⑴ 联通大数据合法吗
应该不靠谱吧。
大数据牵涉很多个人信息,即使再不信任联通,也该相信有部门管着这个事,不能随意泄露的。
⑵ 大数据主要来源于什么
来源:从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
(2)大数据数据来源渠道的合法性扩展阅读:
大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。
想要系统的认知大数据,必须要全面而细致的分解它,着手从三个层面来展开:
第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
⑶ 大数据的基本特点有哪些
大数据的基本特点为:
1、容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息。
2、种类(Variety):数据类型的多样性。
3、速度(Velocity):指获得数据的速度。
4、可变性(Variability):妨碍了处理和有效地管理数据的过程。
5、真实性(Veracity):数据的质量。
6、复杂性(Complexity):数据量巨大,来源多渠道。
7、价值(value):合理运用大数据,以低成本创造高价值。
(3)大数据数据来源渠道的合法性扩展阅读:
大数据分析的六个基本方面:
1、Analytic Visualizations(可视化分析)
不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。
2、Data Mining Algorithms(数据挖掘算法)
可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。
4、Data Quality and Master Data Management(数据质量和数据管理)
数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。假如大数据真的是下一个重要的技术革新的话,我们最好把精力关注在大数据能给我们带来的好处,而不仅仅是挑战。
5、数据存储,数据仓库
数据仓库是为了便于多维分析和多角度展示数据按特定模式进行存储所建立起来的关系型数据库。在商业智能系统的设计中,数据仓库的构建是关键,是商业智能系统的基础,承担对业务系统数据整合的任务,为商业智能系统提供数据抽取、转换和加载(ETL),并按主题对数据进行查询和访问,为联机数据分析和数据挖掘提供数据平台。
参考资料来源:网络-大数据
⑷ 大数据的中的数据是从哪里来的
大数据应用中的关键点有三个,首要的就是大数据的数据来源,我们在分析大数据的时候需要重视大数据中的数据来源,只有这样我们才能够做好大数据的具体分析内容。那么大家知不知道大数据的数据来源都是通过什么渠道获得的?下面就由小编为大家解答一下这个问题。
对于数据的来源很多人认为是互联网和物联网产生的,其实这句话是对的,这是因为互联网公司是天生的大数据公司,在搜索、社交、媒体、交易等各自核心业务领域,积累并持续产生海量数据。而物联网设备每时每刻都在采集数据,设备数量和数据量都与日俱增。这两类数据资源作为大数据的数据来源,正在不断产生各类应用。国外关于大数据的成功经验介绍,大多是这类数据资源应用的经典案例。还有一些企业,在业务中也积累了许多数据,从严格意义上讲,这些数据资源还算不上大数据,但对商业应用而言,却是最易获得和比较容易加工处理的数据资源,是我们常用的数据来源。
而数据的来源是我们评价大数据应用的第一个关注点。首先需要我们看这个应用是否真有数据支撑,数据资源是否可持续,来源渠道是否可控,数据安全和隐私保护方面是否有隐患。二是要看这个应用的数据资源质量如何,是好数据还是坏数据,能否保障这个应用的实效。对于来自自身业务的数据资源,具有较好的可控性,数据质量一般也有保证,但数据覆盖范围可能有限,需要借助其他资源渠道。对于从互联网抓取的数据,技术能力是关键,既要有能力获得足够大的量,又要有能力筛选出有用的内容。对于从第三方获取的数据,需要特别关注数据交易的稳定性。数据从哪里来是分析大数据应用的起点,只有我们找到了好的数据来源,我们就能够做好大数据的工作。这句需要我们去寻找数据比较密集的领域。
一般来说,我们获取数据的时候需要数据密集的行业中挖掘数据,主要就是金融、电信、服务行业等等,而金融是一个特别重要的数据密集领域。金融行业既是产生数据尤其是有价值数据的基地,又是数据分析服务的需求方和应用地。更为重要的是,金融行业具备充足的支付能力,将是大数据产业竞争的重要战场。许多大数据是通过在金融领域的应用辐射到了各个行业。
