❶ 谈谈国家针对大数据发展规划是怎样的
实施国家大数据战略部署和顶层设计,需要我们做到“四个结合”:把政府数据开放和市场基于数据的创新结合起来。
政府拥有80%的数据资源,如果不开放,大数据战略就会成为无源之水,市场主体如果不积极利用数据资源进行商业创新,数据开放的价值就无从释放;把大数据与国家治理创新结合起来。
国务院的部署明确提出,“将大数据作为提升政府治理能力的重要手段”“提高社会治理的精准性和有效性”,用大数据“助力简政放权,支持从事前审批向事中事后监管转变”。
具体如下:
1、此外,我国作为世界制造业第一大国,需要高度关注一个现实——大数据重新定义了制造业创新升级的目标和路径。
无论是德国提出的工业4.0战略,还是美国通用公司提出的工业互联网理念,本质正是先进制造业和大数据技术的统一体。
大数据革命骤然改变了制造业演进的轨道,加速了传统制造体系的产品、设备、流程贬值淘汰的进程。
2、数字工厂或称智能工厂,是未来制造业转型升级的必然方向。
我国面临着从“制造大国”走向“制造强国”的历史重任,在新的技术条件下如何适应变化、如何生存发展、如何参与竞争,是非常现实的挑战。
3、在政府治理方面,政府可以借助大数据实现智慧治理、数据决策、风险预警、智慧城市、智慧公安、舆情监测等。
大数据将通过全息的数据呈现,使政府从“主观主义”“经验主义”的模糊治理方式,迈向“实事求是”“数据驱动”的精准治理方式。
在公共服务领域,基于大数据的智能服务系统,将会极大地提升人们的生活体验,智慧医疗、智慧教育、智慧出行、智慧物流、智慧社区、智慧家居等等,人们享受的一切公共服务将在数字空间中以新的模式重新构建。
❷ 大数据的适用范围是什么
机械制造业,应用工业化生产大数据提升机械制造业水平,包括产品常见故障检验与预测分析分析、分析生产工艺流程、改进生产制造生产流程,提高生产过程能耗、工业化生产供应链分析与提高、生产计划表与排程表表。
金融行业,大数据在高频交易、社交网络心理状态分析和信贷风险分析三大互联网金融领域充分运用重大作用。
机械制造业,应用大数据和物联网技术的无人驾驶小汽车,在靠近的未来将迈入大伙儿的饮食起居。
it行业,凭着大数据专业性,可以分析消费者行为,进行商品推荐和针对性广告推广。
中国移动宽带行业,应用大数据专业性进行消费者离网分析,马上掌握消费者离网趋于,施行消费者挽留防范措施。
能源业,随着着智慧能源的发展趋向,电力公司可以掌握很多的顾客耗电量信息,应用大数据专业性分析顾客耗电量方法,可以改进电力运行,合理方案设计电力安装工程规定答复系统,确保 电力运行安全系数。
物流行业,应用大数据提高物流货运互联网技术,提高物流货运效率高,降低物流成本。
关于大数据的适用范围是什么,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
❸ 针对前端大数据量处理(如10W+)
一般对两个数组做做交集和并集处理用遍历方法一般就是通过遍历for等方法,但是如果遇到大数据量(10万条数据)就会用到很长的时间和耗费内存,因为javascrip为单线程,会影响到用户的体验和页面渲染、逻辑处理等问题!
使用定时器去让大数据遍历的时候能分成很多个异步方法(每个异步方法去遍历大数据数组的一部分数据)去执行,互相也不影响,并监听到所有异步方法执行完成再进行下一步处理!岂不美滋滋!
之前方法
使用for循环一次性遍历0W条数据来查找交集和并集,发现使用的时间能达到10S左右(相当影响体验感受和逻辑处理)
方法优化 DataProcessing 类
// 测试数据
63毫秒! 可以对DataProcessing进行更多的扩展!
