1. 工业制造大数据分析
工业制造大数据分析
大数据不仅仅是大量的数据的堆积。大数据的重要属性之一,是人们设法收集并弄清楚不断变化的数据类型。如果只是大量采集同一类型的数据,再大的数据量都不能称之为大数据。
如何实现智能制造是大家都关心的问题。从哈佛商学院的迈克尔·波特到宾夕法尼亚大学沃顿商学院,有一个普遍的共识,即数字化转型是智能制造实现的途径。重要的是,这个共识也来自于众多的世界级制造业企业与企业家们。
这一共识是基于无数技术趋势的融合,例如,物联网、赛博系统(CPS)、工业物联网、移动技术、人工智能、云计算、虚拟/虚拟增强现实(VR/AR),以及大数据分析等。我们一定要保持清醒,不要简单地认为有了这些技术,未来五年就是制造业的黄金时期。道理很简单,这个新制造业文化的变革进程是相当复杂和艰难的,没有行业、企业与用户的融合推进,无法实现这次变革。数字化转型不仅仅意味着企业简单的数字化,而是把数字作为智能制造的核心驱动力,利用数据去整合产业链和价值链。
自工业革命以来,为了改进运营,制造商一直以来都在有意地采集并存储数据。随着时间的推移,数据在制造业分析的需求将越来越大。然而在过去的许多年间,利用数据的根本动因并没有改变,数据的复杂性增强,数据转化为情报的能力越来越大。
2012年高德纳给出大数据定义,其中特别强调大数据是多样化信息资产,不仅关注实际数据,更关注大数据处理方法。数据量大小本身并不是判断大数据价值的核心指标,而数据的实时性和多元性对大数据的定义和价值更具直接的影响。
在讨论工业大数据分析的时候,我注意到两种不同的观点:
第一种观点认为,制造业向来都有大数据。几十年来我们的企业一直在通过历史记录、MES、ERP、EAM等各种应用系统采集数据。在部分产业链环节,特别在市场营销方面,大数据算是一个新的热词。
第二种观点认为,从工业大数据角度看,制造业是一个尚未打开的市场或刚刚开启的市场。存在大量不同类型的数据,但如今它们还未被应用到分析之中。
考虑到这些观点,面对任何新的市场提法,包括名词解释、定义或分析框架,我们始终都应该保持适当的怀疑精神。这里我更多倾向于第二个观点。我们的制造业的确有“大量数据”,但这并不是我们大多数人从市场上所理解的“大数据”涵义。在搞清楚工业大数据分析之前,我们应该如何定义制造业的大数据?这里可以通过大数据的三个特性,进一步了解大数据的特性。
数据来源
工业大数据的主要来源有两个,第一是智能设备。普适计算有很大的空间,现代工人可以带一个普适感应器等设备来参加生产和管理。所以工业数据源是280亿左右大量设备之间的关联,这个是我们未来需要去采集的数据源之一。
第二个数据来源于人类轨迹产生的数据,包括在现代工业制造链中,从采购、生产、物流与销售内部流程以及外部互联网信息等。通过行为轨迹数据与设备数据的结合,大数据可以帮助我们实现对客户的分析和挖掘,它的应用场景包括了实时核心交易、服务、后台服务等。
数据关系
数据必须要放到相应的环境中分析,才能了解数据之间的关系。譬如,每一款新机型在交付给航空公司之前都会接受一系列残酷的飞行测试。极端天气测试就是测试之一。该测试的目的是为了确保飞机的发动机、材料和控制系统能在极端天气条件下正常运行。
问题的处理关键在于找到可能产生问题的根源,消除已知错误,并确保解决方案的可靠有效。一旦找到并确定了根本原因,同时具备了可接受的应急措施,就可把问题当成一个已知错误来处理。问题调查的过程一定需要收集所有可用、与事件相关的信息,以确定并消除引起事件和问题的根本原因。数据采集与分析必须要事件/问题发生的环境数据结合。
数据价值
对于数字化转型,大数据不仅要关注实际数据量的多少,最重要的是关注大数据的处理方法在特定场合的应用,让数据产生巨大的创新价值。如果离开了收益考虑或投资回报(ROI)的设计,一味寻求大数据,则大数据分析既无法落地也无法为企业创造价值。
工业大数据分析的定义
发动机是飞机的心脏,也是关乎航空安全,生命安全的重中之重。为了实时监控发动机的状况,现代民航大多安装了飞机发动机健康管理系统。通过传感器、发射系统、信号接收系统、信号分析系统等方式采集到的数据,会经由飞机通信寻址与报告系统,通过甚高频或者卫星通信传输出来,这就是为何GE的发动机监控系统每天会获取超过1PB数据的原因。
生产执行系统(MES)与飞机发动机健康管理系统如出一辙。我们可以从工厂的生产中,实时采集到海量的流程变量、测量结果等数据。基于大量数据集而生成的报表,或是基础统计的分析并不足以称为制造业的大数据分析。
