A. 大数据挖掘需要学习哪些技术大数据的工作
首先
我由各种编程语言的背景——matlab,R,java,C/C++,python,网络编程等
我又一定的数学基础——高数,线代,概率论,统计学等
我又一定的算法基础——经典算法,神经网络,部分预测算法,群智能算法等
但这些目前来讲都不那么重要,但慢慢要用到
Step 1:大数据理论,方法和技术
大数据理论——啥都不说,人家问你什么是大数据时,你能够讲到别人知道什么是大数据
大数据方法——然后别人问你,那怎么实现呢?嗯,继续讲:说的是方法(就好像归并排序算法:分,并)。到目前外行人理解无障碍
大数据技术——多嘴的人继续问:用的技术。
这阶段只是基础,不涉及任何技术细节,慢慢看慢慢总结,积累对“大数据”这个词的理解。
Step 2:大数据思维
Bang~这是继Step 1量变发展而来的质变:学了那么久“大数据”,把你扔到制造业,你怎么办?
我想,这就是“学泛”的作用吧,并不是学到什么具体东西,而是学到了对待事物的思维。
----------------------------------------------------------------------
以下阶段我还没开始=_=,不好误导大家
Step 3:大数据技术基础
Step 4:大数据技术进阶
Step 5:打实战
Step 6:大融合
B. python大数据挖掘系列之基础知识入门 知识整理(入门教程含源码)
Python在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们。
Python数据分析与挖掘技术概述
所谓数据分析,即对已知的数据进行分析,然后提取出一些有价值的信息,比如统计平均数,标准差等信息,数据分析的数据量可能不会太大,而数据挖掘,是指对大量的数据进行分析与挖倔,得到一些未知的,有价值的信息等,比如从网站的用户和用户行为中挖掘出用户的潜在需求信息,从而对网站进行改善等。
数据分析与数据挖掘密不可分,数据挖掘是对数据分析的提升。数据挖掘技术可以帮助我们更好的发现事物之间的规律。所以我们可以利用数据挖掘技术可以帮助我们更好的发现事物之间的规律。比如发掘用户潜在需求,实现信息的个性化推送,发现疾病与病状甚至病与药物之间的规律等。
预先善其事必先利其器
我们首先聊聊数据分析的模块有哪些:
下面就说说这些模块的基础使用。
numpy模块安装与使用
安装:
下载地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/
我这里下载的包是1.11.3版本,地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/f9r7rmd8/numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl
下载好后,使用pip install "numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl"
安装的numpy版本一定要是带mkl版本的,这样能够更好支持numpy
numpy简单使用
生成随机数
主要使用numpy下的random方法。
pandas
使用 pip install pandas 即可
直接上代码:
下面看看pandas输出的结果, 这一行的数字第几列,第一列的数字是行数,定位一个通过第一行,第几列来定位:
常用方法如下:
下面看看pandas对数据的统计,下面就说说每一行的信息
转置功能:把行数转换为列数,把列数转换为行数,如下所示:
通过pandas导入数据
pandas支持多种输入格式,我这里就简单罗列日常生活最常用的几种,对于更多的输入方式可以查看源码后者官网。
CSV文件
csv文件导入后显示输出的话,是按照csv文件默认的行输出的,有多少列就输出多少列,比如我有五列数据,那么它就在prinit输出结果的时候,就显示五列
excel表格
依赖于xlrd模块,请安装它。
老样子,原滋原味的输出显示excel本来的结果,只不过在每一行的开头加上了一个行数
读取SQL
依赖于PyMySQL,所以需要安装它。pandas把sql作为输入的时候,需要制定两个参数,第一个是sql语句,第二个是sql连接实例。
读取HTML
依赖于lxml模块,请安装它。
对于HTTPS的网页,依赖于BeautifulSoup4,html5lib模块。
读取HTML只会读取HTML里的表格,也就是只读取
显示的是时候是通过python的列表展示,同时添加了行与列的标识
读取txt文件
输出显示的时候同时添加了行与列的标识
scipy
安装方法是先下载whl格式文件,然后通过pip install “包名” 安装。whl包下载地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/f9r7rmd8/scipy-0.18.1-cp35-cp35m-win_amd64.whl
