❶ 技术落地性成大数据竞争赛点,鲲鹏大数据解决方案凭何领先
文 | 曾响铃
来源 | 科技 向令说(xiangling0815)
新基建浪潮下,作为底层支撑力量的数据与计算正变得越来越重要。
最近,由中国大数据与智能计算产业联盟主办,以“新算力 新基建 新经济”为主题的第二届中国超级算力大会ChinaSC在北京召开,包括国内外院士、知名学者和产业大咖在内的600多人参加,探讨了超级计算、新基建、云计算、大数据、人工智能、区块链等前沿技术进展。
这个奖项的颁出,官方给出的标准是,“能够把当前的各种技术有机的整合在一起,以满足不同应用场景下的各种综合的软硬件及系统方案,集科学性、先进性、稳定性、经济性等众多实际指标于一身,是技术转变为实际应用的关键环节。”
显然,这个权威奖项最关心的,是大数据解决方案在推动技术向实际应用转变的能力,而这也正是当下市场环境对大数据的核心需求。笔者尝试拆解鲲鹏大数据解决方案从宏观到操作层面的布局,希望能给予相关从业者这方面的行业借鉴。
技术竞赛不停, 但大数据需求转向应用落地
数据的价值越来越明显,更好地释放数据价值的技术在不断演化,但是,随着更多政企组织开始着手利用大数据能力帮助现实业务提升,其需求也开始更多倾向于技术能否更好地实现应用落地,大数据解决方案正是为此而生。
以鲲鹏为案例,在推动技术落地的过程中,其大数据解决方案表现出符合时代需要的三大特征,让它在新趋势下占据领先优势,受到客户广泛欢迎并获得ChinaSC权威认可。
1、超高性能仍然是应用落地的最有力支撑
大数据解决方案要推动技术实现各种场景的落地,其前提和支撑,是底层软硬件性能本身要足够强悍,否则,再完善和深度的解决方案,没有性能支撑也只能是空中楼阁。
而也只有性能足够强悍,在应用落地阶段才能够尽可能去满足客户各类数据价值需求。
得益于底层软硬件能力的深度开发,鲲鹏大数据解决方案就拥有超高性能,为应用做好了充分的准备以及支撑。
例如,硬件方面,采用自主研发高性能鲲鹏920处理器,软件方面,则拥有在大数据场景下获得倍级性能提升的独创IO智能预取和Spark机器学习&图增强算法。
以鲲鹏与浙江移动的合作为例,2019年,浙江移动相继完成了IT云鲲鹏服务器测试,营业厅前台系统、CRM、计费、大数据、CDN等系统的验证及上线商用。这其中,浙江移动的CRM&BOSS系统在鲲鹏大数据方案支撑下,整体得到了较大提升,在规模承载网络运营支撑业务的情况下,该系统现在已经稳定运行一年。
目前,浙江移动围绕网络云,IT云和移动云,已经打造了全球首个运营商领域ICT全场景样板点。
2、全栈方案才能推动技术全面落地
解决方案本身并不是一种具体的技术,其价值在于各种技术的有效融汇,作为统一的输出方式面向政企客户。而在政企客户需求日益加深的情况下,尽可能满足多种场景、多种技术诉求的解决方案,就必须建立一套尽可能完善的全栈体系,将各种技术有机地、系统地、全面地整合在一起。
这正是华为鲲鹏大数据解决方案的体系构成,其基于鲲鹏处理器,构建了端到端打通硬件、操作系统、中间件、大数据软件的全栈体系,并对应进行了全栈性能优化,推动各类技术汇聚成高性能解决方案:
可以看到,这套全栈体系,一方面通过有机整合,能够较为容易地同时满足科学性、先进性、稳定性、经济性等需求(例如,加速特性和大数据组件能够帮助方案更有效率同时成本更低);另一方面,作为全面、完整、一体化的信息化解决方案,也更容易去适应政府、金融、电信、互联网、大企业等不同行业应用需求。
从技术到应用落地,“全栈”成为重要的中间转换环节,不但“无损”,而且“增益”。
3、符合政企个性化需求让技术落地更具现实价值
在最终面向单个客户落地时,大数据解决方案还需要真正贴合这个客户的实际需要,这是从技术到应用落地的“临门一脚”,毕竟,不论性能如何强悍,全栈体系如何完善灵活,落实到客户头上,最终还是需要符合业务实际,产生现实价值。
既要有能力,更需要契合,鲲鹏大数据解决方案就是这么做的。
2019年,江苏省基于鲲鹏架构打造了全国首个省区市县三级政务大数据,未来将有越来越多的政务系统可以由自主可靠的鲲鹏计算平台来承载;
在广西,区内首个鲲鹏产业生态云项目——“壮美广西·玉林政务云(鲲鹏云)”已于不久前上线,这是该市全面推广应用广西数字政务一体化平台的体现,而其推出的广西首个市级公共数据开放管理办法,就与鲲鹏的大数据解决方案紧密相关;
目光转到浙江,在鲲鹏生态落子浙江的过程中,浙江推动形成“用鲲鹏”的共识,城市被当成鲲鹏生态的“试验场”,杭州市政务云已经选用鲲鹏作为算力底座,基于鲲鹏技术架构的解决方案和应用在政府服务场景中得到广泛应用。
总得看来,仅有高高在上的技术而无法产生实际价值的大数据玩法已经行不通,鲲鹏大数据解决方案跨越技术与应用的鸿沟,已经在众多行业、场景和企业中实现落地。
电信行业三巨头中,中国移动已实现鲲鹏大数据解决方案规模商用,中国电信则基于鲲鹏打造了天翼云,中国联通则基于鲲鹏构建了天宫IT系统;政务方面,北京、广东、江苏、浙江、广西等政务云都出现鲲鹏身影,当下其已经成为首选技术路线;在金融行业,鲲鹏正在帮助银行系统加速完成国产化。
可以说,鲲鹏大数据解决方案有力推动了中国数字经济发展,尤其是信息技术应用创新的落地。
领先优势下, 鲲鹏三个角度出发为大数据技术落地“铺路”
1、走得更稳——回应数字时代重要的安全关切
因此,鲲鹏大数据解决方案在安全方面一直加大投入,最典型的,是在底层硬件而非软件层面进行安全保障——鲲鹏920处理器内置硬件加速器、业界首创支持国密算法加速,这种CPU内置加速模块的做法,被称作“内生安全”,配合国密算法在技术上更为安全。
