㈠ 中国大数据六大技术变迁记
中国大数据六大技术变迁记_数据分析师考试
集“Hadoop中国云计算大会”与“CSDN大数据技术大会”精华之大成, 历届的中国大数据技术大会(BDTC) 已发展成为国内事实上的行业顶尖技术盛会。从2008年的60人Hadoop沙龙到当下的数千人技术盛宴,作为业内极具实战价值的专业交流平台,每一届的中国大数据技术大会都忠实地描绘了大数据领域内的技术热点,沉淀了行业实战经验,见证了整个大数据生态圈技术的发展与演变。
2014年12月12-14日,由中国计算机学会(CCF)主办,CCF大数据专家委员会协办,中科院计算所与CSDN共同承办的 2014中国大数据技术大会(Big Data Technology Conference 2014,BDTC 2014) 将在北京新云南皇冠假日酒店拉开帷幕。大会为期三天,以推进行业应用中的大数据技术发展为主旨,拟设立“大数据基础设施”、“大数据生态系统”、“大数据技术”、“大数据应用”、“大数据互联网金融技术”、“智能信息处理”等多场主题论坛与行业峰会。由中国计算机学会主办,CCF大数据专家委员会承办,南京大学与复旦大学协办的“2014年第二届CCF大数据学术会议”也将同时召开,并与技术大会共享主题报告。
本次大会将邀请近100位国外大数据技术领域顶尖专家与一线实践者,深入讨论Hadoop、YARN、Spark、Tez、 HBase、Kafka、OceanBase等开源软件的最新进展,NoSQL/NewSQL、内存计算、流计算和图计算技术的发展趋势,OpenStack生态系统对于大数据计算需求的思考,以及大数据下的可视化、机器学习/深度学习、商业智能、数据分析等的最新业界应用,分享实际生产系统中的技术特色和实践经验。
大会召开前期,特别梳理了历届大会亮点以记录中国大数据技术领域发展历程,并立足当下生态圈现状对即将召开的BDTC 2014进行展望:
追本溯源,悉大数据六大技术变迁
伴随着大数据技术大会的发展,我们亲历了中国大数据技术与应用时代的到来,也见证了整个大数据生态圈技术的发展与衍变:
1. 计算资源的分布化——从网格计算到云计算。 回顾历届BDTC大会,我们不难发现,自2009年,资源的组织和调度方式已逐渐从跨域分布的网格计算向本地分布的云计算转变。而时至今日,云计算已成为大数据资源保障的不二平台。
2. 数据存储变更——HDFS、NoSQL应运而生。 随着数据格式越来越多样化,传统关系型存储已然无法满足新时代的应用程序需求,HDFS、NoSQL等新技术应运而生,并成为当下许多大型应用架构不可或缺的一环,也带动了定制计算机/服务器的发展,同时也成为大数据生态圈中最热门的技术之一。
3. 计算模式改变——Hadoop计算框成主流。 为了更好和更廉价地支撑其搜索服务,Google创建了Map/Rece和GFS。而在Google论文的启发下,原雅虎工程师Doug Cutting开创了与高性能计算模式迥异的,计算向数据靠拢的Hadoop软件生态系统。Hadoop天生高贵,时至今日已成为Apache基金会最“Hot”的开源项目,更被公认为大数据处理的事实标准。Hadoop以低廉的成本在分布式环境下提供了海量数据的处理能力。因此,Hadoop技术研讨与实践分享也一直是历届中国大数据技术大会最亮眼的特色之一。
4. 流计算技术引入——满足应用的低延迟数据处理需求。 随着业务需求扩展,大数据逐渐走出离线批处理的范畴,Storm、Kafka等将实时性、扩展性、容错性和灵活性发挥得淋漓尽致的流处理框架,使得旧有消息中间件技术得以重生。成为历届BDTC上一道亮丽的风景线。
5. 内存计算初露端倪——新贵Spark敢与老将叫板。 Spark发源于美国加州大学伯克利分校AMPLab的集群计算平台,它立足于内存计算,从多迭代批量处理出发,兼容并蓄数据仓库、流处理和图计算等多种计算范式,是罕见的全能选手。在短短4年,Spark已发展为Apache软件基金会的顶级项目,拥有30个Committers,其用户更包括IBM、Amazon、Yahoo!、Sohu、网络、阿里、腾讯等多家知名公司,还包括了Spark SQL、Spark Streaming、MLlib、GraphX等多个相关项目。毫无疑问,Spark已站稳脚跟。
