导航:首页 > 网络数据 > 从大数据中挖掘价值

从大数据中挖掘价值

发布时间:2023-01-21 06:47:17

Ⅰ 如何从大数据中获取价值

同时,大数据对公共部门效益的提升也具有巨大的潜能。如果美国医疗机构能够有效地利用大数据驱动医疗效率和质量的提高,它们每年将能够创造超过3万亿美元的价值。其中三分之二是医疗支出的减少,占支出总额超过8%的份额。在欧洲发达国家,政府管理部门利用大数据改进效率,能够节约超过14900亿美元,这还不包括利用大数据来减少欺诈,增加税收收入等方面的收益。" 那么,CIO应该采取什么步骤、转变IT基础设施来充分利用大数据并最大化获得大数据的价值呢?我相信用管理创新的方式来处理大数据是一个很好的方法。创新管道(Innovation pipelines)为了最终财务价值的实现从概念到执行自始至终进行全方位思考。对待大数据也可以从相似的角度来考虑:将数据看做是一个信息管道(information pipeline),从数据采集、数据访问、数据可用性到数据分析(4A模型)。CIO需要在这四个层面上更改他们的信息基础设施,并运用生命周期的方式将大数据和智能计算技术结合起来。 大数据4A模型 4A模型中的4A具体如下: 数据访问(Access):涵盖了实时地及通过各种数据库管理系统来安全地访问数据,包括结构化数据和非结构化数据。就数据访问来说,在你实施越来越多的大数据项目之前,优化你的存储策略是非常重要的。通过评估你当前的数据存储技术并改进、加强你的数据存储能力,你可以最大限度地利用现有的存储投资。EMC曾指出,当前每两年数据量会增长一倍以上。数据管理成本是一个需要着重考虑的问题。 数据可用性(Availability):涵盖了基于云或者传统机制的数据存储、归档、备份、灾难恢复等。 数据分析(Analysis):涵盖了通过智能计算、IT装置以及模式识别、事件关联分析、实时及预测分析等分析技术进行数据分析。CIO可以从他们IT部门自身以及在更广泛的范围内寻求大数据的价值。 用信息管道(information pipeline)的方式来思考企业的数据,从原始数据中产出高价值回报,CIO可以使企业获得竞争优势、财务回报。通过对数据的完整生命周期进行策略性思考并对4A模型中的每一层面都做出详细的部署计划,企业必定会从大数据中获得巨大收益。

Ⅱ 大数据公司该如何从大数据中获取价值

大数据公司该如何从大数据中获取价值?

大数据是近些年来一直被热炒的话题,而它也的确对未来发展有着颠覆革新的力量。然而,如何从大数据上获取价值,却是一个很让人头疼的问题。对于这个问题,我们还需深入思考。
在人们意料之中,大数据产业在今天上升到了很高的地位!
8月6日,工信部的消息显示,大数据产业十三五规划编制工作已正式启动,日前已在工信部信息化和软件服务业司组织下,召开了规划编制第一次工作会议,成立了规划编制小组,讨论了规划编制工作方案、规划草案、任务分工、近期工作安排等。
大数据产业的未来,越来越值得人们期待。但如何从大数据上获取价值,却是一个很让人头疼的问题。
就在前几天,笔者读到一段很“不合潮流”的话。在一次演讲中,华为轮值CEO徐直军表示:“华为不是一个数据公司,不经营数据,永远不从数据上获取价值。而是与更多和合作伙伴一起来保护我们客户的数据,使客户数据更安全,解决客户面向未来的问题,使客户真正实现信息化!”
对于他的说法,我是持怀疑态度的,甚至感到他说的很不严谨。如果从文字上细细琢磨的话,对客户数据的保护其实也是一种对大数据的利用,保护大数据带来的价值,也是大数据的变现。大数据时代的安全防护,难道不也是一种产业分支吗?在别人利用客户大数据发广告的时候,你保护了这些大数据,除非你是免费的,否则怎么会没有价值产生?即便是360的免费杀毒,也在别的地方产生价值了。华为的大数据,又怎么能独善其身?
很显然,没有人可以游离于大数据的价值之外。不再搞一些文字方面的纠缠了,其实我举徐直军这段话的目的,无非是想说明这一点:“大数据,不经意间就会产生价值。”于是,再回到一开始那个问题:“大数据公司该如何从大数据上获取价值?”
对于这个问题,一直以来我个人的观点是这样的:“第一,大数据必须要利用,否则就是浪费,同时弃之不用也对我们的发展不利。第二,大数据的利用要遵循三个原则,一是不能以影响用户体验为代价,二是不要采取非法手段去牟利,三是应该确保大数据的利用是在绝对安全的前提之下,或者最大限度的安全之下。第三,大数据要有公众监督,不能暗箱操作,要有透明性。”
我之所以持有这样的观点,是因为这几个问题是目前外界对大数据比较关注但也很容易被忽视的问题。目前,人们纠结于利用或不利用大数据,却忽略了怎么用,怎么好好的用,怎么用好。虽然目前大数据还没有做到真正的商业化,但之前一些关于大数据的“警报”却必须引起我们的重视,比如社保信息泄露,比如某些电商的信息泄露等等。
对于我的问题,以及这几个观点,笔者向大数据解决方案提供商成都数之联科技CEO周涛请教。周涛是这样回答我的。
关于大数据本身,他认为,“大数据”是“数据化”趋势下的必然产物。数据化最核心的理念是:“一切都被记录,一切都被数字化”。
对于这个观点,我是赞同的,因为这就是大数据的本质。“天空没有留下翅膀的痕迹,但我已经飞过”,这只是诗歌,不是现实。
对于如何从大数据上获取价值,周涛认为:“对此,我们要做得是1,解决‘信息过载’的问题,即通过自动化、规模化的方式为每一个用户找到他感兴趣或者需要的信息;2、从非结构化的数据中挖掘出价值,甚至在尽可能少损失有价值信息的前提下将其结构化; 3、在数据隐私和安全得以保障的前提下,从关联的数据中挖掘出‘一加一远大于二’的价值。”
周涛的观点,应该是从企业角度来说的。按我理解,应该是这样三个应用步骤:“一,如何提取大数据;二,如何优化大数据;三,如何合理利用大数据。”说的虽然简单,但很清晰。尤其是“一加一远大于二”的说法,很有启发性。
不过,对此我还有几点疑问:“第一,提取大数据的方法有了,但大数据的主人是否愿意让企业提取呢?比如,我购买商品,留下了我的信息、地址甚至电话,这些我是不愿意让别人提取的。第二,大数据优化的过程中,有价值的信息留下了,但那些在商家眼里无价值的信息怎么处理?一旦所谓无价值的信息被遗弃,最终落入别有用心的人手里,那会怎么样呢?”同时,我还有一个宽泛一点的问题,大数据的安全该如何保证呢?
真正的物联网时代还没有到来,但已经近在咫尺,大数据公司该如何从大数据上获取价值,这是个必须要思考的问题。对于我的问题和忧虑,我很希望周涛或者是其他的行业人士能给我一个解答。