而与通常的大数据解决方案为了保证安全不得不让渡较多的性能随时监控系统运行不同,华为鲲鹏大数据解决方案内生安全的做法,做到了加密对业务性能的损耗低于5%——既解决安全痛点问题,也解决“为了安全需要”本身导致的痛点问题。
2、走得更顺——用兼容性保护既有数据软硬件投资
前文提到政务云大数据解决方案中,与现有的服务器的混合部署,这其中有一个十分重要的兼容性做法——由于鲲鹏大数据解决方案建立在鲲鹏处理器基础之上,而很多政企组织原有的软硬件投资都基于X86架构,所以鲲鹏要让技术的应用落地走得更顺,还需要在技术上完成对X86在部署层面的兼容,这样还能保护政企客户现有的数字化投资。
可以看到,当下的鲲鹏方案已经支持大数据组件TaiShan服务器与其他架构服务器混合部署。
以江苏电信为例,去年7月,其宣布成功上线全球首个基于鲲鹏处理器的运营商大数据平台。作为核心的业务系统,该大数据平台基于鲲鹏处理器的华为TaiShan服务器和开源Hadoop软件构建,承载着江苏电信所有生产系统的运行数据、存储及分析:
在项目进行过程中,双方携手完成基于鲲鹏处理器的开源Hadoop源代码编译,让关键的大数据业务组件在华为TaiShan服务器上的成功部署和运行,在原有集群上实现了传统架构服务器和TaiShan服务器融合部署。
这种兼容的做法,有效结合了江苏电信大数据业务特点和未来演进趋势,且充分发挥鲲鹏处理器的性能,提高了数据存储、计算等资源的使用效率。
3、走得更宽——生态开放才能让大数据拥有内生动力
鲲鹏生态的主要推动者华为一直强调的理念是“硬件开放、软件开源、使能合作伙伴”,在大数据解决方案中,这种理念同样得到了应用。
例如,在鲲鹏全栈方案中,顶层大数据平台就支持华为自研的FusionInsight大数据平台以及开源Apache、开源HDP/CDH、星环大数据平台,可以有效对接各类场景需要。今年8月,星环 科技 就发布了基于鲲鹏的大数据平台软硬件联合解决方案,由星环 科技 的TDH大数据平台提供软件层面优异的功能,由鲲鹏芯片提供硬件层面强大的性能,拥有极致性能、平滑迁移、丰富的场景支持以及快速部署多重优势,为行业创造价值。
此外,鲲鹏主导的数据虚拟化引擎openLooKeng开源,就支持跨数据格式、跨数据源、跨数据中心的海量分析,最终帮助方案的性能大幅度提升,典型的如北明数据资产管理平台V4.0就基于openLooKeng技术,解决了数据资产管理数据冗杂、标准不一、难以管理等痛点问题,为企业守护和挖掘数据的价值。
开放的生态,将帮助更多合作伙伴发展服务器和PC等计算产品,帮助构建高质量的基础软件生态,也让更多生态伙伴获得端、边、云的全场景开发能力,最终促进鲲鹏计算生态的繁荣,也加速大数据行业应用创新。
打好基础、做好标杆, 鲲鹏进入“强者恒强”周期
弥合技术与应用落地的鸿沟后,鲲鹏大数据解决方案拥有越来越多的政企实践,它们中大多数都是行业典型客户,本身既是大数据发展过程中的优质案例。
拥有这些客户资源的鲲鹏,实际上已经进入了强者恒强的发展周期,这不仅仅是因为它获得了诸多标杆合作案例、领先于行业,更重要的还在于,技术到应用实践的通路打通后,实践也将不断反馈技术,不断帮助鲲鹏锤炼自身的技术能力,从而形成有效的正反馈循环。
一旦这种循环形成,大数据解决方案就会进入“飞轮”式发展进程,越转越快、越难以停下,也很难以被后进者追赶,逐步成为政企客户最有竞争优势的选择。
更进一步来看,大数据服务从来都不是孤立存在的,在计算需求多样化的时代,鲲鹏计算产业生态的主要推动者华为在物联网、5G、AI等方面的能力和生态布局,无疑将帮助鲲鹏大数据解决方案有更多横向技术连接和融合的想象空间,满足更多政企客户潜在的创新业务需求。
总而言之,在以鲲鹏大数据解决方案为代表的优质案例引领下,数据与计算的时代正在加速到来,最终,“新算力”将推动“新基建”全面落地,带来“新经济”动能,更多政企客户将享受到技术带来的价值红利。
*本文图片均来源于网络
【完】
曾响铃
1钛媒体、品途、人人都是产品经理等多家创投、 科技 网站年度十大作者;
2虎啸奖评委;
3作家:【移动互联网+ 新常态下的商业机会】等畅销书作者;
4《中国经营报》《商界》《商界评论》《销售与市场》等近十家报刊、杂志特约评论员;
5钛媒体、36kr、虎嗅、界面、澎湃新闻等近80家专栏作者;
6“脑艺人”(脑力手艺人)概念提出者,现演变为“自媒体”,成为一个行业;
7腾讯全媒派荣誉导师、多家 科技 智能公司传播顾问。
❷ 运营商如何运用大数据转型升级
据研究显示,大数据在全球的收入快速增长,预期在2012-2017年的复合增长率将达到60%。根据最近一段时间发布的各类大数据投资研究报告进行了初步估算,预期未来超过40%的GDP增量。大数据已经成为与自然资源同等重要的宝贵财富,发展潜力空间巨大。
而电信运营商作为数据的生产者,多年来积累的数据蕴藏着丰富的业务信息和商业信息,价值挖掘的潜力巨大,拥有如此优质的数据基础,使得运营商在企业、行业、社会等多个层面,都会大有作为。
在8月19日召开的中国国际大数据大会上,中国移动副总裁李正茂表示,中国移动已经意识到,大数据将与运营商的通信网络和客户资源具有同等重要的地位。
从企业层面来看,大数据将助力运营商全面提升运营商的精细化运营水平。一是改善用户体验,通过对用户感知的分析,并运用智能交互技术,进一步提升用户体验;二是实现科学决策,通过大数据刻画当前企业发展的状况,预测未来趋势,对企业成本、收入风险等进行精细化管控。