6. 关系数据库技术进化—NewSQL改写数据库历史。 关系数据库系统的研发并没有停下脚步,在横向扩展、高可用和高性能方面也在不断进步。实际应用对面向联机分析处理(OLAP)的MPP(Massively Parallel Processing)数据库的需求最迫切,包括MPP数据库学习和采用大数据领域的新技术,如多副本技术、列存储技术等。而面向联机事务处理(OLTP)的数据库则向着高性能演进,其目标是高吞吐率、低延迟,技术发展趋势包括全内存化、无锁化等。
立足扬帆,看2014大数据生态圈发展
时光荏苒,转眼间第2014中国大数据技术大会将如期举行。在技术日新月异的当下,2014年的BDTC上又可以洞察些什么?这里我们不妨着眼当下技术发展趋势:
1. MapRece已成颓势,YARN/Tez是否可以再创辉煌? 对于Hadoop来说,2014是欢欣鼓舞的一年——EMC、Microsoft、Intel、Teradata、Cisco等众多巨头都加大了Hadoop方面的投入。然而对于众多机构来说,这一年却并不轻松:基于MapRece的实时性短板以及机构对更通用大数据处理平台的需求,Hadoop 2.0转型已势在必行。那么,在转型中,机构究竟会遭遇什么样的挑战?各个机构如何才能更好地利用YARN所带来的新特性?Hadoop未来的发展又会有什么重大变化?为此,BDTC 2014特邀请了Apache Hadoop committer,Apache Hadoop Project Management Committee(PMC)成员Uma Maheswara Rao G,Apache Hadoop committer Yi Liu,Bikas Saha(PMC member of the Apache Hadoop and Tez)等国际顶尖Hadoop专家,我们不妨当面探讨。
2. 时过境迁,Storm、Kafka等流计算框架前途未卜。 如果说MapRece的缓慢给众多流计算框架带来了可乘之机,那么当Hadoop生态圈组件越发成熟,Spark更加易用,迎接这些流计算框架的又是什么?这里我们不妨根据BDTC 2014近百场的实践分享进行一个侧面的了解,亦或是与专家们当面交流。
3. Spark,是颠覆还是补充? 与Hadoop生态圈的兼容,让Spark的发展日新月异。然而根据近日Sort Benchmark公布的排序结果,在海量(100TB)离线数据排序上,对比上届冠军Hadoop,Spark以不到十分之一的机器,只使用三分之一的时间就完成了同样数据量的排序。毫无疑问,当下Spark已不止步于实时计算,目标直指通用大数据处理平台,而终止Shark,开启Spark SQL或许已经初见端倪。那么,当Spark愈加成熟,更加原生的支持离线计算后,开源大数据标准处理平台这个荣誉又将花落谁家?这里我们一起期待。
4. 基础设施层,用什么来提升我们的网络? 时至今日,网络已成为众多大数据处理平台的攻坚对象。比如,为了克服网络瓶颈,Spark使用新的基于Netty的网络模块取代了原有的NIO网络模块,从而提高了对网络带宽的利用。那么,在基础设施层我们又该如何克服网络这个瓶颈?直接使用更高效的网络设备,比如Infiniband能够带来多少性能提升?建立一个更智能网络,通过计算的每个阶段,自适应来调整拆分/合并阶段中的数据传输要求,不仅提高了速度,也提高了利用率。在BDTC 2014上,我们可以从Infiniband/RDMA技术及应用演讲,以及数场SDN实战上吸取宝贵的经验。
5. 数据挖掘的灵魂——机器学习。 近年来,机器学习领域的人才抢夺已进入白热化,类似Google、IBM、微软、网络、阿里、腾讯对机器学习领域的投入也是愈来愈高,囊括了芯片设计、系统结构(异构计算)、软件系统、模型算法和深度应用各个方面。大数据标志一个新时代的到来,PB数据让人们坐拥金山,然而缺少了智能算法,机器学习这个灵魂,价值的提取无疑变得镜花水月。而在本届会议上,我们同样为大家准备了数场机器学习相关分享,静候诸位参与。
而在技术分享之外,2014年第二届CCF大数据学术会议也将同时召开,并与技术大会共享主题报告。届时,我们同样可以斩获许多来自学术领域的最新科研成果。
以上是小编为大家分享的关于中国大数据六大技术变迁记的相关内容,更多信息可以关注环球青藤分享更多干货
㈡ 华为大数据认证考什么
华为大数据认证有HCIA、HCIP、HCIE这三个等级的认证,不同等级认证的考试内容不同,下面是华为大数据HCIA、HCIP、HCIE认证的考试内容。
HCIA-Big Data
考试内容
HCIA-Big Data V3.0考试覆盖:
(1)大数据行业的发展趋势,大数据特点以及华为鲲鹏大数据等;
