业务市场上前景巨大;对于个人业务,运营商刚开始做,由于回收投资较慢、离散性强,现在主要是针对个人精准运营的业务。智能管道方面,运营商正在基于大数据平台进行流量分析,但是落地的项目少。
据介绍,运营商大数据战略还不太明晰,但是有了一些建树。去年十月份中国移动开始做的"大云"、数据管理系统和平台,覆盖很多园区、学校,2.0技术比1.0技术大幅提升;中国联通2010年开始对企业提供IDC服务,截至目前,营收超20亿元(人民币);中国电信2011年成立云公司,尚无实体业务,IDC托管规模相对联通小很多。
据电信专家韩少敏介绍,数据类型分为非结构化数据和媒体流,运营商开展大数据分析面对的问题主要是硬件能力。数据一方面是纵向关系,比如"信令",采用水平分隔数据的方式就可以,按照时间段分别存储分析。此外还有横向关系,需要垂直分隔,由于查询复杂,需要引入真正的算法去做。韩少敏认为,目前掌握这方面能力的人才奇缺。并且,运营商在分布式数据库方面少有进展。而从应用角度,大数据一方面用作于统计分析,建数据仓库,其次还有非文本查询,现在大多数数据库公司可以做以上两个方面,而对于关系型数据共享层面,目前还做不了。
中国联通在IDC服务方面走在三家运营商前面,其面向企业提供服务,目前通过按关系水平分隔的方式,将数据集中起来,但是一旦到关系型数据的共享层面,因为没有数据模型,找不到底层的数据库血缘,目前的方案无法解决问题。但是运营商目前做这些数据积累,可以为将来发展提供机会。
刘伟光认为,对于运营商来说,大数据等于大价值。对于IT企业,大数据等于大机遇。通信行业需求从来都是IT技术发展的重要推动力,谁能得到通信行业客户的认可,必然会在大数据领域大有作为,进而成为大数据解决方案的领先者、领导者。