从行业层面来看,目前各行业纷纷加快大数据应用,重构未来的核心竞争力,运营商可利用数据与网络资源优势,聚焦行政管理、医疗、交通、教育等多个行业,在行政管理领域可以辅助提升政策制定、信息发布、事务办理、管理监控等多个领域的效率和设备,在医疗领域患者可通过可穿戴设备向医生发布数据,从而得到更为便捷的医疗服务。医药研发机构可以利用收集到的医学大数据提高研发能力和医疗水平。在交通、物流领域,可实现智能化的运输网络与运力规划,实施交通管理、车队管理等等。
从社会层面来看,运营商依靠多年的数据和平台经验积累,一定会成为提供社会化大数据生态平台服务的有力参与者。在未来,社会化大数据生态平台,将以数据银行的形式存在,平台使用者不但可以享用运营商的各类数据分析服务,使用者数据也可以在这里得到充分共享和流通,不同的商业模式将在这个平台上衍生和繁荣。
李正茂认为,大数据对于运营商转型升级具有重大的战略意义。而中国移动在大数据的具体研发、产业合作与对外应用方面,也进行了一些积极探索和实践。在自主研发方面,中国移动在2007年启动了大云的研发计划,构建了海量存储处理和数据分析和挖掘等核心能力。到目前为止,大云的大数据相关产品已经在17个省市进行了超过100项应用试点和商用,部署规模超过了3000台服务器,在快速响应市场需求的同时也降低了企业运营成本。
李正茂还透露,中国移动在今年成立了苏州研发中心,计划构建3000-4000人的研发团队和运营团队,宗旨就是要进一步完善云计算和大数据产品体系,尽快形成国际一流的云计算和大数据服务能力。
在产业合作方面,中国移动一直秉承开放共赢理念,推动云计算和大数据技术的成熟和产业健康发展。我们构建了大云产业联盟,与技术提供商、集成商、高等院校、政府机构等超过50家单位,在核心模块合作、授权技术服务、应用开发技术攻关等产业不同层面开展了合作。我们还积极参与了国内、国际标准化和开源组织工作,在TMF完成了大数据报告并完成发布,牵头完成了弹性应用计算接口等国家标准的制定。
另外,在大数据对内的研究探索方面,中国移动率先提出了大数据超细分微营销精服务的理念,在客户服务、市场营销等方面,也有不少成功案例。现阶段的工作,更多集中在应对数据规模增长和促进企业不同专业领域数据融合上面,以及不同程度的发挥数据价值。
❸ 大数据在网络优化中大有可为
大数据在网络优化中大有可为
网络优化是确保网络质量,提升网络资源利用率的有效手段。近年来,随着网络容量的不断提升、网络用户数的不断增加、网络设备的多样化,用新技术和新方法替代传统网络优化手段成为一种趋势,尤其是在大数据分析技术的兴起下,其在网络优化中的作用日渐突出。
网络优化的传统手段
网络优化是通过对现已投入运营的网络进行话务数据分析、现场测试数据采集、参数分析、硬件检查等,找出影响网络质量的原因,并且通过参数的修改、网络结构的调整、设备配置的调整和采取某些技术手段,确保系统高质量的运行,使现有网络资源获得最佳效益,以最经济的投入获得最大的收益。一般而言,传统的网络优化有以下几种方法:
一、话务统计分析法:通过话务统计报告中的各项指标,可以了解和分析基站的话务分布及变化情况,分析出网络逻辑或物理参数设置的不合理、网络结构的不合理、话务量不均、频率干扰及硬件故障等问题。
二、DT&CQT测试法:从用户的角度,借助测试仪表对网络进行驱车和定点测试。可分析空中接口的信令、覆盖服务、基站分布、呼叫失败、干扰、掉话等现象,定位异常事件的原因,为制定网络优化方案和实施网络优化提供依据。
三、用户投诉:通过用户投诉了解网络质量。即通过无处不在的用户通话发现的问题,进一步了解网络服务状况。
四、信令分析法:主要针对A接口、Abis等接口的数据进行跟踪分析。发现和定位切换局数据不全、信令负荷、硬件故障及话务量不均以及上、下行链路路径损耗过大的问题,还可以发现小区覆盖、一些无线干扰及隐性硬件故障等问题。
五、数据库核查与参数分析:对网络规划数据和现网配置参数、网络结构数据进行核查,找出网络数据中明显的数据错误,对参数设置策略进行合理性分析和总结。
六、网络设备告警的排查处理:硬件故障告警一般具有突发性,为了减小对用户的影响,需要快速的响应和处理。通过告警检查处理设备问题,保障设备的可用性,避免因设备告警导致网络性能问题。
在实际工作中,这几种方法都是相辅相成、互为印证的关系。网络优化就是利用上述几种方法,围绕接通率、掉话率、拥塞率和切换成功率等指标,通过性能统计测试数据分析制定实施优化方案系统调整重新制定优化目标性能统计测试的螺旋式循环上升,达到网络质量明显改善的目的。
网络优化亟待创新
当前,随着用户数的不断增长,随着网络容量的不断增加,随着网络复杂度的不断提升,以及网络设备的多样化,网络优化工作的难度正在不断提升,网络优化的方法和手段亟待创新。
首先,网络优化是一项技术难度大、涉及范围广、人员素质要求较高的工作,涉及的技术领域有交换技术、无线技术、频率配置、切换和和信令、话务统计分析等。传统网络优化工作多依赖于技术人员的经验,依赖人工进行统计分析。网络优化的自动化程度较低,优化过程需耗费大量的时间、人力、物力,造成了大量的资源浪费,影响网络问题解决的时效性。另外,优化工程师借助于个人经验对网络数据进行分析和对比,而非根据网络相关的数据综合得出优化方案,存在一定的局限性。
其次,随着我国移动通信事业迅速发展,我国移动互联网发展已正式进入全民时代,截至2014年1月,我国手机网民规模已达5亿。网络结构日益复杂,数据业务已经成为移动通信网络主要承载的业务,用户通过智能终端的即时互联通信行为,使移动网络成为大数据储存和流动的载体。高速变化的数据业务速率和巨大的网络吞吐量以及覆盖范围的动态实时变化,在很大程度上改变了现有网络规划和优化的模型,在网络优化工作中引入大数据是非常迫切和必要的。