(2)常用且重要大数据组件基础技术原理(包括HBase, Hive, Loader, MapRece, YARN, HDFS, Spark, Flume, Kafka, ElasticSearch,ZooKeeper, Flink,Redis);
(3)华为大数据解决方案、功能特性及华为在大数据行业的成功案例。
HCIP-Big Data Developer
考试内容
HCIP-Big Data Developer V2.0 大数据场景化解决方案总览、大数据场景化解决方案:离线批处理、实时检索、实时流处理等内容。
HCIE-Big Data-Data Mining(笔试)
考试内容
华为认证HCIE-Big Data-Data Mining V2.0考试覆盖:数据挖掘介绍、预备知识(数学基础知识、Python基础知识)、数据预处理、特征选择与降维、有监督学习、无监督学习、模型评估与优化、数据挖掘综合应用、Spark MLlib数据挖掘、华为云机器学习服务MLS、FusionInsight Miner、大数据架构和大数据治理、大数据挖掘。
HCIE-Big Data-Data Mining(实验)
考试内容
华为认证HCIE-Big Data-Data Mining V2.0考试覆盖:数据挖掘介绍、预备知识(数学基础知识、Python基础知识)、数据预处理、特征选择与降维、有监督学习、无监督学习、模型评估与优化、数据挖掘综合应用、Spark MLlib数据挖掘、华为云机器学习服务MLS、FusionInsight Miner、大数据架构和大数据治理、大数据挖掘。
HCIE-Big Data-Data Mining(面试)
考试内容
华为认证HCIE-Big Data-Data Mining V2.0考试覆盖:数据挖掘介绍、预备知识(数学基础知识、Python基础知识)、数据预处理、特征选择与降维、有监督学习、无监督学习、模型评估与优化、数据挖掘综合应用、Spark MLlib数据挖掘、华为云机器学习服务MLS、FusionInsight Miner、大数据架构和大数据治理、大数据挖掘。
㈢ 大数据怎么清理
一般数据全部清理都是全部格式化就能够一次性清理完
㈣ 怎样入门大数据
大数据入门,建议复从编程制基础开始,然后逐步进入到技术框架的学习:
1、linux基础
要会基本的linux操作,比如用户管理,权限,shell编程之类的。
2、一门JVM系语言:
当前大数据生态JVM系语言类的比重极大,某种程度上说是垄断也不为过。建议学习java或Scala。
3、计算处理框架:
分为离线批处理和流式处理,离线处理以Hadoop MapRece、Spark为主,流计算以Apache Storm,Apache Spark Streaming以及Apache Flink为代表。
㈤ 大数据为什么要选择Spark
Spark,是一种抄"One Stackto rule them all"的大数据计算袭框架,期望使用一个技术堆栈就完美地解决大数据领域的各种计算任务。Apache官方,对Spark的定义就是:通用的大数据快速处理引擎。Spark除了一站式的特点之外,另外一个最重要的特点,就是基于内存进行计算,从而让它的速度可以达到MapRece、Hive的数倍甚至数十倍!现在已经有很多大公司正在生产环境下深度地使用Spark作为大数据的计算框架,包括eBay、Yahoo!、BAT、网易、京东、华为、大众点评、优酷土豆、搜狗等等。
超强的通用性
Spark提供了Spark RDD、Spark SQL、SparkStreaming、Spark MLlib、Spark GraphX等技术组件,可以一站式地完成大数据领域的离线批处理、交互式查询、流式计算、机器学习、图计算等常见的任务。
东时大数据学习java语言基础、java面向对象、Java框架、web前端、Linux入门、hadoop开发、Spark等内容。
㈥ 大数据调度平台分类(Oozie/Azkaban/AirFlow/DolphinScheler)
大数据调度系统,是整个离线批处理任务和准实时计算计算任务的驱动器。这里我把几个常见的调度系统做了一下分类总结,结合目前阿里云上的MaxCompute中的调度系统,做个对比。
Oozie是一个workflow(工作流)协调系统,是由Cloudera公司贡献给Apache的,主要用来管理Hadoop作业(job)。
统一调度hadoop系统中常见的mr任务启动、Java MR、Streaming MR、Pig、Hive、Sqoop、Spark、Shell等。
