导航:首页 > 网络数据 > 大数据分析的过程

大数据分析的过程

发布时间:2023-01-21 17:11:30

大数据处理的基本流程有几个步骤

步骤一:采集
大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,所以需要在采集端部署大量数据库才能支撑。
步骤二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
步骤三:统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
步骤四:挖掘
数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。
该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。

② 大数据的分析步骤

大数据的含义 并非仅仅是指数据量非常庞大,同样是指数据的类别多样化,比如图片类内信息、容音频类信息、视频类信息、文字类信息等,同样被包含在大数据内。所以领域非常广,可以说以前传统意义上的各种信息分析,都包含在大数据分析的含义内。

无论是现在流行的大数据分析还是传统的小数据分析,大致步骤都是一样的:
首先你要确定你的分析目的是什么
其次是根据分析目的确定分析思路,以及分析的内容、分析的方法
第三是根据目的、思路、方法、内容 收集数据信息
第四 是 采用确定的分析方法 进行相应的分析 以实现目的

③ 数据分析要经历哪些流程

1、数据收集


数据收集是数据分析的最基本操作,你要分析一个东西,首先就得把这个东西收集起来才行。由于现在数据采集的需求,一般有Flume、Logstash、Kibana等工具,它们都能通过简单的配置完成复杂的数据收集和数据聚合。


2、数据预处理


收集好以后,我们需要对数据去做一些预处理。千万不能一上来就用它做一些算法和模型,这样的出来的结果是不具备参考性的。数据预处理的原因就是因为很多数据有问题,比如说他遇到一个异常值(大家都是正的,突然蹦出个负值),或者说缺失值,我们都需要对这些数据进行预处理。


3、数据存储


数据预处理之后,下一个问题就是:数据该如何进行存储?通常大家最为熟知是MySQL、Oracle等传统的关系型数据库,它们的优点是能够快速存储结构化的数据,并支持随机访问。但大数据的数据结构通常是半结构化(如日志数据)、甚至是非结构化的(如视频、音频数据),为了解决海量半结构化和非结构化数据的存储,衍生了HadoopHDFS、KFS、GFS等分布式文件系统,它们都能够支持结构化、半结构和非结构化数据的存储,并可以通过增加机器进行横向扩展。


4、数据分析


做数据分析有一个非常基础但又极其重要的思路,那就是对比,基本上 90% 以上的分析都离不开对比。主要有:纵比、横比、与经验值对比、与业务目标对比等。


5、数据运用


其实也就是把数据结果通过不同的表和图形,可视化展现出来。使人的感官更加的强烈。常见的数据可视化工具可以是excel,也可以用power BI系统。


6、总结分析


根据数据分析的结果和报告,提出切实可行的方案,帮助企业决策等。

④ 大数据的处理流程是

大数据处理流程包括数据采集、数据预处理、数据入库、数据分析、数据展现。
1、数据采集概念:目前行业会有两种解释:一是数据从无到有的过程(web服务器打印的日志、自定义采集的日志等)叫做数据采集;另一方面也有把通过使用Flume等工具把数据采集到指定位置的这个过程叫做数据采集。
2、数据预处理:通过maprece程序对采集到的原始日志数据进行预处理,比如清洗,格式整理,滤除脏数据等,并且梳理成点击流模型数据。
3、数据入库:将预处理之后的数据导入到HIVE仓库中相应的库和表中。
4、数据分析:项目的核心内容,即根据需求开发ETL分析语句,得出各种统计结果。
5、数据展现:将分析所得数据进行数据可视化,一般通过图表进行展示。

⑤ 数据分析的过程包括哪些步骤

大数据的好处大家都知道,说白了就是大数据可以为公司的未来提供发展方向。利用大数据就离不开数据分析。而数据分析一般都要用一定的步骤,数据分析步骤主要包括4个既相对独立又互有联系的过程,分别是:设计数据分析方案、数据收集、数据处理及展现、数据分析4个步骤。

设计数据分析方案
我们都知道,做任何事情都要有目的,数据分析也不例外,设计数据分析方案就是要明确分析的目的和内容。开展数据分析之前,只有明确数据分析的目的,才不会走错方向,否则得到的数据没有指导意义,甚至可能将决策者带进弯路,不但浪费时间,严重时容易使公司决策失误。
当分析的数据目的明确后,就需要把他分解成若干个不同的分析要点,只有明确分析的目的,分析内容才能确定下来。明确数据分析目的的内容也是确保数据分析过程有效进行的先决条件,数据分析方案可以为数据收集、处理以及分析提供清晰地指引方向。根据数据分析的目的和内容涉及数据分析进行实施计划,这样就能确定分析对象、分析方法、分析周期及预算,保证数据分析的结果符合此次分析目的。这样才能够设计出合适的分析方案。