最后,全球数据信息成为企业战略资产,市场竞争和政策管制要求越来越多的数据被长期保存。对于运营商的网络优化来说,也需要保存各类数据,以便进行用户行为分析和市场研究,通过大数据实践应用提升网络优化质量并助力市场决策,实现精细化营销策略,提升企业的核心竞争力。
面对上述挑战,运营商正尝试进行网络优化工作的创新,尝试在网络优化中引入新技术和新方法。而正在全球兴起的大数据分析技术,开始在网络优化中大显身手。
网络优化拥抱大数据
大数据(Big Data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、整理成为帮助企业经营决策目的的资讯。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。大数据具有数据量巨大、数据种类繁多、价值密度低及处理速度快的特点,同时具备规模性、高速性、多样性、价值性四大特征。
一般而言,利用大数据技术进行网络优化的过程可分为三个阶段:数据来源和获取、数据存储、数据分析。
数据来源和获取—对于运营商而言,通过现有网络可以收集大量的网络优化相关信令资源(含电路域、分组域)、DT测试&CQT测试数据,这些数据大都以用户的角度记录了终端与网络的信令交互,内含大量有价值的信息。如终端类型、小区位置、LAC、imsi、tmsi、用户业务使用行为、用户位置信息、通话相关信息、业务或信令、信令中包含的各种参数值。
设备层包含基站、BSC、核心网、传输网等配置参数和网络性能统计指标(呼叫成功率、掉话率、切换成功率、拥塞率、交换系统接通率等)、客户投诉数据等。
采集到的数据一般而言,经过IP骨干网传输到数据中心,进行存储。随着云计算技术的发展,未来数据中心将具备小型化、高性能、可靠性、可扩展性及绿色节能等特点。
数据存储—网络优化中涉及巨大的数据存储,包括信令层面的数据信息和设备存在的数据信息,这些数据只有妥善存储和长期运营,才能进一步挖掘其价值。传统数据仓库难以满足非结构化数据的处理需求。Google提出了GFS、BigTable、MapRece三项关键技术,推动了云计算的发展和运用。
源于云计算的虚拟资源池和并发计算能力,受到重视。2011年以来,中国移动、中国电信、中国联通相继推出“大云计划”、“天翼云”和“互联云”,大大缓解了数据中心IT资源的存储压力。
数据分析—数据的核心是发现价值,而驾驭数据的核心是分析,分析是大数据实践研究的最关键环节,尤其对于传统难以应对的非结构化数据。运营商利用自身在运营网络平台的优势,发展大数据在网络优化中的应用,可提高运营商在企业和个人用户中的影响力。
电信级的大数据分析可实现如下功能:第一,了解网络现状,包括网络的资源配置和使用情况,用户行为分析,用户分布等;第二,优化网络资源配置和使用,有针对性地进行网络维护优化和调整,提升网络运行质量,改善用户感知;第三,实施网络建设规划、网络优化性能预测,确保网络覆盖和资源利用最大化。对用户行为进行预测,提升用户体验,实现精细化网络运营。
网络优化相关的工具种类很多,针对不同的优化领域,常用的工具包括:路测数据分析软件、频率规划与优化软件、信令分析软件、话统数据分析平台、话单分析处理软件等。这些软件给网络优化工作带来了很大的便利,但往往只是针对网络优化过程中特定的领域,而网络优化是一个涉及全局的综合过程,因此需要引入大数据分析平台对这些优化工具所反映出来的问题进行集合并综合分析和判断,输出相关优化建议。
目前,大数据技术已经在网络优化工作中得到应用。中国电信就已经建设了引入大数据技术的网优平台,该平台可实现数据采集和获取、数据存储、数据分析,帮助中国电信利用分析结果优化网络质量并助力市场决策,实现精细化营销策略。利用信令数据支撑终端、网络、业务平台关联性分析,优化网络,实现网络价值的最大化。
总工点评
综合全球来看,对大数据认识、研究和应用还都处于初期阶段。中国三大电信运营商都在结合自身业务情况,积极推进大数据应用工作,目前还处于探索阶段,在数据采集、处理、应用方面仍处于初级阶段。电信运营商在国内拥有庞大的用户群和市场,利用自身海量的数据资源优势,探索以大数据为基础的网络优化解决方案,是推动产业升级、实现效率提升、提升企业核心竞争力、应对激烈市场竞争的重要手段。利用大数据将无线网、数据网、核心网、业务网优化进行整合,可以完整地优化整个业务生命期的所有网元,改善用户感知,是未来网络优化的趋势。
以上是小编为大家分享的关于大数据在网络优化中大有可为的相关内容,更多信息可以关注环球青藤分享更多干货
❹ 大数据时代电信运营商应该采用的运营策略
大数据时代电信运营商应该采用的运营策略
最近几年,大数据在人们视野中出现的频率越来越高,继而也引起人们的关注。国际著名咨询公司IDC、麦肯锡相继发布了有关大数据的研究报告,将其比喻为“未来的金矿”,国内不少互联网公司也开始着手部署各自的大数据战略,作为通信行业的主要参与者和推动者,电信运营商在大数据的时代下开始试点了大数据系统的建设与应用,以充分挖掘企业的数据资产价值,创造新的利润点。
大数据是什么?
关于大数据的定义业界并没有给出一个准确的定位,研究机构Gartner把大数据定义为是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产;维基百将大数据定义为无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合;《著云台》的分析师团队认为,“大数据”通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。
大数据时代电信运营商应该采用的运营策略是什么?