我们在这篇文章中为大家介绍了大数据的数据来源以及数据密集的领域,希望这篇文章能够给大家带来帮助,最后感谢大家的阅读。
⑸ 大数据公司拿公共数据运作是否合法
在大数据领域,根据获取是否需要审批,公共数据大致可以分为两类:一种是不回需要审批即可获取的数答据,比如公共场合的wifi数据、地图公司采集的公共交通网线数据、公共场合监控视频数据、爬虫抓取的网络内容等;另一种是需要某个部门审批才能得到的数据,比如部分户籍信息、部分银行信用数据、部分电信运营商提供的数据等。
在公共数据获取环节,对于不需要审批即可获取的数据,大数据公司可以直接采集获取;对于需要审批才能获取的数据,必须按照各部门的规定走审批程序,不能非法采集获取。
在获得公共数据之后,运作是否合法要看具体的运作方式。最基本的原则包括:不对社会或个人产生危害、不泄露个人隐私、不泄露其他部门或组织的信息、不侵犯版权等。一般来说,在满足基本原则的情况下,使用公共数据加工之后生成的二次产品更加安全合法。生成的二次产品是原始公共数据加工融合之后的产品,完全看不到数据来源,大数据公司的智力和劳动产生了增值,这个产品是可以作为公司资产为社会接受。
⑹ 大数据合法么
是犯法的,严重侵犯个人隐私,但是资本控制的社会,法律对资本没有效力,资本需要海量的个人隐私谋取利益。
⑺ 大数据的特点包括哪些
1、容量():
数据的大小决定所考虑的数据的价值和潜在的信息。
2、种类(Variety):
数据类型的多样性。
3、速度(Velocity):
指获得数据的速度。
4、可变性(Variability):
妨碍了处理和有效地管理数据的过程。
5、真实性(Veracity):
数据的质量。
6、复杂性(Complexity):
数据量巨大,来源多渠道。
7、价值(value):
合理运用大数据,以低成本创造高价值。
大数据,指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。
(7)大数据数据来源渠道的合法性扩展阅读:
一、结构
第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
二、意义
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。
阿里巴巴创办人马云来台演讲中就提到,未来的时代将不是IT时代,而是DT的时代,DT就是Data Technology数据科技,显示大数据对于阿里巴巴集团来说举足轻重。
有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。
与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是赢得竞争的关键。
大数据的价值体现在以下几个方面:
1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销
2) 做小而美模式的中小微企业可以利用大数据做服务转型
3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值
⑻ 什么是大数据要简单通俗点的解释
这是一个非常好的问题,作为一名大数据从业者,我来回答一下。
在当前的大数据时代,不仅IT(互联网)行业的人需要了解大数据相关知识,传统行业的从业者和普通大学生也都应该了解一定的大数据知识,在产业互联网和新基建计划的推动下,未来大数据技术将全面开始落地应用,大数据也将重塑整个产业结构。
了解大数据首先要从大数据的概念开始,不同于人工智能概念,大数据概念还是相对比较明确的,而且大数据的技术体系也已经趋于成熟了。解释大数据概念,可以从数据自身的特点入手,然后进一步从场景、应用和行业来逐渐展开。
大数据自身的特点往往集中在五个方面,分别是数据量、数据结构多样性、数据价值密度、数据增长速度和可信度,对于这五个维度的理解和认知,是了解大数据概念的关键。当然,随着大数据技术的发展和在行业领域的应用,关于数据自身的维度也有了一定程度的扩展,这些扩展本身也是对大数据概念的一种丰富和完善。
数据量大是大数据的一个重要特征,但是数据量本身是一个汇集的概念,并不是只有很大的数据才称为大数据,传统信息系统所产生的“小数据”也是大数据的一个重要组成部分,这一点一定要有清晰的认知。当前从大数据的数据来源来看,主要集中在三个渠道,包括互联网、物联网和传统信息系统,物联网数据当前占据的比例比较大,相信在5G时代,物联网将依然是大数据的主要数据来源。