Ⅲ 如何发掘大数据商业价值

如何发掘大数据商业价值?四大场景解决两个战略问题
在《数据帝国时代的数字营销焦虑》一文中,我曾写道:中国的数字媒体进入了一个数据帝国时代。BAT的帝国江山稳如磐石,直接或间接的控制着各种内容类型和内容形式的数字媒体平台。
数据帝国时代,品牌主有两大的焦虑:
第一,流量税成本的不断增加,如何应对?数据帝国广告单价过去几年的增长趋势是相当惊人的,绝对大幅跑赢GDP的增长。如何找到降低平台成本的方法,将会成为数字营销竞争的一个重要的战略竞争点。而媒体的碎片化也为宝洁这样的大公司带来挑战。
第二,缺少数据和数据使用能力的自己,会不会有一天被帝国开始降维攻击?京东京造、淘宝心选、小米有品、网易严选……平台在尝试C2B概念,也就是按照消费者需求整合供应链,创造出一个消费者更愿意去买的产品,同时这个整合过程能让所有效率变得更高。这种逻辑和原来的生产型企业完全不同。
因此,今天的大型数字媒体平台,有更大的基因优势跨越到制造行业中来。也许,很快,越来越多的广告客户会发现,平台既是自己必须花费巨额广告费的媒体,又是自己直接的竞争对手,这对品牌来说才是更大的焦虑。
如何解决焦虑?
建立自己的数据壁垒,是未来品牌主必须要做的事情。
如何建立数据壁垒?
其实说白了,就是数据对品牌来讲,到底该怎么使用、管理和创造价值,这样的一个新的课题。
如何用好数据?简而言之,要解决两个问题:
问题一:什么数据能对我产生商业价值?
问题二:这些数据怎么搜集和使用?
谈起数据,我们能想到的,是企业会上马各种各样的软件,很多软件的匆匆上马,可能到最后都会发现,投资回报率非常低。
在这里,我换一种方式,用具体使用场景,来解析数据的两大问题。
第一个场景:忠诚度的提升。
拼多多的崛起,证明了忠诚度的另外一个逻辑:如何让我的老客户,通过他的社交媒体,带来更多新的客户。
无论是滴滴的红包,还是拼多多的崛起,都企业者意识到了,如何激发现有客户,带来更多的消费者和新的收入,这可能是忠诚度在目前营销环境下的一个最大使用场景。
一个现象就很明显:要把这个使用场景下的忠诚度做好,就要看企业的数据基础了:哪些用户能帮你?给这些用户什么样的刺激、他们会给你带来什么样的价值……这些问题会变成一道数学题,这道数学题的前提是你要有相关的数据积累、识别、处理能力。
第二个场景:新客户获取效率的提升。
今天,所有的平台,都在某种程度上开放他们的平台接口,开放这个接口的意思是:希望我们的客户能够带着消费者的数据,上来进行相似人群的寻找和相关投放。
这样做之后,对于广告到达效率的提升是非常惊人的。但是,这件事的前提是,你先有一组你自己认为非常正确的数据,然后传到平台上去——这个条件非常重要。以及,你的数据越丰富,例如能够给平台各种各样投放的维度,标签更加丰富,会取得更高的效果。
例如,我们有一个客户是专门面向厨师来做生意的。他们自己积累了将近100万厨师的数据。这些数据是多维度的,包括了社交ID及行为模式,我们据此抽象出相关标签,再与腾讯DMP合作,在腾讯覆盖的人群中,找出更多的厨师。
第三个场景:用数据来提升创造力。
对于一个企业来讲,有两个方面是非常讲创造力的:
1、你的产品——产品本身是不能够很吸引人,是不是能够打动人心;
2、你的营销——这个营销不仅仅是在投广告,而是在你提出品牌主张、在你去跟消费者沟通的时候,你的方式、方法是不是有足够有创造力;
举个例子,在时趣服务品牌主时,我们会实时监测这个品牌消费者声量中,关于品牌相关定义词的词云的变化。
其中,有一个很有意思的化妆品,它是中国知名化妆品品牌中面膜卖得非常好的,而它的面膜也很贵。因此它的营销挑战是:如何说服一个年轻女孩子,不买屈臣氏里面10块钱的面膜,而是去花100块钱买一张它的面膜?这个逻辑是什么?