1、优化网络:利用大数据分析,可突破传统的智能网优以CDT和MR数据为基础,通过3G基站的流量大数据,可以分析出哪些区域是用户数据流量高消耗区,在这些区域建设4G基站,就能做到既精准又有效;通过对MR大数据的分析,可以知道哪些区域移动网络小区信号覆盖不好,通过关联CRM中的客户信息和套餐信息,便可排出网络优化的优先顺序;通过LBS系统平台,对移动通信使用者的位置和运动轨迹进行分析,有效统计热点地区的人群出现概率,并进行基站资源配置的优化,提高了资源使用效率。
2、精准营销:中国电信利用大数据处理平台分析呼叫中心海量语音数据,建立呼叫中心测评体系和产品关联分析,为保险公司等提供基于自动语音识别的大数据分析服务;根据使用不同移动终端的用户的月均流量消耗,分析出在哪些移动终端上用户的上网体验最佳、DOU最大,根据该数据就可制定更为科学的终端补贴策略;通过对用户手机的通话、短信和空间位置等信息进行处理,提取用户通信行为的时空规则性和重复性,实现定向精确的终端营销和个性化内容业务推荐。
3、深度拥抱大数据:大数据的时代已经来临,因此电信运营商可以强化规划引导、实现大数据建设全面统筹。电信运营商应针对不同的应用场景选取合适的技术进行大数据建设,在集团和省公司层面分别指定部门统一组织开展整个集团和省公司层面的大数据规划,在规划的指引下,实现大数据建设与应用的全面统筹,包括:清理分散在各部门中的数据资产,开展应用规划,明确应用建设与运营分工,建设运营商集团和省公司层面统一的大数据基础平台等。
4、精细运营:天津网站建设-文率科技建议电信可以使用Hadoop等大数据处理工具,通过分析用户的兴趣图谱、关系图谱、行为定向,再结合自身的业务推出量身定制的服务。如:针对出差较多的商务人士,向他们推荐漫游套餐;对爱好移动上网的用户,向他们提供流量包……这本身就属于大数据应用的范畴,而且,运营商通过对业务资源和财务等数据的综合分析,可以让决策层进行快速的市场决策,从而有抢占市场的先机。
5、客户维系:分析用户的终端所支撑的系统,然后向客户推荐比客户目前使用系统更好的系统,如:客户目前使用的终端是支撑的是3G,那么我们可以向客户推荐比3G更好的4G,继而提升客户体验,降低用户流失率;通过分析客户通话对象结构转移、使用量变化、上网行为漂移、套餐饱和度下降,分析出客户离网倾向及缴费异常倾向,及时进行客户维系与挽留。
在大数据的时代止步不前的话只能走向灭亡,天津西青网站建设http://www.xiangrisheng.net 发现在大数据的时代下中国联通建立了用户上网大数据分析系统,利用收集的用户上网记录解决用户透明消费问题, 并使用其中的数据做客户的精细化营销;中国移动建立网络资源的大数据系统,改进对用户专线提供的速度,建立微营销大数据分析系统,实现定向精确营销、差异化的合作伙伴后向能力保障和智慧城市管理。
以上是小编为大家分享的关于大数据时代电信运营商应该采用的运营策略的相关内容,更多信息可以关注环球青藤分享更多干货
❺ 电信飞龙卡好吗
电信手机卡信号稳定,网络速度快,而且套餐多,资费优惠,比如畅享5G套餐、步步高套餐等,用户如需办理电信套餐可以直接通过电信网上营业厅或者电信营业厅进行办理,推荐用户办理5G畅享套餐使用。
中国电信的5G套餐总共分为7档,129元/169元/199元/239元/299元/399元/599元,具体如下:
129元:30GB全国流量+500分钟全国通话
169元:40GB全国流量+800分钟全国通话
199元:60GB全国流量+1000分钟全国通话
239元:80GB全国流量+1000分钟全国通话
299元:100GB全国流量+1500分钟全国通话
399元:150GB全国流量+2000分钟全国通话
599元:300GB全国流量+3000分钟全国通话
,电信手机卡还是不错的,信号稳定,通话清晰,网络速度快,辐射低,目前中国电信推出多种套餐供用户办理,比如畅享套餐系列,步步高套餐,无忧卡套餐,星卡升级套餐等等,不同地区具体的套餐和资费也是不同的,建议用户可以到电信营业厅或者登录本省电信网上营业厅了解具体的套餐和资费情况,然后选择合适的套餐办理使用
❻ 企业大数据 一座值得开垦的金矿
企业大数据:一座值得开垦的金矿
虽然尚处起步阶段,但是大数据已经成为多个行业的关注热点之一。如何更好地利用大数据推动自身业务的运营发展,这是众多企业不断探索的问题,而运营商也无法忽视这个未来的大金矿。
一、现阶段大数据业务市场状况
从全球情况来看,2015年全球大数据市场规模达到421亿美元,同比增长了47.7%。以此增速进行推算,到2020年全球大数据市场规模可突破3000亿美元。
今年年初,中国信息通信研究院日前发布的《中国大数据发展调查报告(2017)》称,2016年中国大数据市场规模达168亿元,预计2017年~2020年仍将保持30%以上的增长。调查显示,目前近六成企业已成立数据分析相关部门,超过1/3的企业已经应用大数据。
对比起全球情况,中国大数据产业市场规模增长还有很大空间。
二、运营商进入大数据行业思路
运营商先天优势在于掌控大量数据中心资源,这是大数据业务硬件基础。更为重要的是运营商本身拥有大量存量客户资源和客户数据,这也是对运营商进入大数据领域一个有力支撑。
运营商大数据业务运营SWOT分析:
三、运营商大数据业务发展对比
联通
今年9月,中国联通集团正式宣布,旗下的联通大数据有限公司正式揭牌成立。中国联通大数据公司定位于中国联通大数据对外集中运营主体和大数据产业拓展的合资合作平台,全面对接国家和联通集团战略,建立专业化子公司开展市场化运营、建设全产业链大数据生态体系。此外,联通还与中国银联签署了战略合作协议,双方决定建立长期稳定的合作伙伴关系,在数据资源、技术能力、产品研发等方面开展全方位合作。
电信
早在2015年末,中国电信正式发布“天翼大数据”品牌,并推出精准营销、风险防控、区域洞察、咨询报告四类数据型产品和大数据云平台型产品,重点服务于旅游、金融、广告、政府、交通等行业。这是中国电信运营商第一个大数据业务品牌。