配置相关的调度任务复杂,依赖关系、时间触发、事件触发使用xml语言进行表达。
任务状态、任务类型、任务运行机器、创建时间、启动时间、完成时间等。
支持启动/停止/暂停/恢复/重新运行:支持启动/停止/暂停/恢复/重新运行。
可以通过DB支持HA(高可用)。调度任务时可能出现死锁,依赖当前集群版本,如更新最新版,易于现阶段集群不兼容。
Azkaban是由Linkedin公司推出的一个批量工作流任务调度器,主要用于在一个工作流内以一个特定的顺序运行一组工作和流程,它的配置是通过简单的key:value对的方式,通过配置中的dependencies 来设置依赖关系,这个依赖关系必须是无环的,否则会被视为无效的工作流。Azkaban使用job配置文件建立任务之间的依赖关系,并提供一个易于使用的web用户界面维护和跟踪你的工作流。
command、HadoopShell、Java、HadoopJava、Pig、Hive等,支持插件式扩展。
实际项目中经常有这些场景:每天有一个大任务,这个大任务可以分成A,B,C,D四个小任务,A,B任务之间没有依赖关系,C任务依赖A,B任务的结果,D任务依赖C任务的结果。一般的做法是,开两个终端同时执行A,B,两个都执行完了再执行C,最后再执行D。这样的话,整个的执行过程都需要人工参加,并且得盯着各任务的进度。但是我们的很多任务都是在深更半夜执行的,通过写脚本设置crontab执行。其实,整个过程类似于一个有向无环图(DAG)。每个子任务相当于大任务中的一个流,任务的起点可以从没有度的节点开始执行,任何没有通路的节点之间可以同时执行,比如上述的A,B。总结起来的话,我们需要的就是一个工作流的调度器,而Azkaban就是能解决上述问题的一个调度器。
提供job配置文件快速建立任务和任务之间的依赖关系,通过自定义DSL绘制DAG并打包上传。
只能看到任务状态。
只能先将工作流杀死在重新运行。
通过DB支持HA,任务太多时会卡死服务器。
Airflow 是 Airbnb 开源的一个用 Python 编写的调度工具。于 2014 年启动,2015 年春季开源,2016 年加入 Apache 软件基金会的孵化计划。Airflow 通过 DAG 也即是有向非循环图来定义整个工作流,因而具有非常强大的表达能力。
支持Python、Bash、HTTP、Mysql等,支持Operator的自定义扩展。
需要使用Python代码来定义流程。
不直观。
杀掉任务,重启。
任务过多会卡死。
XXL-JOB是一个开源的,具有丰富的任务管理功能以及高性能,高可用等特点的轻量级分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展、开箱即用。
基于Java。
无,但是可以配置任务之间的依赖。
无
可以暂停、恢复。
支持HA。任务是基于队列的,轮询机制。
DolphinScheler是今年(2019年)中国易观公司开源的一个调度系统,在今年美国时间2019年8月29号,易观开源的分布式任务调度引擎DolphinScheler(原EasyScheler)正式通过顶级开源组织Apache基金会的投票决议,根据Apache基金会邮件列表显示,在包含11个约束性投票(binding votes)和2个无约束性投票(non-binding votes)的投票全部持赞同意见,无弃权票和反对票,投票顺利通过,这样便以全票通过的优秀表现正式成为了Apache孵化器项目。
Apache DolphinScheler是一个分布式、去中心化、易扩展的可视化DAG工作流任务调度系统,其致力于解决数据处理流程中错综复杂的依赖关系,使调度系统在数据处理流程中开箱即用。
支持传统的shell任务,同时支持大数据平台任务调度:MR、Spark、SQL(mysql、postgresql、hive/sparksql)、python、procere、sub_process。
所有流、定时操作都是可视化的,通过拖拽来绘制DAG,配置数据源及资源,同时对于第三方系统,提供api方式的操作。
任务状态、任务类型、重试次数、任务运行机器、可视化变量,以及任务流执行日志。
支持暂停、恢复、补数操作。
支持HA,去中心化的多Master和多Worker。DolphinScheler上的用户可以通过租户和hadoop用户实现多对一或一对一的映射关系。无法做到细节的权限管控。