突然有一天,我们的服务团队发现词云上面出现了一个很奇怪的词,叫做“前男友”,然后我们就会开始用这个数据的点,回去在社交媒体中找到相应的场景和相应的语料。答案非常简单:因为有一些女生在社交媒体上聊,什么时候用这么贵的面膜呢?3天要见前男友,连续用3天,皮肤特别好,然后见前男友的时候,有一种非常好的感觉,让他知道他应该后悔。
所以,这个品牌就开始拿“前男友”这个概念来做创造力的打造,所以,今天你在网络上面搜前男友,你会发现出现一个关联词叫“前男友面膜”,然后你选这个,你就会看到这个品牌的名字,这个品牌在社交媒体牢牢的抓住了“前男友面膜”这样的一个概念。
所以,这个概念不是创意想出来的,而是通过数据的发现、挖掘与利用,然后找到了这样的一个洞察。
这是一个应用创造力,来提升的例子。
第四个场景:品牌需要形成把自己建设为新型平台的战略思路和组织能力。而数据就是基础。
未来的商业模式之间的竞争,都是平台对平台的竞争,没有平台效应的商业模式,很难最充分的体现出数据驱动的价值,长期来看,会在竞争中被其他平台型企业覆盖。而这个事情的核心,在于你是不是能够在你已有的数据基础之上,形成一个新的商业模式。
举个简单的例子来说明上述的商业模式转变:一个大型的餐饮服务公司,每天都有数十万消费者的进店消费,首先通过会员系统,和其中核心的消费者建立起稳定的数字化会员关系,通过会员运营来形成一个平台,更高效的进行原有餐饮服务的促销;当平台有一定的规模后,开始引入新的服务价值——从第三方引入的服务,是在平台上给会员进行食品、食材的电商销售,以及针对周边外卖订餐的送餐服务;新增的自营服务,是针对亲子会员提供的家长带孩子在线下店面空闲时间来学习简单厨艺的体验服务,以及继续根据会员的反馈数据来寻找新的需求,来继续引入创新的服务价值。
在这个商业模式的进化中,最终传统品牌能够演化形成“更大的用户粘性——更丰富的用户数据——更有效的匹配新服务的能力——更多的供应方愿意加入平台——更大的用户粘性”的网络效应。
上述这个品牌平台化的商业模式转变,对大量的公司而言,是一个复杂的、有一定风险的内部创新甚至是内部创业过程,因此决策机制复杂、风格保守的企业,在这个平台化的策略面前会觉得风险过高,甚至觉得是偏离主业,这反映出领导层本质上还是没有理解平台商业模式,以及没有理解用户数据价值为什么在平台商业模式上能爆发出最大的收益。
今天,数据这么重要,有多少企业用好了呢?答案肯定是:80%以上的企业都没有用好,为什么呢?
第一, 没有采集数据的系统,市场营销中业务的在线程度非常低;
第二,刚才反复讲了,今天市场上专业的团队、专业人才非常缺乏,所以必须要找到好的合作伙伴;
第三,对于大部分中小型企业,甚至大品牌来说,最大的痛点,是企业自身的数据累积需要很长过程,我值不值得投入这样长的时间精力做这个事情?还是把这个费用直接投入到广告中?——对企业来说是个难题。
所以,我们会建议更多的品牌,特别是很多成长型的新兴品牌,先把数据的价值,通过创造力提升这个角度提升起来,因为这一点有可能是所有品牌普世性和见效最快的一个点,同时创造力也可能是品牌去面向平台,在未来越来越严峻的博弈中唯一的壁垒和谈判的筹码。
在今天,当平台试图去覆盖很多行业时,这个行业中最终被逼出来、能够跟平台博弈的人,一定是那些在产品、营销创造力方面做的更好的人,包括在消费者的客户体验方面的创造力做的更好的人。
所以,希望大家都能把注意力放在如何通过数据去提升自身的创造力上,因为这个点是数据创造价值最简单、最明确、最迅速的点。