电信所有的大数据都是在云平台和云设施之上搭建的,2016年下半年其大数据平台建设从原来的5个省份现在扩展到31个省份,数据种类从开始的几类主要数据扩展到十几类,实效性从原来以“周”为单位到现在以“小时”为单位的延时。
移动
在今年“世界电信和信息化社会日大会”上,中国移动通信集团公司副总经理李正茂表示:“发展大数据不是简单的建设IDC,根本目的还是为了应用。大数据正在从炒作的高峰期间,向产业落地期间发展。”
中国移动在六个方面积极推动大数据加速行业转型升级:
第一,社会管理方面,大数据能够分析用户的消费、行为、位置等特征,为政府的社会治理提供保障。
第二,信息传播,大数据成为公众获取信息的新渠道。移动借助位置漫游等信息向公众发布舆情热点的分析。
第三,医疗健康领域,中国移动构建健康云平台在贵州省取得成效,一方面帮助贵州卫集委收集信息,同时为政府医疗机构提供智能审核,疾病救助,疾病预防等多方面的投入,由此为当地医疗支出节省了上千万。
第四,行业创新能力提升,大数据为传统行业打造新的能力。中国移动的大数据提供人流预警,公交道路等服务,为公交管理,游客出行提供参考。
第五,社会热点问题处理支撑,中国移动基于大数据构建了反电信网络,欺诈防范技术体系,在2-10分钟可以识别市场号码源,来源区域,受害人集中地等等,同时实现最高风险等级,影响最大的境外异常号码源时时阻断。
第六,商业模式创新,2016年,中国移动和招商局集团共同投资设立试金石信用服务有限公司。
虽然三大运营商大数据布局在实际操作上不同,但是都明确把大数据从布局转移到实行阶段,软硬件资源日益充实,并且已经打造出不少成功案例。
四、布局大数据市场
1、攻坚热点领域
智慧城市
早在2014年,国家发改委会同中央网信办等25部委组成部际协调工作组,启动新型智慧城市试点建设。2016年又明确提出了到2018年要分级分类建设100个新型示范性智慧城市。
智慧城市建设带来的商机是巨大的,而大数据恰好在智慧城市建设中扮演重要角色。可以通过方方面面渗入,如城市交通、环境监测、治安管理、卫生管理等城市生活每个细节。
当然,运营商也已经对此领域有所行动。比如联通大数据公司就有“智慧足迹”这一项业务,提供“以人为本”的群体位置数据应用,为政府和企业提供包括人流量、人流密度、职住空间分布、人口时空分布在内的位置大数据解决方案。
政务
通过IDC、ICT基础通信业务为政府部门提供服务,并且为其构建大数据管理分析平台。政府运作效率和质量提升已经不仅仅拘泥于办理业务、处理业务时间上的减少,还要做到未雨绸缪,及时发现潜在民生问题,做好预防工作:比如通过婚姻注册数据挖掘离婚率提升因素,从而地提出针对性措施;又比如通过分析注册中小企业税务数据,了解税收政策对中小企业是否存在推进作用,有消极作用的加以改善。
医疗健康
根据前瞻产业研究院发布的《2017-2022年全球健康医疗大数据行业发展前景预测与投资战略规划分析报告》显示,2010年我国健康医疗大数据行业市场规模约为171亿元,到2015年快速增长到466亿元,年均复合增长率超过20%。
可穿戴设备的出现使到个人身体健康实时监测得到硬件上的支持,而把这个契机转化为商机就需要完善的大数据平台作为支撑。
而通信运营商涉足该领域也有很合适的切入口,比如利用存量家庭业务客户进行拓展,享受低资费优惠。
2、提升自身运营
运营商本身拥有着庞大数据资源,也应该很好地利用这些资源为自身运营提供动力。
一方面通过用户数据库做好用户维系和质量提升,对高危潜在离网用户及早挽留,而对潜在需求用户可以推广增值业务提升客户价值。
另一方面,涉及到数据交互(即通过与其他行业合作,双方数据通过融合整理)发掘出的更多有价值结论,能支撑双方运营,互惠互利。
五、大数据业务营销
通过IDC建设、产品建设打好基础,进行业务营销就是下一步关键所在。进行大数据业务营销通过标杆打造+体验营销是较好选择。
由于业务属于起步阶段,要吸引到市场目光和认同,必须树立业务标杆。在硬件和软件有实力的前提下,运营商要打造专业化团队,树立行业顶尖形象,以优质案例打动潜在客户。
营销人员在向潜在客户推销产品时,需要结合案例详解、实体考察、便携式设备体验进行销售活动,以具体化、专业化的方式打动客户。
需要明确的是,大数据硬件软件方面做好后,剩下最关键一环就是在营销上打动客户。
如何打动客户?用事实说话
例如2013年,微软纽约研究院的经济学家大卫?罗斯柴尔德(David Rothschild)利用大数据成功预测24个奥斯卡奖项中的19个,成为人们津津乐道的话题。2014年罗斯柴尔德再次成功预测第86届奥斯卡金像奖颁奖典礼24个奖项中的21个。在这种震撼的事实面前,展现大数据的实用性和威力。
六、展望
由于各行各业各领域都能够有机会用到大数据分析为管理运营作支撑,所以大数据业务发展潜力毋容置疑。现在对运营商而言,做好硬件软件基础的同时,更要深挖市场需求,打造营收模式标杆,以点带面地实现业务快速增长。
❼ 大数据的预测功能是增值服务的核心
大数据的预测功能是增值服务的核心
从走在大数据发展前沿的互联网新兴行业,到与人类生活息息相关的医疗保健、电力、通信等传统行业,大数据浪潮无时无刻不在改变着人们的生产和生活方式。大数据时代的到来,给国内外各行各业带来诸多的变革动力和巨大价值。
最新发布的报告称,全球大数据市场规模将在未来五年内迎来高达26%的年复合增长率——从今年的148.7亿美元增长到2018年的463.4亿美元。全球各大公司、企业和研究机构对大数据商业模式进行了广泛地探索和尝试,虽然仍旧有许多模式尚不明朗,但是也逐渐形成了一些成熟的商业模式。
两种存储模式为主
互联网上的每一个网页、每一张图片、每一封邮件,通信行业每一条短消息、每一通电话,电力行业每一户用电数据等等,这些足迹都以“数据”的形式被记录下来,并以几何量级的速度增长。这就是大数据时代带给我们最直观的冲击。
