导航:首页 > 网络数据 > bitmap大数据

bitmap大数据

发布时间:2023-01-20 06:41:07

Ⅰ bitmap能存放的最大数据是多少

redis的bitmap能设置最大的长度是多少, 为什么可以设置的最大长度位数是2^32, 怎么计算bitmap会占用多大的空间





前提: 实际上, redis只支持5种数据类型. 并没有bitmap. 也就是bitmap是基于redis的字符串类型的. 而一个字符串类型最多存储512M.


首先: 计算机的单位换算先了解下


8 bit = 1byte


1024 byte = 1kb


1024 kb = 1Mb


其次:


我们使用的bitmap指令SETBIT key offset value, 这个指令就是将第offset设置成0或1. 比如 SETBIT ss 1000 1 //就是将1000位置为1. 1 bit就是1位, 所以我们只要将512M换算成bit, 那么就知道bitmap支持的最大设置长度了. 计算如下


8 * 1024 * 1024 * 512 = 2^32 (所以这个结果就是这么来的)



怎么计算自己的bitmap会大概占用多大的存储空间呢?


举个栗子: 今有一个bitmap最大长度1024, 需要占用多大的空间?


解: 长度1024也就是他需要1024个位(bit), 或者单位为byte就是需要 1024 / 8, 即需要128byte

————————————————

版权声明:本文为CSDN博主「Day____Day____Up」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/weixin_37281289/article/details/106834014

Ⅱ 大数据排序或取重或去重相关问题

大数据排序或取重或去重相关问题
1. 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?
方案1:可以估计每个文件安的大小为50G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。
s 遍历文件a,对每个url求取 ,然后根据所取得的值将url分别存储到1000个小文件(记为 )中。这样每个小文件的大约为300M。
s 遍历文件b,采取和a相同的方式将url分别存储到1000各小文件(记为 )。这样处理后,所有可能相同的url都在对应的小文件( )中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。
s 求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。
方案2:如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。
2. 有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。 方案1:
s 顺序读取10个文件,按照hash(query)%10的结果将query写入到另外10个文件(记为 )中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。
s 找一台内存在2G左右的机器,依次对 用hash_map(query, query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件(记为 )。
s 对 这10个文件进行归并排序(内排序与外排序相结合)。
方案2:
一般query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。这样,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。
方案3:
与方案1类似,但在做完hash,分成多个文件后,可以交给多个文件来处理,采用分布式的架构来处理(比如MapRece),最后再进行合并。

3. 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。
方案1:顺序读文件中,对于每个词x,取 ,然后按照该值存到5000个小文件(记为 ) 中。这样每个文件大概是200k左右。如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,知道分解得到的小文件的大小都不超过1M。对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点 的最小堆),并把100词及相应的频率存入文件,这样又得到了5000个文件。下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。

4. 海量日志数据,提取出某日访问网络次数最多的那个IP。
方案1:首先是这一天,并且是访问网络的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有 个 IP。同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进 行频率统计,然后再找出频率最大的几个)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。

5. 在2.5亿个整数中找出不重复的整数,内存不足以容纳这2.5亿个整数。
方案1:采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存内存,还可以接受。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。
方案2:也可采用上题类似的方法,进行划分小文件的方法。然后在小文件中找出不重复的整数,并排序。然后再进行归并,注意去除重复的元素。

6. 海量数据分布在100台电脑中,想个办法高校统计出这批数据的TOP10。
方案1:
s 在每台电脑上求出TOP10,可以采用包含10个元素的堆完成(TOP10小,用最大堆,TOP10大,用最小堆)。比如求TOP10大,我们首先取前10个元素调整成最小堆,如果发现,然后扫描后面的数据,并与堆顶元素比较,如果比堆顶元素大,那么用该元素替换堆顶,然后再调整为最小堆。最后堆中的元 素就是TOP10大。
s 求出每台电脑上的TOP10后,然后把这100台电脑上的TOP10组合起来,共1000个数据,再利用上面类似的方法求出TOP10就可以了。