Ⅳ 如何从大数据中挖掘更多的价值

资深数据营销专家微码邓白氏认为:大数据营销不仅要有“数”,还要有“数据思维”,具体包版括以下权五点:
1. 获取全网用户数据,使数据在营销中体现应有的价值。
2.让数据看得懂,通过多维的用户标签识别用户的基本属性特征、偏好、兴趣特征和商业价值特征。
3.分析用户特征及偏好,形成网站用户分群画像系统。
4.制定渠道和创意策略,从而提高目标用户人群的转化率。
5.提升营销效率,在营销过程中进行实时策略调整。

Ⅳ 挖掘大数据价值的正确姿势

挖掘大数据价值的正确姿势
如何在海量的数据中结合业务形态去挖掘数据价值,这是大数据的重中之重。
如果要找未来商业的代名词,“大数据”无疑是其中一枚。
资本市场和企业早就开始“押注”在这上面,从2011年开始,一直到现在,大数据概念火热的势头依然没有减弱,行业中也逐步出现商业化应用的典型案例。在2000年时,全球数据量中仅有四分之一的数据是以数字化形式存储,7年后,超过90%的数据是数字化数据,也就是说,现在几乎所有的数据都通过数字化形式存储保留下来了,而且,数据总量也在不断增加。据市场调研机构IDC预计,未来全球数据总量年增长率将维持在50%左右,2020年全球数据总量将是2011年的22倍,超过40ZB(相当于4万亿GB),其中,中国将占全球的21%左右,数据量将达到8.6ZB。
当下的各种智能硬件设备,特别是大家每天都离不开的手机正在将一切都数据化,但这并不表示所有数据都有用,如果数据转化不成价值,即便是有再多的数据量也没有用。而且,从文字上解读,大数据在思维概念上的确有指数量巨大的含义,但是同时也意味着数据种类的多样化,“数据描述形式不仅局限于文字的描述,还有图形、音频、视频等多种形式,从过去结构化数据变成一个非结构化数据”。
“另外,大数据是流动的,一定有时间轴的概念,即数据增长速度快,处理速度快,时效性高,肯定不是静态数据;还有一个就是价值,如何在海量的数据中结合业务形态去挖掘数据价值,这是大数据的关键。”唐青接着对《世界经理人》说到。
大数据分析的四大领域
在唐青看来,一个企业的发展,很重要的一点是要回答整个业务输出的问题,即如何产生价值。从业务场景来看,就是企业如何在关键业务流程中,做到通过数据分析来产生价值。从分析来说,如果分析是从简单的、小数量的数据开始,则达到的分析效果是有限的,因此一定要大规模的数据分析;而且,分析要在非常流动的数据环境里进行,所谓流动有两个层面,一个是数据的多元化,还有一个是数据分析的效率,这要求企业做有效的数据整合。
另外,其中很重要一点是多种数据类型的分析,涉及到对数据来源和文本数据的分析,还有客户在使用产品和服务过程中,他的路径是怎样的。唐青以开银行卡为例,一个客户开了一张银行卡,还要跟踪其消费情况,如有没有购买其他的分期贷款等行为路径。之所以叫多类型的分析,就是能从他的各种社交关系,通过他的消费轨迹等不同来源的数据信息进行分析。
“从客户角度来看,很重要一点是,要关心客户的情感体验,而不是把客户就当成一个ID。”唐青强调到,当下是一个高度社交化的社会,企业很关心到底谁跟客户有关联关系,谁是客户的家人、老板、同事,谁可以影响客户的购买决策和购买行为。
要实现大数据的价值,大数据公司需要知道客户是谁,如何很好的对客户画像,以及捕获这个客户的所有信息及其信息渠道。但是说起来容易做起来难,唐青总结了三大挑战,同时也是所有做大数据分析公司面临的挑战:
一是业务能力,是不是很懂业务领域的场景,在分析的时候,到底该在哪个业务场景里面进行改进。比如说信用卡,是分析卡的流失还是卡的深度交叉销售;还有发卡的风险以及临时授信的问题,到底又该在哪个业务场景去做分析。
二是人才资源压力,目前所有企业都面临这个问题,就是能否在合理的人员工资下,招到优秀的人才,这是很大的挑战。
三是洞察力,企业如何在操作层面、执行层面都能够有很好的洞察力。
从三大典型行业看大数据应用
唐青以金融、航空、快递这三个典型的服务行业为例,演绎大数据在行业中的应用。天睿公司北京总部及华北金融团队咨询服务部总监张天峰在采访中也指出,大数据其实是一种手段,更重要的是如何让大数据为业务服务。
金融行业现在正面临转型的挑战,过去该行业的产品是要提升面向客户业务的效率,比如银行,就像开店,看着进钱很多,但是到底能不能把客户吸纳过来,这就是很大的挑战,为此需要从产品、客户视角去分析。唐青认为在大数据应用上,中信银行是金融行业里做得比较不错的,此前中信的行长会议提出了二次转型的目标,即以客户为中心,去优化整个营销体系,对客户进行精细化管理。