正因为数据量之大,数据多为非结构化,现有的诸多存储介质和系统极大地限制着大数据的挖掘和发展。为更好地解决大数据存储问题,国内外各大企业和研究机构做了许许多多的尝试和努力,并不断摸索其商业化前景,目前形成了如下两种比较成熟的商业模式:
可扩展的存储解决方案。该存储解决方案可帮助政府、企业对存储的内容进行分类和确定优先级,高效安全地存储到适当存储介质中。而以存储区域网络(SAN)、统一存储、文件整合/网络连接存储(NAS)的传统存储解决方案,无法提供和扩展处理大数据所需要的灵活性。而以Intel、Oracle、华为、中兴等为代表的新一代存储解决方案提供商提供的适用于大、中小企业级的全系存储解决方案,通过标准化IT基础架构、自动化流程和高扩展性,来满足大数据多种应用需求。
云存储。云存储是一个以数据存储和管理为核心的云计算系统,其结构模型一般由存储层、基础管理、应用接口和访问层四层组成。通过易于使用的API,方便用户将各种数据放到云存储里面,然后像使用水电一样按用量进行收费。用户不用关心数据的存储介质、网络状况以及安全性的管理,只需按需向提供方购买空间。
源数据价值水涨船高
在红红火火的大数据时代,随着数据的累积,数据本身的价值也在不断升值,这种情况很好地反应了事物由量变到质变的规律。例如有一种罕见的疾病,得病率为十万分之一,如果从小样本数据来看非常罕见,但是扩大到全世界70亿人,那么数量就非常庞大。以前技术落后,不能将该病情数字化集中研究,所以很难攻克。但是,我们现在把各种各样的数据案例搜集起来统一分析,我们很快就能攻克很多以前想象不到的科学难题。类似的例子,不胜枚举。
正是由于可以通过大数据挖掘到很多看不见的价值,源数据本身的价值也水涨船高。一些掌握海量有效数据的公司和企业找到了一条行之有效的商业路径:对源数据直接或者经过简单封装销售。在互联网领域,以Facebook、twitter、微博为代表的社交网站拥有大量的用户和用户关系数据,这些网站正尝试以各种方式对该源数据进行商业化销售,Google、Yahoo!、网络[微博]等搜索公司拥有大量的搜索轨迹数据以及网页数据,他们可以通过简单API提供给第三方并从中盈利;在传统行业中,中国联通[微博](3.44, 0.03, 0.88%)、中国电信[微博]等运营商拥有大量的底层用户资料,可以通过简单地去隐私化,然后进行销售盈利。
各大公司或者企业通过提供海量数据服务来支撑公司发展,同时以免费的服务补偿用户,这种成熟的商业模式经受住了时间的考验。但是对于任何用户数据的买卖,还需处理好用户隐私信息,通过去隐私化方式,来保护好用户隐私。
预测是增值服务的核心
在大数据基础上进行深度挖掘,所衍生出来的增值服务,是大数据领域最具想象空间的商业模式。大数据增值服务的核心是什么?预测!大数据引发了商业分析模式转变,从过去的样本模式到现在的全数据模式,从过去的小概率到现在的大概率,从而能够得到比以前更准确的预测。目前形成了如下几种比较成熟的商业模式。
个性化的精准营销。一提起“垃圾短信”,大家都很厌烦,这是因为本来在营销方看来是有价值的、“对”的信息,发到了“错”的用户手里。通过对用户的大量的行为数据进行详细分析,深度挖掘之后,能够实现给“对”的用户发送“对”的信息。比如大型商场可以对会员的购买记录进行深度分析,发掘用户和品牌之间的关联。然后,当某个品牌的忠实用户收到该品牌打折促销的短信之后,一定不是厌烦,而是欣喜。如优捷信达、中科嘉速等拥有强大数据处理技术的公司在数据挖掘、精准广告分析等方面拥有丰富的经验。
企业经营的决策指导。针对大量的用户数据,运用成熟的数据挖掘技术,分析得到企业运营的各种趋势,从而给企业的决策提供强有力的指导。例如,汽车销售公司,可以通过对网络上用户的大量评论进行分析,得到用户最关心和最不满意的功能,然后对自己的下一代产品进行有针对性的改进,以提升消费者的满意度。
总体来说,从宏观层面来看,大数据是我们未来社会的新能源;从企业微观层面来看,大数据分析和运用能力正成为企业的核心竞争力。深入研究和积极探索大数据的商业模式,对企业的未来发展有至关重要的意义。
❽ 怎么用手机查询已经过去14天的行动轨迹,手机是移动的
国家为了应对本次疫情,紧急建设了一个全国电信大数据综合分析平台。
通过这个平台,可以对用户的手机轨迹等信息进行统一查询。
❾ 大数据中心是什么
问题一:大数据中心是什么?中国最大的大数据中心在哪里? 你好!大数据中心,是指服务于大数据存储、挖掘、分析和应用的数据中心。大数据(big data,mega data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。
目前,国内新建了许多大数据中心,规模不一。其中,网络和阿里巴巴的大数据中心名气较大,此外,罗克佳华在鄂尔多斯和太原建设的大数据中心凭借北部省份的能源优势,建成5万平方米的全国单体面积最大的大数据中心,是目前亚洲最大的云计算中心。
问题二:大数据是什么意思?目前具体有些什么应用? 大数据的意思就是数据要在线,这样你的数据才能有价值,用于分析或者处理。大量的数据在线后的分析才有意义。可能得到你想要的数据,电影里好多这种素材,比如人脸的搜索,人员的定位,人流的分析,运行的状态等等都有使用。现在做这些应用的也很多,只是落地的还稍微少一点。还是为了创造价值。
问题三:什么是大数据和大数据平台 大数据技术是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
大数据平台是为了计算,现今社会所产生的越来越大的数据量。以存储、运算、展现作为目的的平台。
问题四:中国的大数据中心有哪些 没什么不同,只能说应用的领域和接触的长短不同吧。如果还想知道更多的大数据问题,ITjob网有大数据的相关介绍,博客和论坛也有大数据的讨论和观点,你可以去看看。下面给你粘贴下大数据在中国和美国的应用时间和领域。希望能帮到你。