数据结构多样性是大数据的另一个重要特点,不同于创新信息系统(ERP)当中的数据,大数据的数据类型是非常复杂的,既有结构化数据,也有非结构化数据和半结构化数据,这对于传统的数据处理技术提出了巨大的挑战,这也是推动大数据技术产生的一个重要原因。在工业互联网时代,大数据的数据结构多样性会进一步得到体现,这对于数据价值化过程也提出了新的挑战。
数据价值密度往往是衡量数据价值的重要基础,相对于传统的信息系统来说,大数据当中的数据价值密度是比较低的,这就需要有更快速和便捷的方式,来完成数据的价值化提取过程,而这也正是当前大数据平台所关注的核心能力之一。实际上,早期的Hadoop、Spark平台之所以能够脱颖而出,一个重要的原因就是其数据处理(排序)速度比较快。
数据增长速度快是大数据的另一个重要表现,通常传统信息系统的数据增量是可以预测的,或者说增长速度是可控的,但是在大数据时代,数据增长速度已经大大突破了传统数据处理所能承载的极限。数据增长是一个相对的概念,相对于消费互联网来说,产业互联网所带来的数据增量可能会更加客观,因此产业互联网时代会进一步打开大数据的价值空间。
最后,大数据还有一个特点就是数据本身的真实性,大数据时代所带来的一个重要副作用就是数据真假难辨,这也是当前大数据技术所要重点解决的问题之一。从当前大型互联网平台所采用的方法来看,通常是技术和管理相结合的方式,比如通过为用户认证就能够解决一部分数据的真实性(专业性)问题。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!
博士时候就是做大数据。
最通俗一点就是很多条数据。
我们做大数据研究呢,就是高效的处理数据,对未来做一些预测,建议等。
例如,全中国人大多数都是10点睡觉。睡觉前看一看手机。那我们做推广时候,就可以选择9点半的时间。
大数据没有什么特别神秘的地方,就是数据多一点。
大数据这个词其实流行了很久了,与我们的生活息息相关,并不陌生,现在我们生活中的大平台基本上都用到大数据,淘宝,拼多多,美团,滴滴等都用到大数据,如今大数据基本上无处不在。
一、大数据是什么意思
大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
二、大数据特征
容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息;
种类(Variety):数据类型的多样性;
速度(Velocity):指获得数据的速度;
可变性(Variability):妨碍了处理和有效地管理数据的过程。
真实性(Veracity):数据的质量。
复杂性(Complexity):数据量巨大,来源多渠道。
价值(value):合理运用大数据,以低成本创造高价值。
三、大数据的 历史 发展
人类诞生以来,数据就开始膨胀,时代交替,工业革命,互联网时代,5G时代,人工智能时代,都是数据的一次次发展,数据的不断精准,加快了人类的新陈代谢,大数据推动 历史 发展。
四、大数据意义
大数据的价值体现在以下几个方面:
1、对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;
2、做小而美模式的中小微企业可以利用大数据做服务转型;
3、面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。
4、各大领域的科研需要大数据,加快技术变革和换代如医疗,环保,公共政府服务
5、航空航天,军事领域因为大数据也会得到突飞猛进的提升。
生活工作中所有的流水账信息就是大数据,在信息化时代,它通过特定模式的整合、分析,使人得到对自己有用的、有指导性的结论。参加工作时讲台塑数字化、表单化、信息化,一晃二十年了,应该就是大数据的雏形,但那会信息化能力不足,没人这么称呼。管理是千变万幻,主线未变,大数据也仅仅是一种方法,只是更符合形势,更有效。小名流水账,大名大数据。
举个例子,大数据记录了一个爱抽烟的男人。晚上一般是先抽烟以后刷牙。有一天男士刷了牙以后抽烟。第二天app开始推送了tt。根据两天的记录了刷牙到抽烟的时间,第三天app推送了加厚版的tt。一个半月后某天记录到男人一直抽烟,便推送了某家专科医院。再过了一个月,发现男人再无抽烟,推送了铂爵旅拍。
从前有个大爷,在证券公司车库上班,给证券公司大户、老板看守车,这么一个工作。
这位大爷特别喜欢炒股,他也不会技术分析,什么基本面分析!每当呢,车库里面的车停的非常少的时候,这位大爷就买进股票,这大爷也不知道什么股票好,什么股票不好,就随便买,等车库里面的车停的越来越多了,每次都停满了的时候,这位大爷就买出股票。每次都能赚到钱!!!