Ⅵ 大数据时代九种从大数据中获取价值的方法

大数据时代九种从大数据中获取价值的方法

大数据时代九种从大数据中获取价值的方法,现在已经有了许多利用大数据获取商业价值的案例,我们可以参考这些案例并以之为起点,我们也可以从大数据中挖掘出更多的金矿。 去年TDWI关于管理大数据的调查显示,89%的受访者认为大数据是一个机会,而在2011年的大数据分析的调查中这个比例仅为70%。在这两次调查中受访问者均普遍认为,要抓住大数据的机会并从中获取商业价值,需要使用先进的分析方法。此外,其他从大数据中获取商业价值的方法包括数据探索、捕捉实时流动的大数据并把新的大数据来源与原来的企业数据相整合。 虽然很多人已有了这样一个认识:大数据将为我们呈现一个新的商业机会。但目前仅有少量公司可以真正的从大数据中获取到较多的商业价值。下边介绍了9个大数据用例,我们在进行大数据分析项目时可以参考一下这些用例,从而更好地从大数据中获取到我们想要的价值。1、探索大数据以发现新的商业机会。很多大数据都是来自一些新的来源,这代表客户或合作伙伴互动的新渠道。和任何新的数据来源一样,大数据值得探索。通过数据探索,你可以了解一些之前所不知道的商业模式和事实真相,比如新的客户群细分、客户行为、客户流失的形式,和最低成本的根本原因等等。2、从数据分析中获取商业价值。请注意,这里涉及到一些高级的数据分析方法,例如数据挖掘、统计分析、自然语言处理和极端SQL等等。3、对已收集到的大数据进行分析。许多公司都收集了大量的数据,他们感觉这些数据存在着商业价值,但并不知道怎样从这些弄出来的值大的数据。不同行业的数据集有所不同,比如,如果你处于网络营销行业,你可能会有大量Web站点的日志数据集,这可以把数据按会话进行划分,进行分析以了解网站访客的行为并提升网站的访问体验。4、重点分析对你的行业有价值的大数据。大数据的类型和内容因行业而异,每一类数据对于每个行业的价值是不一样的。比如电信行业的呼叫详细记录(CDR),零售业、制造业或其他以产口为中心的行业的RFID数据,以及制造业(特别是汽车和消费电子)中机器人的传感器数据等等,这些都是各个行业中非常重要的数据。5、使用社交媒体数据来扩展现有的客户分析。客户的各种行为比如评论品牌、评价产品、参与营销活动或表示他们的喜好等等,会在客户中相互影响。社交大数据可以来自社交媒体网站,以及自有的客户能够表达意见及事实的渠道。我们可以使用预测性分析发现规律和预测产品或服务的问题。我们也可以利用这些数据来评估市场知名度、品牌美誉度、用户情绪变动和新的客户群。6、理解非结构化的大数据。非结构化的信息主要指的是是使用文字表达的人类语言,这与大多数关系型数据有着很大的不同,你需要使用一些新的工具来进行自然语言处理、搜索和文本分析。把基于文本内容的业务流程进行可视化展示。7、把客户的意见整合到大数据中。通过运用大数据(与原有的企业资源集成),我们可以对客户或其他商业实体(产品,供应商,合作伙伴)实现360度全景分析,分析的维度属性从几百个扩展到几千个。新增的粒状细节带来更准确的客户群细分,直销策略和客户分析。8、分析大数据流,实时操作业务,提升业务动作水平。实时监测和分析的程序已经在企业运营中存在了很多年,那些需要全天候运行的能源、通讯网络或任何系统网络、服务或设施的机构早就在使用这类型的程序。最近,从监控行业(网络安全、态势感知、欺诈检测)到物流行业(公路或铁路运输、移动资产管理、实时库存),越来越多的组织正在利用大数据流的应用。9、整合大数据以改善原有的分析应用。对于原有的分析应用,大数据可以扩大和扩展其数据样本。尤其在依赖于大样本的分析技术的情况下,比如统计或数据挖掘;而在欺诈检测、风险管理或精确计算的情况下同样也得用上大样本的数据。

Ⅶ 挖掘大数据蕴含的大价值

挖掘大数据蕴含的大价值

近日通过的《关于促进大数据发展的行动纲要》,标志着大数据在我国的发展与应用已经上升到国家战略层面。笔者认为,要使《行动纲要》中的内容尽快成为促进大数据发展和推进大数据应用的实际行动,需要从以下3个方面入手。

