导航:首页 > 网络数据 > 建立大数据的必要性

建立大数据的必要性

发布时间:2023-01-24 08:21:40

大数据战略的重要性

大数据是一个事关我国经济社会发展全局的战略性产业,大数据技术为社会经济专活动提供决策依据属,提高各个领域的运行效率,提升整个社会经济的集约化程度,对于我国经济发展转型具有重要的推动作用,浪潮大数据一体机的发布对中国发展大数据产业奠定了技术基础,而基于行业化应用的大数据整体战略是符合中国国情的可行性战略。有业界专家表示,大数据产业已经成为全球高科技产业竞争的前沿领域,以美、日、欧为代表的全球发达国家已经展开了以大数据为核心的新一轮信息战略。IT产业竞争从此前的企业间竞争转变为技术系统、产业体系的竞争,下一步浪潮应该加快整合产业链上下游资源,增强技术生态系统的竞争力,进一步推进行业化应用。

Ⅱ 大数据存在的意义和用途是什么

将大数据分析纳入流程的做法揭示了非结构化数据,从而有助于管理者以系统的方式分析其决策,并在需要时采取替代方法。
2、“大数据”是近年来IT行业的热词,大数据在各个行业的应用逐渐变得广泛起来,进入2012年,大数据(bigdata)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。
3、大数据的意义在于变革经济的力量:生产者是有价值的,消费者是价值的意义所在。有意义的才有价值,消费者不认同的,就卖不出去,就实现不了价值;只有消费者认同的,才卖得出去,才实现得了价值。大数据帮助我们从消费者这个源头识别意义,从而帮助生产者实现价值。这就是启动内需的原理。
4、大数据的意义表现在变革组织的力量:随着具有语义网特征的数据基础设施和数据资源发展起来,组织的变革就越来越显得不可避免。大数据将推动网络结构产生无组织的组织力量。最先反映这种结构特点的,是各种各样去中心化的WEB2.0应用,如RSS、维基、博客等。大数据之所以成为时代变革力量,在于它通过追随意义而获得智慧。