数据类型的多样性是工业大数据分析的重要属性
大数据不仅仅是大量的数据的堆积。大数据的重要属性之一,是人们设法收集并弄清楚不断变化的数据类型。如果只是大量采集同一类型的数据,再大的数据量都不能称之为大数据。
例如,生产环境中收集的时间序列模拟流程变量,数据的类型是单一的,很容易建立索引,即使存在千千万万,也不足以成为大数据。
数据必须包括高度可变性和种类多样性。制造工厂中存在无数的大数据应用,但并不包括简单地分类和展示一连串的流程测量结果,对这些工作,基本的统计展现就可以完成。一些大数据的数据库或数据湖的构成部分也是文本信息、图像数据、地理或地质信息和非结构信息,例如,通过社交媒体或其他协作平台获得的数据类型。
制造业信息结构概括起来分为两层,一个是管理层,一个是自动化层。从经营管理、生产执行与控制三个纬度来实现决策支持、管理、生产执行、过程控制以及设备的连接与传感。制造业中大数据分析是指利用通用的数据模型,将管理层与自动化层的结构性系统数据与非结构性数据结合,进而通过先进的分析工具发现新的洞见。
大数据分析对企业生产智能的意义
制造业创新的核心就是要依托大量的前沿科技。先进的技术是创新的手段。在新技术的支持下,可以通过一体化的制造运作管理系统MOM将企业管理应用系统,例如ERP、EAM等系统与工业自动化的相关系统整合为一体。在一体化制造运作管理的基础上,我们可以实现集IT+MOM+MES+BI的一体化制造企业信息系统解决方案。
从两化融合的角度来看,信息系统供应商要从企业的主信息系统提供商(MIV,MainInformation systems Vendor )定位来做好规划、标准、功能设计、实施策略的统一性工作。协助企业做好风险控制,降低投资,降低操作维护成本,实现企业信息系统全集成。
特别需要注意的是,企业管理信息平台被普遍认为是制造企业管理的集成和仪表板工具。许多供应商既大量投资其与ERP和自动化系统专有的集成,也投资开放式集成,还投资仪表板和移动技术,希望随时随地为需要正确信息的决策者提供衡量标准。
制造业大数据分析的三种途径
途径一,利用开放技术与平台,将任何系统的数据移动到任何其他地方。
制造运作管理系统建设项目是系统工程,不仅仅是一套我们理解的传统软件系统,更多的是项目执行和服务的平台。这需要在项目管理与制造企业的策略“客户服务”上,体现出制造企业的综合管理能力与软实力。
整个平台要从前期、工程实施以及售后服务这三个大的阶段来架构。在前期规划中,要重视标准、设计与实施,特别是与管理一体化的信息系统形成统一的对接。有了前期统一规划的制定,工程实施的环节可把行业的经验、集成能力、实施能力、软件开发能力等融合。特别需要在组织上建立和形成超级团队的制度。而持续服务、长期经营,将物联网应用融入与“软件+云服务”的互联网+战略是后续服务的考虑重点。
在制造业大数据分析工作中,必须要加强通过物联网科技的应用对后续持续服务的支撑作业。通过工业物联网,实现的及时响应客户、物联网软硬件系统定期巡检、提供应急备件、提供易耗品、完善应用等功能来加强和锁定与企业的供应链企业之间的长期合作。通过管理平台与物联网数据,可以持续为客户提供有价值的服务。
途径二,投资工厂内外系统架构堆栈中能够处理结构性和非结构性数据的数据模型。
新技术是创新革命的核心,其中很重要一个特点就是集成,即制造运作管理系统MOM与ERP、EAM、OA、商业分析的集成,包括一键登录、界面集成、消息推送、工作流集成、主数据、应用集成总线与平台。
由于这些系统之间主数据全部统一,所有系统之间的数据交互依靠应用系统总线进行数据交互,整合了跨系统的业务流程、工作流、服务流程等之后即实现无缝集成和分析。对于企业管理者来说,一键登录后,可以根据不同的岗位,个性化制定并且显示与管理最相关的必要信息。这就是互联网所带给我们的分享思路。
途径三,通过时间序列、图像、视频、机器学习、地理空间、预测模型、优化、模拟和统计过程控制等先进的分析工具与制造业企业内的大数据平台结合分析,从而洞见尚未显现的情况。通过传感器、感应器、传输网络和应用软件等物联网数据,与管理应用软件结合起来,将是今后制造业大数据分析的一大方向。
培养企业内部大数据分析专家
作为一个行业,我们需要有机地发展行业特定的大数据分析工具集,这样才能让现在的行业专家,从足够的数据科学中实现数字化转型。为了推动转型,我们需要一大批优秀的企业利用这种方法,并向其他人或同行证明其价值。
2. 制造业大数据的“冷”思考
制造业大数据的“冷”思考?