首先,在政府序列中明确大数据的牵头责任单位,并要求政府各主管部门制定大数据发展规划。说到底,大数据主要来源于部门行政记录数据、企业单位生产经营数据和互联网上生成的数据。目前,工信部负责信息化建设,网信办负责互联网管理,发改委负责发展规划的制定,统计局拥有大量动态统计数据,诸多政府部门如海关、工商、税务、质监等部门都拥有基于自身管理记录产生的数据。因此,这就需要明确一个牵头单位,负责协调各部门的具体职责与分工,制定和执行统一的发展规划,把握大数据应用在整体上及各个领域的推进情况;同时,也需要各政府职能部门依据大数据发展与应用大势,结合本领域的业务特点,制定大数据在本领域的详细发展与应用规划。

其次,积极推动相关法律法规的制定与完善,推动和促进数据的开放与国家秘密、个人隐私的保护。也就是说,应在积极开展调研、广泛征求各方意见的基础上,制定完善与大数据发展应用有关的法律法规,兼顾两个方面的工作。

一方面,要以立法形式要求各级政府部门和大数据企业开放并提供数据。目前,除政府统计部门以官网、微博、微信、年鉴、发布会等形式定期发布详尽的分组数据外,多数政府职能部门只是适时提供一些综合及简单分组数据,各大数据企业也仅仅会发布一些成型的大数据产品。因此,应通过完善立法,要求各政府部门实现信息共享,并定期发布详尽分组数据;要求大数据企业依法向政府统计部门提供生产经营中形成的基础数据,包括第三方数据。

另一方面,要通过立法和执法,严格保护企业秘密和公民隐私。具体来说,就是要明确保护的内容和范围,制定违反规定、泄露企业秘密和公民隐私的处罚条款。无论是政府机关还是大数据企业,违反规定都要依法严肃查处,通过严格执法震慑违法行为。

再次,加快启动大数据标准体系的研究和对接工作,为推进大数据应用奠定基础。大数据蕴含着大价值,但无论是政府部门的行政记录,还是企业单位电子化的生产经营记录,不同的大数据产品依照的都是本部门或本单位的标准。分类不一致,编码不一致,口径范围不一致,影响着大数据的应用与整合。因此,必须尽快启动和加强大数据标准体系的研究,由相关部门牵头,以现行标准为基础,充分考虑大数据的特点,统一研究并制定大数据代码标准、分类标准、技术标准。在应用大数据时,特别是对那些可以成为政府统计数据来源第二渠道的大数据,建议在分析出其与统一标准差异的基础上,实现向统一标准的转换。

以上是小编为大家分享的关于挖掘大数据蕴含的大价值的相关内容,更多信息可以关注环球青藤分享更多干货

Ⅷ 大数据的价值在于开放和跨界深度挖掘

大数据的价值在于开放和跨界深度挖掘

在专家们看来,数据的开放和跨界融合,是大数据产业得以发展壮大的关键。发展大数据产业,也是推动互联网+的必然需求。

大数据并不遥远

收集美国气象局、中国气象局、欧洲天气预报中心的公开数据,加上对各大河流的地貌数据,东方科技董事长李胜利用自己的独特算法,就可以提前预测全球任何一个水电站是否会遭遇大洪水……这就是“东方祥云”项目的魅力所在,也让大众真实感受到大数据的魔力。

在大数据商业模式大赛的决赛中,“东方祥云”项目最终获得一等奖,从惠及民生的角度来说,这一奖项实至名归。

中国是一个水资源匮乏但水害多发的国家,仅2013年全国因洪涝灾害死亡的人数就达1148人。2007年7月,贵州平塘发生特大洪水,造成5.7亿元直接经济损失。2012年7月,该县再次遭遇特大洪水,不但无一人伤亡,直接经济损失也降到6000万元。

“原因在于,2010年受灾后,平塘县安装了我们的山洪灾害预警监测平台,得到洪水预报,及时采取措施。”李胜告诉记者,全国约有15万座水电站、水库,如果使用东方祥云的大数据技术进行来水预报服务,并合理调度用水,可为水库、水电站节省90%的运维成本。

在这次比赛中,这样的项目并不少见。比如,大赛获奖项目“蜂能”,通过智能用电终端和强大的数据运算系统,采集设备用电数据,对其分析并进行节电和需求优化管理,可实现节约用电10%~20%。

“在一些具体的产业,大数据已经应用得非常广。实际上,大数据挖掘是推动互联网 的有效方式。”清华大学教授韩亦舜对记者表示,本次大赛的众多获奖项目,就体现出“大数据时代已经到来”。

开放才有价值

在专家们看来,大数据只有开放才有价值,封闭、不流通的数据无法形成产业。

“如果没有美国气象局等机构在网络公开的气象数据,我们即便有最精确的算法,也无法做到水库水位的提前预报。气象数据和地貌、水文数据的跨界与沟通,才能让我们的计算更加准确。”李胜坦言。

韩亦舜指出,包含丰富的数据源是大数据产业发展的前提。但是,我国政府、企业和行业信息化系统建设往往缺少统一规划和科学论证,系统之间缺乏统一的标准,形成了众多“信息孤岛”,而且受行政垄断和商业利益所限,数据开放程度较低,这给数据利用造成极大障碍,亟须改变。“云上贵州”提出逐步开放数据,无疑具有重大的意义。