Ⅲ 为什么要建设政务大数据

建设统一的大数据平台
首先说明下为何要建设数据资源库,其核心目的还是需要聚合原有分散在各个政务系统中的数据,大家要注意这里不是聚合所有数据,而是需要在多个政务系统共享的数据,在进行大数据分析的时候需要使用到的本身具有相关性的各类数据。这里的数据资源库和传统电子政务建设里面谈到的数据资源中心在业务上目标是一样的,纳入大数据平台后只是在构建过程中会应用到大数据相关技术如分布式存储,流计算等来解决对数据的海量和实时性要求。
数据资源库的建设本身包括了两个方面的内容,从业务上重点是数据标准,数据规范和接口,数据模型的建设,这个以往差别不大,唯一增加的内容是在数据模型建设中需要更多的考虑数据本身之间的相关性。其次是数据平台的建设,这里从技术上讲和传统区别相当比较大,一个是在建设数据平台过程中需要应用到大数据相关技术平台,如Hadoop平台等,这里已经不是一个单纯的数据存储平台,而是必须提供数据存储,数据处理和数据分析能力的完整平台,其次大数据平台建设的最终目标还是希望经过处理和分析后的数据能力能够共享和开发,体现业务价值,因此需要有大数据共享服务能力提供,即大数据平台本身还必须是可开放和共享的数据能力服务平台。
对于大数据平台的建设难点不在技术而是在业务上,这里面涉及到两个层面的数据开放和共享,一个是在政府行业内部各个部门间,工商,税务,质监,交通等各个部门的数据能够共享,这里面涉及到的部门和利益壁垒要想短期解决是很困难的事情;其次是大数据平台最终处理和分析后的能力能否进一步朝外面的企业和公共服务部门共享和开放,这是第二个层面的困难,在这一点上国外类似美国在政府部门大数据资源和数据目录开放程度就远远好于我国。具体可以看下涂子沛的《大数据时代》这本书。
二是加快计算服务能力和应用能力建设。引进公共云服务龙头企业,提供高质量的基础设施即服务(IaaS)、平台即服务(PaaS)、软件即服务(SaaS)等公共云服务;引导财政资金支持的信息化项目优先部署在统一的云计算基础设施,促进政务信息系统和信息资源的共享;面向贵州省建设电子政务、智能交通、智能物流、企业管理、智慧城市等方面的需求,发展服务功能强、商业模式新、带动效果大的行业云平台;面向企业研发、产品设计、生产控制、经营管理等方面需求,提供专业化的工业云计算服务;加快研发云计算平台资源管理软件、云安全防护产品、云模式应用软件,发展面向重点行业领域的云计算系统解决方案。
解读:计算服务和应用能力建设
对于这部分内容基本可以看到是常规的云计算平台和智慧城市方面的建设内容。政府很多时候规划往往就是没有了解一件事情的本质而一味的追求大而全的理想化建设模式。从最早的各地圈地大搞特搞云计算中心和产业基地;到智慧城市概念炒作起来的时候又把云计算,SOA,大数据,物联网等所有内容全部涵盖在智慧城市规划里面。而到了大数据时代,我们看到的规划效果又是所有内容似乎都恨不得全部纳入到大数据产业规划里面,搞理想化的大而全建设,结果平台项目建设过程中就夭折点,这个是每个政府部门做大数据规划前必须要考虑的问题,即必须清楚大数据本质是什么?希望通过大数据平台建设来解决什么业务问题,这个都没有想清楚不适宜开始大数据产业规划和建设。
那么是不是大数据平台和云平台完全没有关系?那也不是绝对。对于两者的关系在这里用最通俗的方式来进行下说明和对应。首先大数据本身需要存储,大数据在处理和聚合到数据资源平台过程中需要进行计算,那么就需要资源来提供计算和存储能力,而且这个能力可以弹性扩展,这块能力的提供即是云计算平台IaaS层完成的内容。其次大数据在处理过程中涉及到数据集成,数据采集和聚合,数据并行处理,数据流处理,数据分析,数据服务能力共享和开放,这些能力已经是在资源层上层的能力,即平台层能力,而这些平台层能力都可以纳入到广义的云计算PaaS平台层。
三是加快大数据分析能力和利用能力建设。加强大数据分析关键算法和共性基础技术研发,开发专业化的数据处理分析工具,形成大数据基础技术与产品资源池;发挥大企业平台引领作用和专业大数据服务企业创新优势,加快市场化的大数据应用,发展第三方大数据服务,提供特色化的数据服务;支持数据开放、共享和应用服务,探索商业模式创新,推进大数据的公共应用;选择重点行业领域,开展基于云计算的大数据示范应用,推动专业化的大数据挖掘、分析、应用和服务发展,提高大数据行业应用能力。
解读:数据分析和利用能力建设
再次强调大数据核心是实现了业务价值和公共服务能力提升,如果我们建设的大数据平台和数据资源中心虽然实现了数据的聚合和数据模型的标准化,但是这些海量数据如果不能进行很好的挖掘和相关性分析,如果不能将数据本身的价值和能力通过服务化方式开放出来,那么整个大数据平台将没有任何价值。
贵州大数据产业战略里面谈到的将数据开放和共享出去,发展第三方大数据服务,推荐大数据公共应用并探索新的商业模式是相关关键的点。这仍然是商业模式和业务问题,而非技术问题,经过处理和分析的数据只有能够被使用,能够用于决策,能够为大众提供更加高效的公共数据服务才是最大的价值。
根据大数据本身的海量,异构,实时等特点,可以看到要针对海量异构数据进行数据挖掘和分析,同时有必须满足大数据分析的实时或准实时性要求还是相当有难度的。这一方面涉及到CEP,流处理,MPP,并行计算等各种技术的使用;一方面涉及到数据相关性分析模型的建立,两者缺一不可。
大数据平台建设本身又有两种模式,一种是先构建数据存储平台,再构建处理平台,最后再构建数据分析和挖掘平台;一种是根据业务目标来分析是否涉及到大数据应用场景,根据应用场景来分析究竟涉及到哪些相互关联数据,然后进行数据建模,再来考虑如何高效可扩展的对这些数据进行存储,处理和分析。对于政府部门的大数据我们更加建议第二种方式,即不要一开始就追求大而全,而是有针对性的各个击破,快速的体现出大数据平台应有的商业价值。