数据收集
数据收集是按照确定的数据分析内容,收集相关数据的过程,它为数据分析提供了素材和依据。数据收集主要收集的是两种数据,一种指的是可直接获取的数据,另一种就是经过加工整理后得到的数据。做好数据收集工作就是对于数据分析提供一个坚实的基础。

数据处理
数据处理就是指对收集到的数据进行加工整理,形成适合的数据分析的样式和数据分析的图表,数据处理是数据分析必不可少的阶段,数据处理的基本目的是从大量的数据和没有规律的数据中提取出对解决问题有价值、有意义的数据。同时还需要处理好肮脏数据,从而净化数据环境。这样为数据分析做好铺垫。

数据分析
数据分析主要是指运用多种数据分析的方法与模型对处理的数据进行和研究,通过数据分析从中发现数据的内部关系和规律,掌握好这些关系和规律就能够更好的进行数据分析工作。
数据分析的步骤其实还是比较简单的,不过大家在进行数据分析的时候一定宁要注意上面提到的内容,按照上面的内容分步骤做,这样才能够在做数据分析的时候有一个清晰的大脑思路,同时还需要极强的耐心,最后还需要持之以恒。

⑥ 数据分析的基本流程是什么

数据分析有:分类分析,矩阵分析,漏斗分析,相关分析,逻辑树分析,趋势分析,行为轨迹分析,等等。 我用HR的工作来举例,说明上面这些分析要怎么做,才能得出洞见。

01) 分类分析
比如分成不同部门、不同岗位层级、不同年龄段,来分析人才流失率。比如发现某个部门流失率特别高,那么就可以去分析。

02) 矩阵分析
比如公司有价值观和能力的考核,那么可以把考核结果做出矩阵图,能力强价值匹配的员工、能力强价值不匹配的员工、能力弱价值匹配的员工、能力弱价值不匹配的员工各占多少比例,从而发现公司的人才健康度。

03) 漏斗分析
比如记录招聘数据,投递简历、通过初筛、通过一面、通过二面、通过终面、接下Offer、成功入职、通过试用期,这就是一个完整的招聘漏斗,从数据中,可以看到哪个环节还可以优化。

04) 相关分析
比如公司各个分店的人才流失率差异较大,那么可以把各个分店的员工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、员工年龄、管理人员年龄等)要素进行相关性分析,找到最能够挽留员工的关键因素。

05) 逻辑树分析
比如近期发现员工的满意度有所降低,那么就进行拆解,满意度跟薪酬、福利、职业发展、工作氛围有关,然后薪酬分为基本薪资和奖金,这样层层拆解,找出满意度各个影响因素里面的变化因素,从而得出洞见。

06) 趋势分析
比如人才流失率过去12个月的变化趋势。

07)行为轨迹分析
比如跟踪一个销售人员的行为轨迹,从入职、到开始产生业绩、到业绩快速增长、到疲惫期、到逐渐稳定。

⑦ 大数据处理的基本流程有什么

大数据处理流程主要包括数据收集、数据预处理、数据存储、数据处理与分析、数据展示/数据可视化、数据应用等环节,其中数据质量贯穿于整个大数据流程,每一个数据处理环节都会对大数据质量产生影响作用。
通常,一个好的大数据产品要有大量的数据规模、快速的数据处理、精确的数据分析与预测、优秀的可视化图表以及简练易懂的结果解释,本文将基于以上环节分别分析不同阶段对大数据质量的影响及其关键影响因素。

⑧ 数据分析五大步骤


(一)问题识别

大数据分析的第一步是要清晰界定需要回答的问题。对问题的界定有两个标准,一是清晰、二是符合现实。


(二)数据可行性论证

论证现有数据是否足够丰富、准确,以致可以为问题提供答案,是大数据分析的第二步,项目是否可行取决于这步的结论。


(三)数据准备

数据准备环节需要梳理分析所需每个条目的数据,为下一步建立模型做好从充分预备。这种准备可以分为数据的采集准备和清洗整理准备两步。


(四)建立模型

大数据分析项目需要建立的模型可以分为两类。对于这两类模型,团队都需要在设立模型、论证模型的可靠性方面下功夫。


(五)评估结果

评估结果阶段是要评估上述步骤得到的结果是否足够严谨可靠,并确保数据分析结果能够有利于决策。评估结果包括定量评估和定性评估两部分。


大数据的应用

大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。举个本专业的例子,比如在奶牛基因层面寻找与产奶量相关的主效基因,我们可以首先对奶牛全基因组进行扫描,尽管我们获得了所有表型信息和基因信息,但是由于数据量庞大,这就需要采用大数据技术,进行分析比对,挖掘主效基因。