大数据在中国的发展相对比较年轻。2012年,中国 *** 在美国提出《大数据研究和发展计划》并且批复了“十二五国家政务信息化建设工程规划”,总投资额估计在几百亿,专门有人口、法人、空间、宏观经济和文化等五大资源库的五大建设工程。我国的开放、共享和智能的大数据的时代才真正大面积的开始。
而美国 *** 将大数据视为强化美国竞争力的关键因素之一,把大数据研究和生产计划提高到国家战略层面。2012年3月,美国奥巴马 *** 宣布投资2亿美元启动“大数据研究和发展计划”,这是继1993年美国宣布“信息高速公路”计划后的又一次重大科技发展部署。美国 *** 认为大数据是“未来的新石油与矿产”,将“大数据研究”上升为国家意志,对未来的科技与经济发展必将带来深远影响。
Marketsand Markets公布的最新报告显示,2013年至2018年,全球大数据市场的年复合增长率将为26%,从2013年的148.7亿美元增长至463.4亿美元。
问题五:什么是大数据服务中心? 我认为大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
大数据帮助 *** 实现市场经济调控、公共卫生安全防范、灾难预警、社会舆论监督;
大数据帮助城市预防犯罪,实现智慧交通,提升紧急应急能力;
大数据帮助医疗机构建立患者的疾病风险跟踪机制,帮助医药企业提升药品的临床使用效果,帮助艾滋病研究机构为患者提供定制的药物;
大数据帮助航空公司节省运营成本,帮助电信企业实现售后服务质量提升,帮助保险企业识别欺诈骗保行为,帮助快递公司监测分析运输车辆的故障险情以提前预警维修,帮助电力公司有效识别预警即将发生故障的设备;
大数据帮助电商公司向用户推荐商品和服务,帮助旅游网站为旅游者提供心仪的旅游路线,帮助二手市场的买卖双方找到最合适的交易目标,帮助用户找到最合适的商品购买时期、商家和最优惠价格;
大数据帮助企业提升营销的针对性,降低物流和库存的成本,减少投资的风险,以及帮助企业提升广告投放精准度;
大数据帮助娱乐行业预测歌手,歌曲,电影,电视剧的受欢迎程度,并为投资者分析评估拍一部电影需要投入多少钱才最合适,否则就有可能收不回成本;
大数据帮助社交网站提供更准确的好友推荐,为用户提供更精准的企业招聘信息,向用户推荐可能喜欢的游戏以及适合购买的商品。
其实,这些还远远不够,未来大数据的身影应该无处不在,就算无法准确预测大数据终会将人类社会带往到哪种最终形态,但我相信只要发展脚步在继续,因大数据而产生的变革浪潮将很快淹没地球的每一个角落。
未来的大数据除了将更好的解决社会问题,商业营销问题,科学技术问题,还有一个可预见的趋势是以人为本的大数据方针。人才是地球的主宰,大部分的数据都与人类有关,要通过大数据解决人的问题。
比如,建立个人的数据中心,将每个人的日常生活习惯,身体体征,社会网络,知识能力,爱好性情,疾病嗜好,情绪波动……换言之就是记录人从出生那一刻起的每一分每一秒,将除了思维外的一切都储存下来,这些数据可以被充分的利用:
医疗机构将实时的监测用户的身体健康状况;
教育机构更有针对的制定用户喜欢的教育培训计划;
服务行业为用户提供即时健康的符合用户生活习惯的食物和其它服务;
社交网络能为你提供合适的交友对象,并为志同道合的人群组织各种聚会活动;
*** 能在用户的心理健康出现问题时有效的干预,防范自杀,刑事案件的发生;
金融机构能帮助用户进行有效的理财管理,为用户的资金提供更有效的使用建议和规划;
道路交通、汽车租赁及运输行业可以为用户提供更合适的出行线路和路途服务安排;
……
目前做大数据分析的产品有多瑞科舆情数据分析站系统,主要是侧重对数据搜集和分析整理出报告。
问题六:数据中心,云计算,大数据这三个词之间有什么区别和联系 数据中心,简称机房,就是防止服务器用的,其中云计算的母服务器(物理服务器)也需要放置到机房。
云计算,就是虚拟服务器,也就是在物理服务器上通过技术手段虚拟出若干台服务器。
大数据,是指手上拥有的海量的数据信息,比如用户购买记录,用户注册记录等等。
问题七:现在说的大数据是什么意思 大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** ,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。可以被现代先进媒体记录、采集和开发利用的数据集、数据流和数据体。
数联网是大数据时代信息技术发展的重要产物,数联网依托大数据,是大数据的应用模型,通过数联网,用户可以通过数联网获得全网数据融合的数据价值。
问题八:中国大数据中心在哪个城市 你好,中国数据中心有八大节点:北京、武汉、成都、广州、上海、沈阳、西安、南京。
这几个都是大数据中心,其中成都数据中心是中国电信全国8大节点之一,可支配带宽资源丰富,与Chinanet骨干网节点带宽60G,CN2节点带宽10G。机房内部网络全部采用千兆连接核心层与汇聚层,双百兆冗余到接入层的无瓶颈交换式结构,局域网采用千兆与百兆混合交换式可监控网络,中心网络设备确保高可靠性架构,做到无单点故障,分支网络提供冗余设备及线路,可针对客户数据传输,维护的需求提供XDSL,DDN,ISDN等多种接入手段,并能提供与国内Chinanet主要节点城市连接的长途专线。
听说西普网络有这几个节点的一手资源,希望能够帮到你
问题九:大数据中心配几个交换机 一般情况下有两个核心交换机,然后看你数据中心的规模再添加多台接入交换机 ,接入交换机的数量不确定,对于接入交换机就不需要做主备了。我们一般一排机柜有一个列头,里面放接入交换机。
问题十:国内大数据公司有哪些? 大数据包涵很广泛,涉及到很多方方面面,技术难度也很大,国内能做的公司不太多,我知道的有网络、华为、联想、浪潮、电科华云、腾讯、阿里巴巴、中科曙光等。