贵州省经济和信息化委员会主任李保芳也向记者表示,政府数据资源应当在安全前提下逐步有序适当开放。“事实上,政府通过数据开放,改进公众服务和社会管理,营造创新环境和释放商业机会,市民、企业和政府都将是开放数据的受益者。”

仍待深度挖掘

贵州省经信委提供的相关报告显示,2014年贵州大数据信息产业实现规模总量1460亿元,电子信息产业单月规模达到130亿元。

韩亦舜认为,未来,人类一切生产、生活包括民生、环保、公共安全、城市服务、工商业活动都将囊括在智慧体系的理想服务之下,而智慧的来源便是大数据。

“大数据作为一种资源,其独特性在于可重复利用,而且可以在不断的挖掘中继续产生新的价值。”阿里巴巴集团副总裁、大数据专家涂子沛指出,从目前来看,亟须对数据进行深度挖掘。

“目前,在大数据产业领域,我国与各工业强国基本上处于同一起跑线。只要充分利用大数据产生的力量,未来可以帮助中国产业实现弯道超车。

以上是小编为大家分享的关于大数据的价值在于开放和跨界深度挖掘的相关内容,更多信息可以关注环球青藤分享更多干货

Ⅸ 大数据价值挖掘的三要素

大数据价值挖掘的三要素
如何充分利用大数据,挖掘大数据的商业价值,从而提升企业的竞争力,已经成为企业关注的一个焦点。
全面解决方案才能奏效
当前,越来越多企业将大数据的分析结果作为其判断未来发展的依据。同时,传统的商业预测逻辑正日益被新的大数据预测所取代。但是,我们要谨慎管理大家对大数据的期望值,因为海量数据只有在得到有效治理的前提下才能进一步发展其业务价值。
最广为人知的大数据定义是Gartner给出的大数据的3V特性:巨大的数据量(Volume)、数据的快速处理(Velocity)、多变的数据结构和类型(Variety)。根据这一定义,大家首先想到的是IT系统中一直难以处理却又不容忽视的非结构化数据。也就是说,大数据不仅要处理好交易型数据的分析,还把社交媒体、电子商务、决策支持等信息都融入进来。现在,分布式处理技术Hadoop和NoSQL已经能对非结构化数据进行存储、处理、分析和挖掘,但未能为满足客户的大数据需求提供一个全面的解决方案。
事实上,普遍意义上的大数据范围更加广泛,任何涉及海量数据及多数据源的复杂计算,均属大数据范畴,而不仅局限于非结构化数据。因此,诸如电信运营商所拥有的巨量用户的各类详细数据、手机开关机信息、手机在网注册信息、手机通话计费信息、手机上网详细日志信息、用户漫游信息、用户订阅服务信息和用户基础服务信息等,均可划归为大数据。
与几年前兴起的云计算相比,大数据实现其业务价值所要走的路或许更为长远。但是企业用户已经迫不及待,越来越多企业高层倾向于将大数据分析结果作为其商业决策的重要依据。在这种背景下,我们必须找到一种全面的大数据解决方案,不仅要解决非结构化数据的处理问题,还要将功能扩展到海量数据的存储、大数据的分布式采集和交换、海量数据的实时快速访问、统计分析与挖掘和商务智能分析等。
典型的大数据解决方案应该是具有多种能力的平台化解决方案,这些能力包括结构化数据的存储、计算、分析和挖掘,多结构化数据的存储、加工和处理,以及大数据的商务智能分析。这种解决方案在技术应具有以下四个特性:软硬集成化的大数据处理、全结构化数据处理的能力、大规模内存计算的能力、超高网络速度的访问。
软硬件集成是必然选择
我们认为,大数据解决方案的关键在于如何处理好大规模数据计算。过去,传统的前端数据库服务器、后端大存储的架构难以有效存储大规模数据并保持高性能数据处理。这时候,我们让软件和硬件更有效地集成起来进行更紧密的协作。也就是说,我们需要软硬一体化的专门设备来应对大数据的挑战。
一直以来,甲骨文公司在传统的关系型数据库领域占有绝对优势,但并未因此固步自封。面对大数据热潮,甲骨文公司根据用户的需求不断推陈出新,将在数据领域的优势从传统的关系型数据库扩展到全面的大数据解决方案,成为业界首个通过全面的、软硬件集成的产品来满足企业关键大数据需求的公司。
甲骨文公司以软硬件集成的方式提供大数据的捕获、组织、分析和决策的所有能力,为企业提供完整的集成化大数据解决方案,其中的核心产品包括Oracle大数据机、Exalytics商务智能云服务器和OracleExadata数据库云服务器。
Oracle大数据机用于多结构化大数据处理,旨在简化大数据项目的实施与管理,其数据加工结果可以通过超高带宽的InfiniBand网络连接到OracleExadata数据库云服务器中。OracleExadata可提供高效数据存储和计算能力,配备超大容量的内存和快速闪存,配合特有的软硬件优化技术,可对大数据进行高效的加工、分析和挖掘。同时,甲骨文公司在OracleExadata以及数据库软件层面提供了非常高效和便捷的高级数据分析软件,使数据能够更快、更高效地得到分析、挖掘和处理。
通过Oracle大数据机快速获得、组织大数据之后,企业还要根据对大数据全面、实时的分析结果做出科学的业务决策。OracleExalytics商务智能云服务器能以前所未有的速度运行数据分析应用,为客户提供实时、快速的可视分析。同样,它通过InfiniBand网络连接到OracleExadata上进行数据加载和读取,让大数据直接在内存中快速计算,满足大数据时代对数据分析展现的快速响应需求。OracleExalytics实现了新型分析应用,可用于异构IT环境,能存取和分析来自任何Oracle或非Oracle的关系型数据、OLAP或非结构化数据源的数据。
Oracle大数据机、OracleExalytics商务智能云服务器和OracleExadata数据库云服务器一起,组成了甲骨文最广泛、高度集成化系统产品组合,为企业提供了一个端到端的大数据解决方案,满足企业对大数据治理的所有需求。
坚持开放的战略
从当前的情况来看,在大数据应用领域,仅靠一家厂商的产品难以解决所有问题。因此对于大数据解决方案供应商来说,采用开放的策略是必然选择。甲骨文公司坚持全面、开放、集成的产品策略。这一策略在大数据领域同样适用。
这首先体现在大数据战略在技术上支持Hadoop和开源软件。除了集成化产品,甲骨文公司还拥有一系列领先技术,以帮助用户全面应对大数据应用的挑战,其中包括OracleNoSQL数据库,以及针对Hadoop架构的系列产品。
OracleNoSQL数据库专门为管理海量数据而设计,可以帮助企业存取非结构化数据,并可横向扩展至数百个高可用性节点。同时,该产品能够提供可预测的吞吐量和延迟时间,而且更加容易安装、配置和管理,支持广泛的工作负载。
而专门针对Hadoop架构的产品,能够帮助企业应对在组织和提取大数据方面所面临的挑战,包括Oracle数据集成Hadoop应用适配器、OracleHadoop装载器以及OracleSQL Connector等。
此外,OracleR Enterprise实现了R开源统计环境与Oracle数据库11g的集成,为进行更进一步的数据分析提供了一个企业就绪的、深度集成的环境。
值得一提的是,除对产品和解决方案不断投入,甲骨文公司还致力于和合作伙伴合作开发大数据解决方案。目前,几乎所有的甲骨文合作伙伴都在关注和测试大数据解决方案。甲骨文公司正积极寻找更多本地合作伙伴,为客户提供更加定制化的产品和解决方案。
总而言之,大数据已经和云计算、社交化、移动化一起,成为现阶段驱动企业IT模式变革的重要因素。Oracle大数据解决方案可以横跨IT架构的所有层面,与其他产品进行创新集成,并凭借卓越的可靠性、可扩展性和可管理性,为企业的IT发展,甚至业务发展提供理想的IT基础支持。