Ⅳ 为什么大数据如此重要

大数据是一种现代云基础架构,它包含了多种与其他人连接和共享信息的方法。它推动了“物联网”的发展,如通过社交网站连接人、通过共享朋友或网络来寻找人们之间互相认识的可能性。大数据的背后运行着人工智能,而它对于大多数人而言是完全透明的,人们不知道背后有这样的技术。大数据位于人们日常使用的智能手机之后,然后人们通过它给移动互联网贡献信息,即使他们并没有意识到这一点。
为什么大数据如此重要?
第一,对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。
第二,大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。
第三,大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动” 转变“数据驱动”。
总结
在大数据时代到来的时候,要用大数据的思维去发掘大数据的潜在价值。大数据的意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。从前我们所了解的数据是冷冰冰的、死气沉沉的,被存到冷备份默默地等着人拿出来用,我们对待数据的感觉十分消极,要先想清楚其用处才开始分析应用。现在,数据时代来临了,人们正在试图点燃数据,使其变热,赋予生命。所谓“活数据”,是动态的数据,流通的数据,因互动而产生,因产生而互动,是自然演化的数据,要用大数据的思维去考虑这些数据怎样才能带来效益。未来大数据的发展前景非常好,与大数据相关的职业比如数据挖掘师,数据分析师等必定会有广阔的发展空间。

Ⅳ 为什么需要大数据技术

大数据的价值体现在以下几个方面:

1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销

2) 做小而美模式的中小微企业可以利用大数据做服务转型

3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值

(5)建立大数据的必要性扩展阅读

大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。

大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。

其次,想要系统的认知大数据,必须要全面而细致的分解它,着手从三个层面来展开:

第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。

第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。

第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。

参考资料来源:网络-大数据

Ⅵ 大数据发展的三个必要条件

大数据发展的三个必要条件_数据分析师考试

近年来,关于大数据的讨论在技术、应用和模式等多个层面展开,已被认为代表着产业发展的方向。但与互联网公司的诸多实践相比,被认为具有数据资源先天优势的电信运营商却走在了后面,即便放眼全球,电信运营商的大数据应用案例也是屈指可数。移动宽带和固网宽带快速发展、OTT的强势崛起决定了电信运营商必须充分利用自身掌握的数据资源,另辟蹊径,从而实现网络价值的最大化。因此,电信运营商应用大数据是必然的,而且市场前景十分广阔。

为了加快大数据的“落地”步伐,帮助业界各方特别是电信运营企业更好地了解大数据,认清大数据战略发展的重要性,分析发展道路上面临的难题和障碍,促进大数据产业链的成熟,推动大数据的应用推广。从今天开始,《人民邮电》报特邀来自中兴通讯、电信研究院以及三大运营商等单位的专家,推出“掘金大数据”系列报道,以飨读者。

大数据概念的横空出世,有赖于短短几年出现的海量数据。据统计,互联网上的数据每两年翻一番,而目前世界上90%以上的数据都是最近几年才产生的。当然,海量数据仅仅是“大数据”概念的一部分,只有具备4个“V”的特征,也就是Volume(海量)、Velocity(高速)、Variety(多样)、Value(价值),大数据的定义才算完整,而最后一个Value(价值),恰恰是决定大数据未来走向的关键。

大数据发展的三个必要条件

大数据的发展需要三方面的必要条件:数据源、数据交易、数据产生价值的过程。近年来,社交网络的兴起、物联网的发展和移动互联网的普及,微信、微博、智能手机、电商大行其道,诞生了大量有价值的数据源,比如位置、生活信息等数据,数据源的出现奠定了大数据发展的基础。大数据时代到来的重要标志,则是大批专业级“数据买卖商”的出现,以及围绕数据交易形成的贯穿于收集、整理、分析、应用整个流程的产业链条。大数据发展的核心,则是使用户从海量的非结构化数据和半结构化数据中获得新的价值,数据价值是带动数据交易的原动力。

IBM、甲骨文、SAP近年纷纷斥巨资收购数据管理和分析公司,在这些互联网巨头的带动下,数据分析技术日渐成熟。2013年6月,爱德华·斯诺登将“棱镜”计划公之于众,“棱镜门”事件一方面说明大数据技术已经成熟,另一方面也佐证了现在阻碍大数据发展的不是技术,而是数据交易和数据价值。

大数据技术的发展促进了云计算的落地,云计算的部署完成又反过来加大了市场对数据创造价值的期待。大数据概念提出之后,市场终于看到了云计算的获利方向,云计算市场仿佛在一夜之间爆发,在过去一两年间几乎已经被国内大方案商、大集成商瓜分殆尽——各地的一级系统集成商与当地政府合作,建云数据中心,建智慧城市;各大行业的巨头们在搭建各自行业的混合云标准,搭建行业云平台;公有云也来了,各大IT巨头想尽办法申请中国的公有云牌照。云计算从概念到落地用了5年时间,最终促成这一切的就是大数据,或者说是市场对数据价值的期待。借助于国内智慧城市概念的大规模普及,云计算基础设施已基本准备就绪,一方面具备了大数据应用的硬件基础,另一方面迫于回收云计算投资的压力,市场急需应用部署,大数据恰如雪中送炭,被市场寄予厚望。

现在,一切的矛头都指向了“数据如何创造价值?”