7. 怎么在海量数据中找出重复次数最多的一个?
方案1:先做hash,然后求模映射为小文件,求出每个小文件中重复次数最多的一个,并记录重复次数。然后找出上一步求出的数据中重复次数最多的一个就是所求(具体参考前面的题)。

8. 上千万或上亿数据(有重复),统计其中出现次数最多的钱N个数据。
方案1:上千万或上亿的数据,现在的机器的内存应该能存下。所以考虑采用hash_map/搜索二叉树/红黑树等来进行统计次数。然后就是取出前N个出现次数最多的数据了,可以用第6题提到的堆机制完成。

9. 1000万字符串,其中有些是重复的,需要把重复的全部去掉,保留没有重复的字符串。请怎么设计和实现?
方案1:这题用trie树比较合适,hash_map也应该能行。

10. 一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。
方案1:这题是考虑时间效率。用trie树统计每个词出现的次数,时间复杂度是O(n*le)(le表示单词的平准长度)。然后是找出出现最频繁的前10个词,可以用堆来实现,前面的题中已经讲到了,时间复杂度是O(n*lg10)。所以总的时间复杂度,是O(n*le)与O(n*lg10)中较大 的哪一个。

11. 一个文本文件,找出前10个经常出现的词,但这次文件比较长,说是上亿行或十亿行,总之无法一次读入内存,问最优解。
方案1:首先根据用hash并求模,将文件分解为多个小文件,对于单个文件利用上题的方法求出每个文件件中10个最常出现的词。然后再进行归并处理,找出最终的10个最常出现的词。

12. 100w个数中找出最大的100个数。
方案1:在前面的题中,我们已经提到了,用一个含100个元素的最小堆完成。复杂度为O(100w*lg100)。
方案2:采用快速排序的思想,每次分割之后只考虑比轴大的一部分,知道比轴大的一部分在比100多的时候,采用传统排序算法排序,取前100个。复杂度为O(100w*100)。
方案3:采用局部淘汰法。选取前100个元素,并排序,记为序列L。然后一次扫描剩余的元素x,与排好序的100个元素中最小的元素比,如果比这个最小的要大,那么把这个最小的元素删除,并把x利用插入排序的思想,插入到序列L中。依次循环,知道扫描了所有的元素。复杂度为O(100w*100)。

13. 寻找热门查询:
搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。假设目前有一千万个记录,这些查询串的重复读比较高,虽然总数是1千万,但是如果去除重复和,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就越热门。请你统计最热门的10个 查询串,要求使用的内存不能超过1G。
(1) 请描述你解决这个问题的思路;
(2) 请给出主要的处理流程,算法,以及算法的复杂度。
方案1:采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。

14. 一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到 个数中的中数?
方案1:先大体估计一下这些数的范围,比如这里假设这些数都是32位无符号整数(共有 个)。我们把0到 的整数划分为N个范围段,每个段包含 个整数。比如,第一个段位0到 ,第二段为 到 ,…,第N个段为 到 。 然后,扫描每个机器上的N个数,把属于第一个区段的数放到第一个机器上,属于第二个区段的数放到第二个机器上,…,属于第N个区段的数放到第N个机器上。 注意这个过程每个机器上存储的数应该是O(N)的。下面我们依次统计每个机器上数的个数,一次累加,直到找到第k个机器,在该机器上累加的数大于或等于 ,而在第k-1个机器上的累加数小于 ,并把这个数记为x。那么我们要找的中位数在第k个机器中,排在第 位。然后我们对第k个机器的数排序,并找出第 个数,即为所求的中位数。复杂度是 的。
方案2:先对每台机器上的数进行排序。排好序后,我们采用归并排序的思想,将这N个机器上的数归并起来得到最终的排序。找到第n个便是所求。复杂度是n(i)的。