matplotlib 数据可视化分析
我们安装这个模块直接使用pip install即可。不需要提前下载whl后通过 pip install安装。
下面请看代码:
下面说说修改图的样式
关于图形类型,有下面几种:
关于颜色,有下面几种:
关于形状,有下面几种:
我们还可以对图稍作修改,添加一些样式,下面修改圆点图为红色的点,代码如下:
我们还可以画虚线图,代码如下所示:
还可以给图添加上标题,x,y轴的标签,代码如下所示
直方图
利用直方图能够很好的显示每一段的数据。下面使用随机数做一个直方图。
Y轴为出现的次数,X轴为这个数的值(或者是范围)
还可以指定直方图类型通过histtype参数:
图形区别语言无法描述很详细,大家可以自信尝试。
举个例子:
子图功能
什么是子图功能呢?子图就是在一个大的画板里面能够显示多张小图,每个一小图为大画板的子图。
我们知道生成一个图是使用plot功能,子图就是subplog。代码操作如下:
我们现在可以通过一堆数据来绘图,根据图能够很容易的发现异常。下面我们就通过一个csv文件来实践下,这个csv文件是某个网站的文章阅读数与评论数。
先说说这个csv的文件结构,第一列是序号,第二列是每篇文章的URL,第三列每篇文章的阅读数,第四列是每篇评论数。
我们的需求就是把评论数作为Y轴,阅读数作为X轴,所以我们需要获取第三列和第四列的数据。我们知道获取数据的方法是通过pandas的values方法来获取某一行的值,在对这一行的值做切片处理,获取下标为3(阅读数)和4(评论数)的值,但是,这里只是一行的值,我们需要是这个csv文件下的所有评论数和阅读数,那怎么办?聪明的你会说,我自定义2个列表,我遍历下这个csv文件,把阅读数和评论数分别添加到对应的列表里,这不就行了嘛。呵呵,其实有一个更快捷的方法,那么就是使用T转置方法,这样再通过values方法,就能直接获取这一评论数和阅读数了,此时在交给你matplotlib里的pylab方法来作图,那么就OK了。了解思路后,那么就写吧。
下面看看代码:
C. 大数据挖掘技术涉及哪些内容
大数据挖掘技术涉及的主要内容有:模式跟踪,数据清理和准备,基于分类的数据挖掘技术,异常值检测,关联,聚类。
基于大环境下的数据特点,挖掘技术与对应:
1.数据来源多, 大数据挖掘的研究对象往往不只涉及一个业务系统, 肯定是多个系统的融合分析, 因此,需要强大的ETL技术, 将多个系统的数据整合到一起, 并且, 多个系统的数据可能标准不同, 需要清洗。
2.数据的维度高, 整合起来的数据就不只传统数据挖掘的那一些维度了, 可能成百上千维, 这需要降维技术了。
3.大数据量的计算, 在单台服务器上是计算不了的, 这就需要用分布式计算, 所以要掌握各种分布式计算框架, 像hadoop, spark之类, 需要掌握机器学习算法的分布式实现。
数据挖掘:目前,还需要改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。
想了解更多大数据挖掘技术,请关注CDA数据分析课程。CDA(Certified Data Analyst),即“CDA 数据分析”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证,旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。国家发展战略的要求,岗位人才的缺口以及市场规模的带动,都从不同方面体现了数据分析师职业的重要性。大数据挖掘技术的学习,有利于提高人在职场的信誉度,增加职场竞争力,提高自己的经济地位。点击预约免费试听课。
D. 数据挖掘需要学习哪些知识
1.统计知识
在做数据分析,统计的知识肯定是需要的,Excel、SPSS、R等是需要掌握的基本技能。如果我们做数据挖掘的话,就要重视数学知识,数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。
2.概率知识
而朴素贝叶斯算法需要概率方面的知识,SKM算法需要高等代数或者区间论方面的知识。当然,我们可以直接套模型,R、Python这些工具有现成的算法包,可以直接套用。但如果我们想深入学习这些算法,最好去学习一些数学知识,也会让我们以后的路走得更顺畅。我们经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapRece写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。
3.数据挖掘的数据类型
那么可以挖掘的数据类型都有什么呢?关系数据库、数据仓库、事务数据库、空间数据库、时间序列数据库、文本数据库和多媒体数据库。关系数据库就是表的集合,每个表都赋予一个唯一的名字。每个表包含一组属性列或字段,并通常存放大量元组,比如记录或行。关系中的每个元组代表一个被唯一关键字标识的对象,并被一组属性值描述。