56数据创造价值的基石6是数据整合和开放

大数据服务创业公司Connotate对800多名商业和IT主管进行了调查。结果显示,60%受调查者称“目前就说这些大数据投资项目肯定能够带来良好回报尚为时过早”。之所以如此,是由于当前大数据缺乏必需的开放性:数据掌握在不同的部门和企业手中,而这些部门和企业并不愿意分享数据。大数据通过研究数据的相关性来发现客观规律,这依赖于数据的真实性和广泛性,数据如何做到共享和开放,这是当前大数据发展的软肋和需要解决的大问题。

2012年美国大选奥巴马因数据整合而受益。在奥巴马的竞选团队中有一个神秘的数据挖掘团队,他们通过对海量数据进行挖掘帮助奥巴马筹集到10亿美元资金;他们通过数据挖掘使竞选广告投放效率提升了14%;他们通过制作摇摆州选民的详细模型,每晚实施6.6万次模拟选举,推算奥巴马在摇摆州的胜率,并以此来指导资源分配。这个数据挖掘团队,对奥巴马成功连任功不可没。奥巴马竞选团队相比罗姆尼竞选团队最有优势的地方就是对大数据的整合。奥巴马的数据挖掘团队也意识到这个全世界共同的问题:数据分散在过多的数据库中。因此,在前18个月,奥巴马竞选团队就创建了一个单一的庞大数据系统,可以将来自民意调查者、捐资者、现场工作人员、消费者数据库、社交媒体,以及“摇摆州”主要的民主党投票人的信息整合在一起。这个整合后的巨大数据库不仅能告诉竞选团队如何发现选民并获得他们的注意,还帮助数据处理团队预测哪些类型的人有可能被某种特定的事情所说服。正如竞选总指挥吉姆·梅西纳所说,在整个竞选活中,没有数据做支撑的假设很少存在。

2012年3月,美国奥巴马政府宣布投资2亿美元启动“大数据研究和发展计划”,将大数据研究上升为国家意志,对大数据的整合带来深远影响。一个国家拥有数据的规模和运用数据的能力将成为综合国力的重要组成部分。国内智慧城市的建设目标之一就是实现数据的集中共享。

数据创造价值需要合作共赢的商业模式

随着云计算、大数据技术和相关商业环境的不断成熟,越来越多的“软件开发者”正在利用跨行业的大数据平台,打造创新价值的大数据应用,而且这一门槛正在不断降低。因为首先,数据拥有者乐于做这样的事情,他们能够以微乎其微的成本获取额外的收入,提高利润水平;其次,大数据设备厂商乐于做这样的事情,因为厂商需要应用来吸引消费者购买设备,发展合作共赢的伙伴关系势必比单纯销售设备要有利可图,一些具有远见的厂商已经开始通过提供资金、技术支持、入股等方式来扶持这些“软件开发者”;第三,行业细分市场的数据分析应用需求在不断加大,对于整个大数据产业链来说,创新型的行业数据应用开发者必将是未来整个大数据产业链中最为活跃的部分。

在必然到来的大数据时代,有三种企业将在“大数据产业链”中处于重要地位:掌握海量有效数据的企业,有着强大数据分析能力的企业,以及创新的“软件开发者”。社交网络、移动互联网、信息化企业、电信运营商都是海量数据的制造者,Facebook公司手中掌握着8.5亿用户,淘宝注册用户超过3.7亿,腾讯的微信用户突破3亿,这些庞大用户群所提供的数据,正在等待时机释放出巨大的商业能量。可以预测,在不久的将来,Facebook、腾讯、电信运营商等海量数据持有者要么自我发展成为数据分析提供商,要么与IBM、ZTE等企业密切对接成为上下游合作企业,大数据产业链将在某个爆发点到来之际,以令人惊讶的速度成长壮大。