多学习、多看报、多运动,不对的地方望指出来,谢谢
❹ 大数据征信主要针对有贷款记录的主体进行征信对吗
大数据征信主要针对有贷款记录的主体进行征信是对的。大数据征信作为传统征信的补充,主要针对的是央行征信系统无法覆盖的没有信用记录的人群。
❺ 大数据的应用领域有哪些呢
随着5G时代的到来,大数据应用得到迅速的发展,并且得到很多人的关注。大数据应用于各个行业,包括金融、汽车、餐饮、电信、能源、娱乐等在内的社会各行各业都已经融入了大数据的痕迹。
1. 制造业:利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
2.电商行业:电商行业是最早将大数据用于精准营销的行业,它可以根据消费者的习惯提前生产物料和物流管理。随着电子商务的越来越集中,大数据在行业中的数据量变得越大,并且种类非常多。
3.金融行业:大数据在金融行业的使用是非常广泛的,主要使用在交易过程中。现在许多股权交易都是使用大数据算法进行的。这些算法能够越来越多地考虑社交媒体和网站新闻,并且决定接下来的几秒内是选择购买还是出售。
4.互联网行业:借助于大数据技术分析用户行为,进行商品推荐和针对性广告投放。
5.能源行业:随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
6.物流行业:利用大数据优化物流网络,提高物流效率,降低物流成本。
7.生物技术:基因技术是人类未来挑战疾病的重要武器。科学家可以利用大数据技术的应用,这样能够加速他们自己的基因和其他动物基因的研究过程,并且还能成为人类未来克服疾病的重要武器之一。
❻ 什么是大数据分析 主要应用于哪些行业以制造业为例
大数据作为IT行业最流行的词汇,围绕大数据的商业价值的使用,随之而来的数据仓库、数据安全、数据分析、数据挖掘等,逐渐成为业界所追求的利润焦点。随着大数据时代的到来,大数据分析也应运而生。
1.大数据分析主要应用于哪些行业?
制造业: 利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
金融业: 大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
汽车行业: 利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
互联网行业: 借助于大数据技术分析用户行为,进行商品推荐和针对性广告投放。
餐饮行业: 利用大数据实现餐饮O2O模式,彻底改变传统餐饮经营方式。
2.大数据分析师就业前景如何?
从20世纪90年代起,欧美国家开始大量培养数据分析师,直到现在,对数据分析师的需求仍然长盛不衰,而且还有扩展之势。
根据美国劳工部预测,到2018年,数据分析师的需求量将增长20%。就算你不是数据分析师,但数据分析技能也是未来必不可少的工作技能之一。在数据分析行业发展成熟的国家,90%的市场决策和经营决策都是通过数据分析研究确定的。
3.关于大数据分析具体含义?
1、数据分析可以让人们对数据产生更加优质的诠释,而具有预知意义的分析可以让分析员根据可视化分析和数据分析后的结果做出一些预测性的推断。
2、大数据的分析与存储和数据的管理是一些数据分析层面的最佳实践。通过按部就班的流程和工具对数据进行分析可以保证一个预先定义好的高质量的分析结果。
3、不管使用者是数据分析领域中的专家,还是普通的用户,可作为数据分析工具的始终只能是数据可视化。可视化可以直观的展示数据,让数据自己表达,让客户得到理想的结果。
什么是大数据分析 主要应用于哪些行业?中琛魔方大数据平台指出大数据的价值,远远不止于此,大数据针对各行各业的渗透,大大推动了社会生产和生活,未来必将产生重大而深远的影响。
我们可以看看亿信华辰关于制造业的案例,
某电建集团主要从事国内外高速公路、市政、铁路、轨道交通、桥梁、隧 道、城市综合体开发、机场、港口、航道、地下综合管廊以及生态水环境治理、海绵 城市建设、环境保护等项目投资、建设、运营等,为客户提供投资融资、咨询规划、 设计建造、管理运营一揽子解决方案和集成式、一体化服务。成立以来,投资建设了 一大批体量大、强度高、领域宽的基础设施及环保项目。
该公司的数据化建设,或将成为新型基础设施建设的一个缩影。