任务队列机制,单个机器上可调度的任务数量可以灵活配置,当任务过多时会缓存在任务队列中,不会操作机器卡死。
调度器使用分布式调度,整体的调度能力会随集群的规模线性正常,Master和Worker支持动态上下线,可以自由进行配置。
可以通过对用户进行资源、项目、数据源的访问授权。支持,可视化管理文件,及相关udf函数等。
㈦ 大数据工程师需要掌握哪些技能
大数据技术体来系庞大,包括的知源识较多
1、学习大数据首先要学习Java基础
Java是大数据学习需要的编程语言基础,因为大数据的开发基于常用的高级语言。而且不论是学hadoop
2、学习大数据核心知识
Hadoop生态系统;HDFS技术;HBASE技术;Sqoop使用流程;数据仓库工具HIVE;大数据离线分析Spark、Python语言;数据实时分析Storm;消息订阅分发系统Kafka等。
3、学习大数据需要具备的能力
数学知识,数学知识是数据分析师的基础知识。对于数据分析师,了解一些描述统计相关的内容,需要有一定公式计算能力,了解常用统计模型算法。而对于数据挖掘工程师来说,各类算法也需要熟练使用,对数学的要求是最高的。
4、学习大数据可以应用的领域
大数据技术可以应用在各个领域,比如公安大数据、交通大数据、医疗大数据、就业大数据、环境大数据、图像大数据、视频大数据等等,应用范围非常广泛。
㈧ 大数据工程师到底需要会什么
1.大数据基础知识。hadoop生态圈的组件,离线批处理和流处理组件。所以什么zookeep hdfs yarn hive hbase eslasticsearch spark sparkstreaming flink等等,你都要了解,甚至熟悉才行。不管国外的CDH,还是国内的TDH、华为、阿里的产品,你实施中是要安装、指导客户使用、以及debug常见问题的。
2.Linux知识。目前基本集群服务大部分是使用linux的,所以需要熟悉linux常用命令,linux相关发性版本系统(如redhat ubuntu centos甚至 arm体系架构的系统)安装,网络配置,磁盘规划,常见系统问题分析等等。
3.必要的开发语言,应用和运维开发基础。别以为实施工程师就不用写代码了,其实实施工程师也要会,而且要全面。shell perl python的脚本用来运维自动化,java sacla写一些demo用来展示给客户做应用接入,sql做一些数据处理和etl等。另外debug集群的时候,经常会有日志信息,也是不同语言的trace信息,不懂开发,这部分log都看不明白的。
4.虚拟化技术。现在很多大数据产品已经上云了,数据云也是未来的方向。所以k8s docker 等都需要了解。国内阿里、星环等等产品都带有云的概念了。
5.软实力。沟通和写作能力、抗压能力、灵活应变能力等。这是技术以外的,但是也很重要。
㈨ 大数据系统架构
转: https://www.sohu.com/a/227887005_487103
数据分析工作虽然隐藏在业务系统背后,但是具有非常重要的作用,数据分析的结果对决策、业务发展有着举足轻重的作用。随着大数据技术的发展,数据挖掘、数据探索等专有名词曝光度越来越高,但是在类似于Hadoop系列的大数据分析系统大行其道之前,数据分析工作已经经历了长足的发展,尤其是以BI系统为主的数据分析,已经有了非常成熟和稳定的技术方案和生态系统,对于BI系统来说,大概的架构图如下:
总的来说,目前围绕Hadoop体系的大数据架构大概有以下几种:
传统大数据架构
Lambda架构算是大数据系统里面举足轻重的架构,大多数架构基本都是Lambda架构或者基于其变种的架构。Lambda的数据通道分为两条分支:实时流和离线。实时流依照流式架构,保障了其实时性,而离线则以批处理方式为主,保障了最终一致性。什么意思呢?流式通道处理为保障实效性更多的以增量计算为主辅助参考,而批处理层则对数据进行全量运算,保障其最终的一致性,因此Lambda最外层有一个实时层和离线层合并的动作,此动作是Lambda里非常重要的一个动作
优点: 既有实时又有离线,对于数据分析场景涵盖的非常到位。
缺点: 离线层和实时流虽然面临的场景不相同,但是其内部处理的逻辑却是相同,因此有大量荣誉和重复的模块存在。
适用场景: 同时存在实时和离线需求的情况。
Kappa架构
Unifield架构
总结
以上几种架构为目前数据处理领域使用比较多的几种架构,当然还有非常多其他架构,不过其思想都会或多或少的类似。数据领域和机器学习领域会持续发展,以上几种思想或许终究也会变得过时。