当前,大数据作为新一代信息技术的关键,逐渐成为新一轮产业革命的核心。制造业迈入了大数据时代,2012年,GE公司率先明确了“工业大数据”的概念。在制造业,产品的全生命周期从市场规划、设计、制造、销售、维护等过程都会产生大量的结构化和非结构化数据,形成了制造业大数据,而这些数据符合大数据的三“V”的特征:规模性、多样性以及高速性。除此以外,制造业大数据还具多源异构、多尺度、不确定、高噪声等特征。因此,研究和应用制造大数据更具有挑战性。 主要体现在制造大数据的存储、管理、分析和展示方面。如何充分挖掘工厂中数据的价值,通过对制造大数据进行分析,提升数字化工厂运行效率,已成为制约数字化工厂向智慧工厂发展的瓶颈!
然而,大数据给我们带来的思考:在制造业能用吗?解决什么问题?制造业大数据到底在哪些领域可以发挥它的作用?
首先,能用否?大数据已经成为解决现实世界问题的方法。要解决现实世界的问题,第一种方法就是科学实验,通过实验的方法来发现现实世界的一些规律和解决和问题; 第二种就是通过理论分析和推导方法;第三种就是科学计算,模拟仿真成为第三种解决问题的范式;数据科学成为第四种解决问题的范式,这个就是由美国图灵奖的获得者,他出了一本书《第四种范式》,目前现在国外数据科学是一门非常热门的学科,它是一门综合交叉的学科。
大数据方法带来了思维上的变化,主要是从三个方面来看的:
从因果到关联,更强调事物之间的相关性而非因果性。
从局部到全体,采用全体数据进行分析,而不是随机样本。
从精确到混杂,通过数据保证解的优异性,不再一味追求精确的算法。
既然大数据已经成为解决问题的方法,那能用它。
因此,从数字化工厂向智能化工厂转化的过程中面对着海量的数据,需要寻找它们相互之间的联系和隐藏规律,实现透明化的目标。
最后,在哪里用?大数据它给制造业提供的是一种全方位的全程式的一种服务,在产品全生命周期阶段,从设计到制造、从使用到维护、直到维修阶段,产生的正向数据以及逆向数据,这些数据都能全方位的使用。
在产品的设计中,传统的设计师,基于经验灵感和经验,揣度消费者的需求喜好,设计产品。在大数据时代,设计师通过对用户行为和需求大数据进行分析,精准量化客户需求,指导设计过程。
在制造阶段,大数据技术可以帮助实现生产过程异常发现、产品质量和生产调度优化等方面。以生产异常发现为例,传统的基于降维手段的异常发现方法,容易破坏信息完整性,不利于设备异常的发现。在大数据模式下,基于制造数据的分析对关键参数进行提取,然后通过聚类分析手段发现设备异常模式,在此基础上对设备控制优化。大数据也能帮助提高产品的质量控制,大家来自制造业可能知道SPC控制的是整个过程的单个参数,但是单个参数在正常范围,为什么还会出现一些质量问题?可能每个参数均处于临界状态,综合产生会产生一些质量问题,所以在这个过程中,传统就是数据的筛选、参数分析,这个过程介入了人工的分析来进行质量的预测,数据筛选过程淘汰了许多有效的数据资源,参数分析过程经常存在人工经验判断,使得预测模型对整个产品加工过程信息的描述残缺不全,不能发现产品质量问题的深层次原因(如误差累积)。 因此在大数据模式下,根据产品的加工工艺过程,对产品质量相关数据按层次进行组织,利用多隐藏层的神经网络深度学习加工过程中产品质量数据的相互作用机理,从而对产品质量问题进行全面、深层次描述。大数据能提升大规模生产调度的全局性能,大家知道为什么我们企业生产调度一直会出现问题,我们做的计划好好地赶不上变化。因为所做的计划,是在一个理想状态下考虑约束做的计划。我自己做生产优化调度做了20多年,一直在寻找一种最优的解决方案,研究智能方法,例如:遗传算法、蚂蚁算法等。但随着工艺的复杂、环境的复杂、工艺的规模,整个问题规模越来越大的时候,它已经是一个很难解决的问题。传统的智能调度方法难以求解大规模的调度问题,基于规则和瓶颈的方法在大规模问题中又很难得到全局优化解;大数据带来了新思路,他采用全局的数据之间的关联关系,从而形成全局的调度方案,能够解决大规模生产中的全局调度问题。