项目背景 数字经济时代,数据资源已经成为企业的核心资源和核心竞争力,各类企业信息化建设的重心正从 IT(信息技术) 向 DT(数据技术) 转化,未来信息化建设的重心将是如何对组织内外部的数据进行深入、多维、实时的挖掘和分析,以满足决策层的需求,推动信息化向更高层面进化,构筑公司数字经济时代的新优势。目前,由于各级各部门大量的时间用在内外部各种繁杂的报表填报、汇总、统计和分析上,同时各级领导有对公司或者所辖单位的整体经营情况仍旧通过传统的汇报、传统的报表等了解,缺乏直观和可视化系统支撑决策分析,主要存在问题如下:1、数据孤岛严重各级各部门数据无法有效共享,跨部门跨层级的数据采集、共享和分析利用困难。2、数据采集方式落后数据采集仍旧采用传统 EXCEL 方式进行,缺乏自下而上的数据采集、数据审核、数据报送、汇总分析的数据采集平台支撑,导致数据源分散、数据标准不统一、数据质量难以保证、数据采集效率低下。3、缺乏统一的决策经营指标体系和数据资源统一管理机制导致数据资源不能有效利用,价值无法充分发挥,无法为各级领导决策提供有效支持。
建设内容 为彻底解决以上问题,根据需求和数据资产类项目建设方式,系统实现按照“指标资源整理-应用场景展现设计--数据获取-指标资源池-页面实现-决策门户 ”的方式设计。即根据梳理的指标体系应用场景需要确定设计展现界面展现内容,根据展现内容确定指标体系,根据指标体系来并收集相关数据。
1、搭建智能填报系统 梳理指标体系,构建决策指标和主题指标,明确指标类型,指标数据来源,各指标输出口径:是否填报、填报维度与对象、填报周期等等。实现公司各级各部门自下而上决策数据填报、数据审核、 数据报送、汇总查询、数据补录等全过程网络化数据采集的需要。
2、构建经营决策指标体系构建公司经营决策指标体系。收集数据分析需求,分析汇总形成公司市场、经营、履约、运营、项目等生产经营关键指标和相关数据分析主题、指标,形成指标 资源池,实现决策数据的体系化、指标化和模型化。
3、决策指标体系建设根据某电建集团提供数据的内容和主要特征,将决策指标体系的指标分为运营指标、经营指标、整体指标、市场指标、履约指标五类一级指标。每类一级指标又分别由若干个二级指标组成。
4、建设决策支持系统通过亿信BI工具,基于报表采集的数据和相关信息系统积累的数据, 初步构建管理驾驶舱,满足面向公司决策层和部门领导的数据分析,可视化图表化辅助领导管理决策,并集成电建通APP应用,实现决策移动化。
5、搭建自助式BI通过豌豆BI工具搭建自助式 BI。为市场营销、建设管理、资产运营、财务管理等部门有自助探索数据分析的业务人员提供自助式可视化分析工具。
价值体现 在合作中,亿信华辰根据当前数据分析应用的诉求,帮助该电建集团建设决策整体指标、市场指标、履约指标、运营指标五个模块,提供了从数据采集、数据汇总到指标口径定义、指标建模、指标数据落地和数据可视化分析于一体的完整的解决方案。决策管理平台以业务分析平台为基础,以更核心的指标、更直观的展现方式实现数据的分析与监控,支撑领导层的管理决策。主要包括管理驾驶舱、项目看板专题、市场专题、经营专题、履约专题、运营专题等场景。使数据资源得到充分利用,最大程度的发挥数据价值。
❼ 大数据分析也针对苹果手机吗
会的。
大数据是根据访问记录来进行算法的一种手段,会监控所有通过互联网获得信息服务的用户,只要是使用互联网获得信息的就会被反馈你的使用习惯,从而针对你的喜好进行计算。同样适用苹果手机。
你可以手动选择不感兴趣,或者关闭自动推荐的功能。
❽ 何谓大数据大数据的特点,意义和缺陷.
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
大数据,更多的功能是分析过去,提醒现在,展望未来。广泛应用于商业领域,借以实现精准营销,预测趋势,实现商业利益的最优与最大。体现的价值为:
(1)利用大数据针对大量消费者的消费习惯,精准提供产品或服务;
(2)利用大数据做服务转型,做小而美模式;
(3)不能充分利用大数据价值的企业,将会在互联网压力之下摇摇欲坠。
国家通过结合大数据和高性能的分析,是指效率更加提高,同时也能降低国家运行成本。如:
(1)为成千上万的车辆规划实时交通路线,躲避拥堵;
(2)及时解析问题和缺陷的根源,是制度更加完善。
(3)使用点击流分析和数据挖掘来规避欺诈行为。
大数据的缺陷:
企业遭到黑客攻击,客户的资料大量非法流出,再利用大数据分析挖掘,人群进行分类排除,从而让人更容易受骗。
(8)大数据针对扩展阅读:
2016年3月17日,《中华人民共和国国民经济和社会发展第十三个五年规划纲要》发布,其中第二十七章“实施国家大数据战略”提出:把大数据作为基础性战略资源,全面实施促进大数据发展行动,加快推动数据资源共享开放和开发应用,助力产业转型升级和社会治理创新。
具体包括:加快政府数据开放共享、促进大数据产业健康发展。