警惕大数据的危害

大数据时代,传统的随机抽样被“所有数据的汇拢”所取代,人们的思维决断模式,已可直接根据“是什么”来下结论,由于这样的结论剔除了个人情绪、心理动机、抽样精确性等因素的干扰,因此将更精确、更有预见性。不过,由于大数据过于依靠数据的汇集,一旦数据本身有问题,就很可能出现“灾难性大数据”,即因为数据本身的问题,而导致错误的预测和决策。

大数据的理论是“在稻草堆里找一根针”,而如果“所有稻草看上去都挺像那根针”呢?过多但无法辨析真伪和价值的信息和过少的信息一样,对于需要作出瞬间判断、一旦判断出错就很可能造成严重后果的情况而言,同样是一种危害。大数据理论是建立在“海量数据都是事实”的基础上,而如果数据提供者造假呢?这在大数据时代变得更有害,因为,人们无法控制数据提供者和搜集者本人的偏见与过滤。拥有最完善数据库、最先接受“大数据”理念的华尔街投行和欧美大评级机构,却每每在重大问题上判断出错,这本身就揭示了“大数据”的局限性。

不仅如此,大数据时代造就了一个数据库无所不在的世界,数据监管部门面临前所未有的压力和责任:如何避免数据泄露对国家利益、公众利益、个人隐私造成伤害?如何避免信息不对等,对弱势群体的利益构成伤害?在有效控制风险之前,也许还是让大数据继续待在“笼子”里更好一些。

大数据的经济价值已经被人们所认可,大数据的技术也已经逐渐成熟,一旦完成数据的整合和监管,大数据爆发的时代即将到来。我们现在要做的,就是选好自己的方向,为迎接大数据的到来,提前做好准备。

以上是小编为大家分享的关于大数据发展的三个必要条件的相关内容,更多信息可以关注环球青藤分享更多干货

Ⅶ 大数据分析的必要性

大数据的意义

在处于一个大数据时代,大数据无疑是近期最时髦的词汇了。不管是云计算、社交
网络,还是物联网、移动互联网和智慧城市,都要与大数据扯上关系。大数据已经成
为有特别含义的专用词汇,不在单指数据体量大。

随着云计算、移动互联网和物联网等新一代信息技术的创新和应用普及,
21
世纪
人类将飞速进入大数据时代。大数据开启了一次重大的时代转型大数据正在改变我们
的生活,工作甚至是我们的思维;越来越多的行业对大数据应用持比较乐观的态度,
越来越多的用户在初步尝试或者在考虑怎么样使用类似大数据解决方案,来提升自己
的业务水平,这仅仅是一个开始,大数据对于我们的生活,以及与世界交流方式都提
出了挑战,随着数据化的逐步推进,大数据将成为成本领先,差异化,集中化三大传
统企业竞争战略之后,企业可以选择的第四种战略;最惊人的是,社会需要放弃他对
因果关系的渴求,而只关注相关关系,就是只知其然,不用知其所以然,这就推翻了
自古以来的惯例,使我们做决定和理解现实的最基本方式也将受到挑战,改变了我们
决策的分析过程,对传统决策产生了极其重大的影响。

大数据对企业的影响和意义到底体现在:
1
,帮助企业了解客户。
2
,帮助企业
锁定资源。
3
,帮助企业规划生产。
4
,帮助企业开展服务。

大数据平台的出现将引发数据中心的大规模分化,基础设施专家必须应对层出不穷
的新挑战。例如,数据中心需要管理大规模的大数据平台,即基础设施中新增的数百
个或数千个集群服务器。他们还要管理不同节点的服务配置与协调,并实现大数据管
理套件与传统管理套件的集成。

简单的说,大数据就是将海量碎片化的信息数据能够及时地进行筛选、分析,并
最终归纳、整理出企业需要的资讯。禧经信息企业管理者通过大数据的分析,能够快
速地发现消费者的需求变化和市场发展趋势,从而帮助企业及时做出正确的决策,从
而使企业在市场上拥有更强的竞争力和不断创新的能力。对于拥有巨大价值和能量的
大数据,企业如何面对信息时代的冲击和进行管理转型成为必须做出的选择。

大数据的优势:可以为企业带来显著且明确的收益,但大数据也将同时增加数据
中心面临的挑战。
IT
基础设施团队必须妥善处理大数据的三个特性,即数量(数据量
持续激增)、类型(数据类型不断丰富)和速率(数据流转速率需要大幅提升)。