4.数据仓库
什么是数据仓库呢?数据仓库就是通过数据清理、数据变换、数据集成、数据装入和定期数据刷新构造 。数据挖掘的工作内容是什么呢?数据分析更偏向统计分析,出图,作报告比较多,做一些展示。数据挖掘更偏向于建模型。比如,我们做一个电商的数据分析。万达电商的数据非常大,具体要做什么需要项目组自己来定。电商数据能给我们的业务什么样的推进,我们从这一点入手去思考。我们从中挑出一部分进行用户分群。
关于数据挖掘需要学习哪些知识,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
E. 大数据挖掘方法有哪些
谢邀。
大数据挖掘的方法:
神经网络方法
神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。
遗传算法
遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。
决策树方法
决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。
粗集方法
粗集理论是一种研究不精确、不确定知识的数学工具。粗集方法有几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。粗集处理的对象是类似二维关系表的信息表。
覆盖正例排斥反例方法
它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。首先在正例集合中任选一个种子,到反例集合中逐个比较。与字段取值构成的选择子相容则舍去,相反则保留。按此思想循环所有正例种子,将得到正例的规则(选择子的合取式)。
统计分析方法
在数据库字段项之间存在两种关系:函数关系和相关关系,对它们的分析可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。可进行常用统计、回归分析、相关分析、差异分析等。
模糊集方法
即利用模糊集合理论对实际问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。系统的复杂性越高,模糊性越强,一般模糊集合理论是用隶属度来刻画模糊事物的亦此亦彼性的。
F. 大数据挖掘都有哪些方面的应用
1、大数据挖掘可以使混乱且无规则的数据变得清晰且具有高可用性
大数据具有两个典型特征,一个是大量数据,另一个是复杂的计算。与传统数据库相比,大数据的结构化程度,可用性,数据提取和数据清理都是一项繁重的工作。
典型的典型生产和销售企业的业务系统数据是隔离,拆分,销售,生产,财务,客户等的,不同方面实际上是为自己的业务目标和输出构建自己的IT系统甚至被外包给不同的IT集成商或软件开发人员,因此系统相对独立。
2、让数据与数据之间的关系,这种关系可能产生化学反应
啤酒和尿布,口香糖和避孕套的著名例子可以发现典型数据之间的隐含关系。通过对消费者行为的数据进行建模和分析,可以发现理论上这两个原本不相关的事物,当用户购买某商品时产生了关联,针对此发现优化货架商品可以增加销售额。
3、监视数据生成过程以发现异常,并作出预警和错误纠正
通过时间对系统生成的数据进行建模,可以记录平均值以及每个时间点和时间段的上下间隔。如果某个节点发生异常情况,则系统可以快速找到问题并进行预警和故障排除。当然,这只是技术系统的价值。
在业务系统中,这种数据异常会给您业务状况的警告,帮助您比较历史时间维度,确定事物发生变化的原因,并为您提供必要的时间,数据和相关信息参考用于决策分析。
4、通过数据挖掘建立知识模型以提供决策支持信息
IT系统正在发挥更大的价值,因为它可以帮助您通过信息集成来提供决策参考信息。过去,有一个术语称为KDD(知识发现)。随着互联网信息内容的丰富和以及各大例如亿信华辰BI软件等公司的发展,网络信息的价值和有效性也在增加。
关于大数据挖掘都有哪些方面的应用,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
以上是小编为大家分享的关于大数据挖掘都有哪些方面的应用?的相关内容,更多信息可以关注环球青藤分享更多干货
G. 大数据挖掘是指什么
大数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的,但又是潜在有用的信息和知识的过程。数据挖掘通常与计算机科学有关,并经过统计分析、线上解析解决、情报检索、机器学习算法、专家系统和模式识别等诸多方式来实现上述目标。
H. 大数据挖掘主要涉及哪些技术
1、数据科学与大数据技术
本科专业,简称数据科学或大数据。
2、大数据技术与应用回
高职院校专业。
相关专业名答称:大数据管理与应用、大数据采集与应用等。
大数据专业强调交叉学科特点,以大数据分析为核心,以统计学、计算机科学和数学为三大基础支撑性学科,培养面向多层次应用需求的复合型人才。