大数据的意义和前景

总的来说,大数据是对大量、动态、能持续的数据,通过运用新系统、新工具、新模型的挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在我么面前。


大数据发展战略

传统的数据方法,不管是传统的 OLAP技术还是数据挖掘技术,都难以应付大数据的挑战。首先是执行效率低。传统数据挖掘技术都是基于集中式的底层软件架构开发,难以并行化,因而在处理 TB级以上数据的效率低。其次是数据分析精度难以随着数据量提升而得到改进,特别是难以应对非结构化数据。


在人类全部数字化数据中,仅有非常小的一部分(约占总数据量的1%)数值型数据得到了深入分析和挖掘(如回归、分类、聚类),大型互联网企业对网页索引、社交数据等半结构化数据进行了浅层分析(如排序),占总量近60%的语音、图片、视频等非结构化数据还难以进行有效的分析

卤鹅

⑨ 数据分析包含哪几个步骤,主要内容是什么

【导读】随着大数据,人工智能化的普及,a帮助我们解决了很多问题,其主要表现在大数据分析上,那么数据分析包含哪几个步骤,主要内容是什么呢?为了帮助大家更好的了解数据分析过程,下面是小编整理的数据分析过程主要有下面6个步骤,一起来看看吧!

以上就是小编为大家整理发布的关于“数据分析包含哪几个步骤,主要内容是什么?”,希望对大家有所帮助。更多相关内容,关注小编,持续更新。

⑩ 大数据可视化分析步骤有哪些

1、需求分析


需求分析是大数据可视化项目开展的前提,要描述项目背景与目的、业务目标、业务范围、业务需求和功能需求等内容,明确实施单位对可视化的期望和需求。包括需要分析的主题、各主题可能查看的角度、需要发泄企业各方面的规律、用户的需求等内容。


2、建设数据仓库/数据集市的模型


数据仓库/数据集市的模型是在需求分析的基础上建立起来的。数据仓库/数据集市建模除了数据库的ER建模和关系建模,还包括专门针对数据仓库的维度建模技术。


3、数据抽取、清洗、转换、加载(ETL)


数据抽取是指将数据仓库/集市需要的数据从各个业务系统中抽离出来,因为每个业务系统的数据质量不同,所以要对每个数据源建立不同的抽取程序,每个数据抽取流程都需要使用接口将元数据传送到清洗和转换阶段。


数据清洗的目的是保证抽取的原数据的质量符合数据仓库/集市的要求并保持数据的一致性。数据转换是整个ETL过程的核心部分,主要是对原数据进行计算和放大。数据加载是按照数据仓库/集市模型中各个实体之间的关系将数据加载到目标表中。


4、建立可视化场景


建立可视化场景是对数据仓库/集市中的数据进行分析处理的成果,用户能够借此从多个角度查看企业/单位的运营状况,按照不同的主题和方式探查企业/单位业务内容的核心数据,从而作出更精准的预测和判断。

阅读全文

与大数据分析的过程相关的资料

热点内容
图文游戏编程作品说明如何写 浏览:197
qq浏览器wifi不安全卫士 浏览:449
文件在用户却不显示在桌面 浏览:124
delphi获取操作系统版本 浏览:722
linux定时任务执行脚本 浏览:787
招商银行app怎么查电费 浏览:739
手机代码文档翻译软件 浏览:676
青华模具学院和ug编程哪个好 浏览:736
怎么改网站关键词 浏览:581
怎么把ps图片保存成雕刻文件 浏览:771
java字符串赋空值不赋值null 浏览:556
什么是文件hash 浏览:345
文件碎片微信小程序 浏览:878
苹果手机怎么升级运营商版本 浏览:100
什么是菜鸟网络服务协议 浏览:260
11月份的销售数据是什么 浏览:439
三个数据如何列表格 浏览:92
3m互助平台升级会无法登陆吗 浏览:211
3ds美版103cia升级包 浏览:126
cad工具栏是什么 浏览:196

友情链接