Ⅷ 大数据有哪些重要的作用

主要由以下三点作用:

第一,对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。

第二,大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。

第三,大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动” 转变“数据驱动”。

Ⅸ 我们为什么需要大数据技术

我们为什么需要大数据技术
大数据到底是什么?我们为什么需要大数据技术?
Mike Jude:从本质上来说,大数据就是曾经被称为数据仓库的逻辑延伸。顾名思义,大数据就是一个大型的数据仓库,一般有一个能支持业务决策的业务重点。但是,它和传统数据库不同的是,大数据不用构建。
在典型的数据库中,数据会被组织成标准的字段,并使用特定的密钥索引。如果你熟悉Microsoft Access应用程序,那么你就能完全理解这个概念。比如,一个顾客记录可以由姓氏、名字、地址和其它信息组成有通用标签的字段。每个顾客记录样式都是相同的,这样可以通过使用搜索关键词来检索,比如搜索姓氏。
现在,如果你想链接到这些客户记录需要怎么做?链接到客户的图片或者视频呢?如果是链接到客户的所有记录呢?
将这么多不同的数据源互相映射,一般的数据库还做不到。另外,需要链接的数据量是非常巨大的。这就产生了“大数据”的概念。大数据使用特殊的数据结构来组织和访问巨大数量的数据,可能达到多个艾字节的范围。一般情况下,这需要跨多个服务器和离散数据存储进行并行计算,而小企业往往难以维持这种大数据的存储库。但是,大数据正逐渐成为云服务提供商能提供的一种服务,从而把大数据应用推向更多的公司。
但是,还有一个“大”问题,就是我们为什么需要大数据?答案就是相关性的价值。如果你能看到乍一看似乎没什么关系的数据设置之间的关系,你会获取很多重要信息。比如你想知道你的公司是不是容易被黑客利用。那么你需要跨多个应用程序和数据中心检查无数条交易。这时如果没有大数据技术和相关的分析技术,这几乎是不可能完成的。
最终,随着数据量的增长、业务的可用性和重要性的增加,大数据的定义可能会用来描述大多数数据库应用。IT专业人士应该掌握大数据相关概念和术语,以免遇到困难。

Ⅹ 大数据发展的重要性

大数据的作用就大了,不过关键还在于分析能力;
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
注意这里面,信息资产。
人类的社会分工是社会生产力提升的基本前提,分工程度越高,则越能够发挥每一个人的价值,提高劳动生产率,最终会引领社会朝向物质大丰富,精神丰富的生活。
交易是分工的前提,因为当分工越来越细的时候,人的个人生存能力越弱,只有交易才能够让个人生存,所以交易使得人类的分工没有后顾之忧;
交易分为两个部分,交易信息(包括什么地方的谁愿意以什么样的价格来买入或者出售何种资产)以及物质运输(包括运输的物质成本以及安全成本等)
可见,信息在交易中所承担的关键作用是促进社会分工,社会生产力提升的保证;
而大数据将会优化这一过程,使得信息成本更为低廉;
这种低廉体现在两个方面:一个是时间成本,一个是价格。
举一些简单的例子:
1)一家科技公司要开发出一款适合大众的产品,在开始之前就可以通过大数据来获得客户的偏好、客户的需求,而放在以前,则需要先根据经验开发出一个产品,然后不断尝试和改进。这里的开发周期缩短了,人力物力也可以得到节省。
2)技术检验,比方说面部识别技术,可以先通过大量的数据来验证技术的有效性;
等等。

阅读全文

与建立大数据的必要性相关的资料

热点内容
epg文件格式 浏览:699
wordpress分类描述 浏览:177
python用代码转文件xy格式 浏览:802
教育门户网站模板 浏览:331
四光感巡线程序乐高 浏览:989
怎么标记文件 浏览:972
为什么副卡数据打不开 浏览:109
苹果voiceover永久关闭 浏览:749
梦幻西游新版本普陀山 浏览:453
win10选择其他系统文件类型 浏览:980
pythonjson数组 浏览:227
乐翻儿歌历史版本 浏览:216
为什么删除文件很慢 浏览:527
压缩包里面的cad文件保存去哪里了 浏览:735
聚合产业促升级 浏览:207
魅蓝系统升级50 浏览:92
xp支持文件名路径 浏览:330
两融最新数据什么时候更新 浏览:462
pe模式win10桌面文件在哪 浏览:388
产品ooba文件是什么 浏览:68

友情链接