Ⅷ 大数据时代,运营商如何应对

2010年全球数据量达到1.2ZB,2011年全球数据量达到1.8ZB,到2020年全球数据量将达到35ZB。数据密度将达到前所未有的高度,大数据时代的画卷已经展开。 随着大数据时代的到来,产业格局正在重塑,传统电信运营商面临低值化、管道化,在新的产业链中需要谋求新突破。专家认为,运营商应该跳出互联网看互联网,将大数据作为重点业务发展领域,毕竟运营商拥有的“数据矿产”资源是任何其他企业所不具备的,运营商应该基于大数据的基础发展延伸业务。面对大数据时代的潮流以及互联网企业的竞争,运营商应当利用自有数据优势提升自身数据运营能力。 首先,运营商应整合现有数据建立数据集市,利用实时处理大数据的能力,打造基于数据的实时营销解决方案,提升企业销售服务能力。大数据处理分析平台的优势在于对海量数据处理的实时性,技术优势可以有效地保障实时营销解决方案的实施。实时营销解决方案较传统营销方案具有更好的营销效果:更具时效性,一旦有实时行为数据产生,立即选定目标用户进行营销推送,保证在较短时间内送达客户,传统营销则是定期执行营销;目标客户动态选取,通过客户行为变化结合客户特征动态筛选目标客户,传统营销往往是通过长期分析挖掘客户兴趣爱好形成客户标签,在营销前预先挑选出客户。 从现有实时营销触发机制考虑,主要集中在用户行为触发、位置信息触发和热点事件触发等。用户行为触发机制是分析用户的行为偏好,如音乐、阅读和视频等,运营商可以定向推销自有增值业务;位置信息触发机制是根据用户位置轨迹信息推送自有业务或者合作商家的产品信息,如对接近某大型商场的用户推送商店优惠信息,吸引客户消费;热点事件触发机制是锁定对热点事件感兴趣的客户进行针对性营销,如锁定关注NBA总决赛的微博用户,进行相关的篮球商品推荐。 其次,运营商应当成为信息的融合者,利用自有的品牌优势打造权威指数类产品,为客户的决策提供参考依据。相较于其他行业,电信运营商的用户群体相对稳定,所采集信息较完整,而且在整个产业链中运营商的影响力较强,拥有可信品牌,数据中蕴藏着巨大的客户信息、商业信息和业务信息。因此,与其他权威指数类产品相比,电信运营商基于数据源的优势可以提供更加全面、详尽、客观的产品,对于分析中欠缺的数据可以同其他行业进行合作共同挖掘数据中隐含的价值。 电信运营商指数产品可以辐射影视、电子商务等很多行业,并且已经在一些行业进行了应用。在大数据处理分析平台中汇聚移动互联网DPI数据、IPTV使用数据和宽带互联网DPI数据,可以综合以上数据分析用户访问视频网站的偏好,包含喜爱的导演、演员、故事类型等,形成指数类分析报告,为电影生产、影院上线电影选取等提供决策依据。通过这种方式打造的热播美剧《纸牌屋》,让全世界影视业感受到了大数据的魅力。 最后,电信运营商可为智慧医疗、智能交通、智慧物流、智能制造等领域提供解决方案,提升数据价值。在大数据解决方案应用方面,IBM发展战略很值得运营商借鉴,以客户需求为导向对数据进行深度分析,提升现有数据价值。当前,医院资产运营管理也正面临诸多挑战:医疗设备资产种类繁多,产品更新速度快;管理分散、职能弱化、管控失据;统计归口不统一,管理制度不健全等。电信运营商在大数据平台建设过程中针对这些问题的解决方案积累了较多的宝贵经验,电信运营商可以将成功的经验应用到医疗行业的大数据处理平台建设中,为医疗行业提供解决方案以及咨询服务。交通管理行业在大数据时代,需要解决基于大数据及时查询、及时分析等业务需求。电信运营商可以利用如全球眼等业务和云存储方面的技术积累,提供海量交通数据的存储、分析、应用,同时利用智能管道进行交通信息的及时推送,这样可以更加有效地保障交通管理行业的及时性要求。 分析认为,马云的“大物流”计划可能会给物流行业带来又一个高速发展的机遇。电信运营商通过用户的移动互联网、宽带互联网的访问情况,分析用户的购物偏好或者购物意愿,为物流公司智能分配各个节点的仓储量及仓储产品提供数据支撑及解决方案,物流公司也可以实现公司信息化管理。另外,中国制造企业面临着巨大压力,世界工厂的地位正受到挑战。面临如此压力,制造业需要更加准确地了解市场动态,这就需要强大的企业信息化能力,但是很多中小型企业对于企业信息化建设投入有限。

Ⅸ 大数据时代电信运营商应该采用的运营策略

大数据时代电信运营商应该采用的运营策略

最近几年,大数据在人们视野中出现的频率越来越高,继而也引起人们的关注。国际著名咨询公司IDC、麦肯锡相继发布了有关大数据的研究报告,将其比喻为“未来的金矿”,国内不少互联网公司也开始着手部署各自的大数据战略,作为通信行业的主要参与者和推动者,电信运营商在大数据的时代下开始试点了大数据系统的建设与应用,以充分挖掘企业的数据资产价值,创造新的利润点。

大数据是什么?

关于大数据的定义业界并没有给出一个准确的定位,研究机构Gartner把大数据定义为是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产;维基百将大数据定义为无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合;《著云台》的分析师团队认为,“大数据”通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。

大数据时代电信运营商应该采用的运营策略是什么?