这就是非常简单的大数据,大爷利用车库里车的多少来判断市场的火热程度,人弃我取,等到全民炒股的时候,市场就会出现泡沫,这时候离“崩盘”也就不远了
大数据通俗的解释就是海量的数据,顾名思义,大就是多、广的意思,而数据就是信息、技术以及数据资料,合起来就是多而广的信息、技术、以及数据资料。
大数据简单的说就是市场调研的升级版。包括腾讯,阿里巴巴等这些具有大量用户的公司,对其客户在其平台的所有行为发布的所有内容进行采集分类和分析。而这些数据有分成共性和个性。从所有人中采集出共性有助于发觉商机,了解客户痛点,更好地推出客户满意的产品,比如很多化妆品公司就会跟淘宝购买数据从而研发出更贴合市场需求的产品。而从你个人采集的数据属于个性,系统会通过你个人的数据采集进行相对于的推荐和改变,也就是我们经常说的ai智能,例子像我们的淘宝现在都是千人千面,每人手机打开的淘宝推荐的东西都不一样,这些就是大数据的效果。
大数据通俗来说就是有个机器,把你生活中的点点滴滴都记录下来,形成一种特定的形式!
大数据简单来说:就是海量的信息!不论用途,不论方向,就是简单地信息收集,参数收集,所有这些汇总起来就是大数据。大数据,不是随机样本,而是所有数据!
而大数据分析,就是针对这些信息进行识别,再进行分类,将其有事件变为数据化,概率化,然后应用于各种商业用途。
以上是对大数据简单地解读。那么大数据的意义何在呢?
随着大数据的发展,企业的技术研发、应用和落地在前期就能获得预期,能避免很多无所谓的浪费,以便于将有限的资源集中到开发更适合时代的企业产业。
商业决策可以通过数据分析来获取更为准确的信息和方向,最终能帮助决策者能更为准确直观的指导业务实践。
人工智能离不开数据。随着人工智能的发展,数据能模拟的更加人性化,也更个人化,也更适合于各种不同场景的应用。大数据的价值在于它是目前解决这个时代更新最有效的方法。
但对于我个人而言,比较抵触过度的大数据和互联网,原因如下:
一、当各类app通过我的使用习惯,推荐各种我搜索过一次的各种商业广告时,我会有种隐私被人冒犯的愤怒;
二、当你在使用各类软件时,都会被要求提供个人信息以便于获得更好的用户体验,这无形中增加了个人数据泄露的风险;
三、当数据化盛行,似乎人性变得无处安放;
四、一旦行业固化,人们想要突破阶层将变得不可能,拥有大量数据的将遥遥领先,后发的行人,将一辈子连望其项背的资格都没有,可以预见 社会 将会成为一潭死水,毫无兴趣和生机。
⑼ 什么是大数据大数据有哪些特点、意义和缺陷
大数据(big data),是指在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。
大数据的特点:
1、容量(Volume):数据的大小决定所考虑的数据的价值的和潜在的信息;
2、种类(Variety):数据类型的多样性;
3、速度(Velocity):指获得数据的速度;
4、可变性(Variability):妨碍了处理和有效地管理数据的过程。
5、真实性(Veracity):数据的质量
6、复杂性(Complexity):数据量巨大,来源多渠道
大数据的意义:
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。
有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为赢得竞争的关键。
大数据的缺陷:
不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。” 这确实是需要警惕的。