Ⅹ 大数据服务器挖掘商业价值的方法有哪几种

使用 Hadoop、HPCC、Storm、Apache Drill、RapidMiner、RapidMiner、 Pentaho BI 等大数据技术、工具。使用分类、聚类、关联规则、预测等数据挖掘方法。
举个大数据可以带来的商业价值的例子吧:商业淘宝上面用户浏览信息的重要性,刚开始淘宝的分析人员相对用户在淘宝浏览信息进行分析,但是这个数据不够,可能有的人只在京东上进行消费或者只在实体店购买东西,这时候就需要各大超市、网上商城的浏览消费信息,对某个用户或者潜在用户的消费习性、购买习惯、位置信息等进行研究,从而退出各类商业模式。著名的啤酒尿布故事不就是这样诞生的吗?各类电信公司业务宣传活动也会基于用户习惯进行产生新的模式,这些最开始都是没有,这些创新无不是以数据分析为基础的。

阅读全文

与从大数据中挖掘价值相关的资料

热点内容
图文游戏编程作品说明如何写 浏览:197
qq浏览器wifi不安全卫士 浏览:449
文件在用户却不显示在桌面 浏览:124
delphi获取操作系统版本 浏览:722
linux定时任务执行脚本 浏览:787
招商银行app怎么查电费 浏览:739
手机代码文档翻译软件 浏览:676
青华模具学院和ug编程哪个好 浏览:736
怎么改网站关键词 浏览:581
怎么把ps图片保存成雕刻文件 浏览:771
java字符串赋空值不赋值null 浏览:556
什么是文件hash 浏览:345
文件碎片微信小程序 浏览:878
苹果手机怎么升级运营商版本 浏览:100
什么是菜鸟网络服务协议 浏览:260
11月份的销售数据是什么 浏览:439
三个数据如何列表格 浏览:92
3m互助平台升级会无法登陆吗 浏览:211
3ds美版103cia升级包 浏览:126
cad工具栏是什么 浏览:196

友情链接