1、优化网络:利用大数据分析,可突破传统的智能网优以CDT和MR数据为基础,通过3G基站的流量大数据,可以分析出哪些区域是用户数据流量高消耗区,在这些区域建设4G基站,就能做到既精准又有效;通过对MR大数据的分析,可以知道哪些区域移动网络小区信号覆盖不好,通过关联CRM中的客户信息和套餐信息,便可排出网络优化的优先顺序;通过LBS系统平台,对移动通信使用者的位置和运动轨迹进行分析,有效统计热点地区的人群出现概率,并进行基站资源配置的优化,提高了资源使用效率。

2、精准营销:中国电信利用大数据处理平台分析呼叫中心海量语音数据,建立呼叫中心测评体系和产品关联分析,为保险公司等提供基于自动语音识别的大数据分析服务;根据使用不同移动终端的用户的月均流量消耗,分析出在哪些移动终端上用户的上网体验最佳、DOU最大,根据该数据就可制定更为科学的终端补贴策略;通过对用户手机的通话、短信和空间位置等信息进行处理,提取用户通信行为的时空规则性和重复性,实现定向精确的终端营销和个性化内容业务推荐。

3、深度拥抱大数据:大数据的时代已经来临,因此电信运营商可以强化规划引导、实现大数据建设全面统筹。电信运营商应针对不同的应用场景选取合适的技术进行大数据建设,在集团和省公司层面分别指定部门统一组织开展整个集团和省公司层面的大数据规划,在规划的指引下,实现大数据建设与应用的全面统筹,包括:清理分散在各部门中的数据资产,开展应用规划,明确应用建设与运营分工,建设运营商集团和省公司层面统一的大数据基础平台等。

4、精细运营:天津网站建设-文率科技建议电信可以使用Hadoop等大数据处理工具,通过分析用户的兴趣图谱、关系图谱、行为定向,再结合自身的业务推出量身定制的服务。如:针对出差较多的商务人士,向他们推荐漫游套餐;对爱好移动上网的用户,向他们提供流量包……这本身就属于大数据应用的范畴,而且,运营商通过对业务资源和财务等数据的综合分析,可以让决策层进行快速的市场决策,从而有抢占市场的先机。

5、客户维系:分析用户的终端所支撑的系统,然后向客户推荐比客户目前使用系统更好的系统,如:客户目前使用的终端是支撑的是3G,那么我们可以向客户推荐比3G更好的4G,继而提升客户体验,降低用户流失率;通过分析客户通话对象结构转移、使用量变化、上网行为漂移、套餐饱和度下降,分析出客户离网倾向及缴费异常倾向,及时进行客户维系与挽留。

在大数据的时代止步不前的话只能走向灭亡,天津西青网站建设http://www.xiangrisheng.net 发现在大数据的时代下中国联通建立了用户上网大数据分析系统,利用收集的用户上网记录解决用户透明消费问题, 并使用其中的数据做客户的精细化营销;中国移动建立网络资源的大数据系统,改进对用户专线提供的速度,建立微营销大数据分析系统,实现定向精确营销、差异化的合作伙伴后向能力保障和智慧城市管理。

以上是小编为大家分享的关于大数据时代电信运营商应该采用的运营策略的相关内容,更多信息可以关注环球青藤分享更多干货

阅读全文

与运营商大数据责任相关的资料

热点内容
epg文件格式 浏览:699
wordpress分类描述 浏览:177
python用代码转文件xy格式 浏览:802
教育门户网站模板 浏览:331
四光感巡线程序乐高 浏览:989
怎么标记文件 浏览:972
为什么副卡数据打不开 浏览:109
苹果voiceover永久关闭 浏览:749
梦幻西游新版本普陀山 浏览:453
win10选择其他系统文件类型 浏览:980
pythonjson数组 浏览:227
乐翻儿歌历史版本 浏览:216
为什么删除文件很慢 浏览:527
压缩包里面的cad文件保存去哪里了 浏览:735
聚合产业促升级 浏览:207
魅蓝系统升级50 浏览:92
xp支持文件名路径 浏览:330
两融最新数据什么时候更新 浏览:462
pe模式win10桌面文件在哪 浏览:388
产品ooba文件是什么 浏览:68

友情链接