15. 最大间隙问题
给定n个实数 ,求着n个实数在实轴上向量2个数之间的最大差值,要求线性的时间算法。
方案1:最先想到的方法就是先对这n个数据进行排序,然后一遍扫描即可确定相邻的最大间隙。但该方法不能满足线性时间的要求。故采取如下方法:
s 找到n个数据中最大和最小数据max和min。
s 用n-2个点等分区间[min, max],即将[min, max]等分为n-1个区间(前闭后开区间),将这些区间看作桶,编号为 ,且桶 的上界和桶i+1的下届相同,即每个桶的大小相同。每个桶的大小为: 。实际上,这些桶的边界构成了一个等差数列(首项为min,公差为 ),且认为将min放入第一个桶,将max放入第n-1个桶。
s 将n个数放入n-1个桶中:将每个元素 分配到某个桶(编号为index),其中 ,并求出分到每个桶的最大最小数据。
s最大间隙:除最大最小数据max和min以外的n-2个数据放入n-1个桶中,由抽屉原理可知至少有一个桶是空的,又因为每个桶的大小相同,所以最大间隙不会在同一桶中出现,一定是某个桶的上界和气候某个桶的下界之间隙,且该量筒之间的桶(即便好在该连个便好之间的桶)一定是空桶。也就是说,最大间隙在桶 i的上界和桶j的下界之间产生 。一遍扫描即可完成。

16. 将多个集合合并成没有交集的集合:给定一个字符串的集合,格式如: 。要求将其中交集不为空的集合合并,要求合并完成的集合之间无交集,例如上例应输出 。
(1) 请描述你解决这个问题的思路;
(2) 给出主要的处理流程,算法,以及算法的复杂度;
(3) 请描述可能的改进。
方案1:采用并查集。首先所有的字符串都在单独的并查集中。然后依扫描每个集合,顺序合并将两个相邻元素合并。例如,对于 , 首先查看aaa和bbb是否在同一个并查集中,如果不在,那么把它们所在的并查集合并,然后再看bbb和ccc是否在同一个并查集中,如果不在,那么也把它们所在的并查集合并。接下来再扫描其他的集合,当所有的集合都扫描完了,并查集代表的集合便是所求。复杂度应该是O(NlgN)的。改进的话,首先可以 记录每个节点的根结点,改进查询。合并的时候,可以把大的和小的进行合,这样也减少复杂度。
17. 最大子序列与最大子矩阵问题
数组的最大子序列问题:给定一个数组,其中元素有正,也有负,找出其中一个连续子序列,使和最大。
方案1:这个问题可以动态规划的思想解决。设 表示以第i个元素 结尾的最大子序列,那么显然 。基于这一点可以很快用代码实现。
最大子矩阵问题:给定一个矩阵(二维数组),其中数据有大有小,请找一个子矩阵,使得子矩阵的和最大,并输出这个和。
方案1:可以采用与最大子序列类似的思想来解决。如果我们确定了选择第i列和第j列之间的元素,那么在这个范围内,其实就是一个最大子序列问题。如何确定第i列和第j列可以词用暴搜的方法进行。

Ⅲ 在Android开发中,有哪些好的内存优化方式

你好,要优化内存有很多方法
1:可以下载内存优化软件,例如猎豹安全大师,360清洁大师,91助手等等;
2:删除或者卸载手机自带不常用的软件,例如在中国不适合使用谷歌,YouTube等等(前提是你要ROOT 手机)
3:注意某些软件的后台运行,有些时候,软件退出不代表就是真的退出,在后台它或许还在运行,要注意在设置寻找到应用程序管理器,找到后台运行软件,将其关闭。
4:手机恢复出厂设置,这是最实用,最直接的办法,但是要注意所有文件的备份,不然,一旦还原几乎找不回来

Ⅳ Redis 大数据内存优化 (RoaringBitmap)

最近碰到手机设备匹配的业务, 用户在我司后台可以上传人群包, 里面存放的是设备的MD5标识符; 一个人群包大概有千万级的MD5数据, 与广告请求所携带设备标识进行匹配.

尝试插入1kw条数据, key为设备MD5值, value为1, 此时Redis中存在1kw条key-value键值对.