大数据能为产品的运营维护服务,很典型的案例就是GE的案例,建立一个平台,为航空发动机的监控、运行监测、故障诊断提供一个全方位的服务。在产品的运行和维护过程中,大数据模式一改传统方法被动的运维模式,通过采集和分析智能设备的传感器数据,进行大数据分析,主动进行产品的安全监测、故障诊断,优化产品的运行过程。大数据应用过程中需要的是什么呢,首先需要的是能够采集到数据,也就是需要产品是一个智能化的产品,所以 在智能制造中,首先要有智能化的产品,安装传感器,能够实时的传递数据,这为后面的运行、维护服务提供了依据。
大数据不只是关于数据,而是采用传统及新的分析方法来分析所有数据。针对大数据分析的结果采取行动来提升业务才是最重要。随着大数据技术的不断地发展,国内外已对大数据在制造领域中的应用进行了一些开拓性的研究,代表性的有GE工业互联网解决方案、Smart Factory计划,SAP HANA平台和Invensys数据分析平台,并已在农夫山泉、百事饮料等公司应用。三一重工利用大数据技术通过对地理位置数据的关联分析发现泵车主油缸故障与沿海地区杭深高铁建设的强相关性,确定了沿海地区的盐雾环境和水质是导致油缸密封体腐蚀的主要原因。日本小松公司通过对挖掘机安装传感器与GPS定位系统,从而实时监控车辆运行情况,并通过大数据分析,对未来挖掘机市场的需求进行预测从而调整生产、对用户的使用习惯进行分析与建议从而降低油耗。
以上的一些工业案例成为制造业大数据的先驱,然后,目前绝大多数制造业大数据的应用没能形成系统化的思路和方案,缺乏理论体系的支撑。 针对国内在制造业大数据应用基础研究上的空白,我团队2014年申请了国家自然科学基金重点项目“大数据驱动的智能车间运行分析与决策方法研究”,并得到了资助。目前,围绕车间制造大数据之间的耦合作用机理、车间性能的演化规律、车间运行过程的调控机制三个基础科学问题进行科学研究,来探索我们的大数据在我们的智能制造车间的运行情况。解决问题的思路是是一切都在用数据来说话,利用大数据来解决工程问题的科学研究思路是: 一切数据说话。首先数据化:将设备状态参数、计划执行情况等运行参数,以及质量、交货期等性能指标数据化;然后分析这些数据之间的关联关系,用数据挖掘的方法预测交货准时率、产品合格率等车间性能的演化规律;从演化规律中,发现质量指标中某数据异常,找到影响该异常数据的关键参数,最后对关键数据进行控制,保证交货期和产品质量。为了实现大数据应用,我们提出了大数据驱动的智慧工厂,它是生产车间、物联网、云端、移动互联的有机融合。利用物联网技术,使得车间生产过程、物流及之后的销售、服务过程具备感知能力;全生命周期内产生的各种制造数据保存到云端;借助大数据处理与分析技术,依托云计算平台,帮助分析数字工厂运行过程,提供决策支持,并通过移动互联方式展现。目前我们在晶圆制造的车间和发动机装配车间,开展了一系列的工作。
最后,我认为:实现以数据感知、数据处理分析、制造过程决策与支持、数据可视化技术为核心的智慧工厂已经成为趋势,大数据产业链及技术体系逐渐成熟,大数据必将加速数字工厂向智慧工厂的转型。