通过 info 指令查看内存占用:

8bit = 1b = 0.001kb
bitmap即位图, 就是通过最小的单位bit来进行0或者1的设置,表示某个元素对应的值或者状态。
一个bit的值,或者是0,或者是1;也就是说一个bit能存储的最多信息是2。

场景: 有用户id分别为1, 2, 3, 4, 5, 6, 7, 8的用户, 其中用户2, 5在今日登录, 统计今
日登录用户

采用位图存储: 用户id为偏移量, 可以看做是在位图中的索引, value为true

通过 bitcount 获取登录用户数为2:

测试offset从1-1kw连续整数时候的内存占用:

可以发现内存占用仅为 1.19MB, 1个亿的数据也才12MB, 极大的减少了内存;

由于我们的业务没有如此完美的情况出现, 采用设备MD5的hash做Offset, 不会出现连续正整数的情况;

各常用Hash函数性能对比: https://byvoid.com/zhs/blog/string-hash-compare/

所以我们接下来测试1kw条MD5数据的位图内存占用:

查看Redis内存占用:

问题: 为什么同样1kw的bitmap, MD5数据的Hash占用会比 测试一 的多200倍?

将32位无符号整数按照高16位分桶,即最多可能有216=65536个桶,称为container。存储数据时,按照数据的高16位找到container(找不到就会新建一个),再将低16位放入container中。也就是说,一个RBM就是很多container的集合。

图中示出了三个container:

1kw条MD5数据的插入:

Ⅳ Android跨进程传递大数据

最近要从 Service 端给 Client 端传递图片数据,之前的数据都是通过 aidl 传递:
创建 Parcelable 文件
ImageData.java

test.aidl

运行报错:

这里导致 DeadObjectException 的原因主要是 binder 创建的 buffer 被占满了:

传输中如果数据大于 free_buffers ,则会抛出 DeadObjectException

socke 传输不受大小限制,但实现比较复杂

通过文件传输比较简单,但效率差,而且高版本会受到Android系统权限限制

将较大数据切割成较小的数据传输,此方法是兼顾效率,复杂度较好的方案

定义数据体:

切割数据方法:

将ImageData按顺序构建发送:

client接收:

binder 本身也是利用 mmap ,可以利用实现 mmap 的框架,比如 MMKV

如果传输的数据是 Bitmap ,还可以用 Bundle 的 putBinder 方案
定义 binder :

发送

接收:

Ⅵ BitMap及其在ClickHouse中的应用

问题要从面试或者大数据场景下最常见的一个算法说起,问题是这样的,假如有几十亿个unsigned int类型的数据,要求去重或者计算总共有多少不重复的数据?最简单的办法就是直接利用一个HashMap,进行去重。但是这里面有个内存使用量的问题,几十亿个元素,即使不考虑HashMap本身实现所用到的数据结果,单单key本身,假如每个unsigned int占用4个字节,简单算一下的话,这里都需要几十GB的内存占用,因此,这里就引出了BItMap。
BItMap的思想非常简单,就是用一个bit表示一个二元的状态,比如有或者没有,存在或者不存在,用bit本身的位置信息,对应不同的数据。比如针对上面的问题,我们可以开辟一个2^32 bit的内存空间,每一个bit存储一个unsigned int类型的数据,有就是1,没有就是0,总共需要存储unsigned int类型的最大范围个数据,也就是2^32 个数据,这个2^32其实就是所谓的基数。如下图所示:

假如存在数字8,那就把对应的第8位的值赋为1。上图插入的数据为1、3、7、8。接着依次把所有的数据遍历然后更新这个BitMap。这样我们就可以得到最终结果。

假如上面的问题变成了对几十亿个URL做判断,那应该怎么去做呢?URL没有办法和BitMap的位置关系对应上,所以,我们需要加一层哈希,把每个URL经过哈希运算得到一个整数,然后对应上BitMap。如下图所示:

但是有哈希,肯定会存在碰撞,如果BitMap基数(也就是长度)比较小,那碰撞的概率就大,如果基数比较大,那占用的空间又会比较多。Bloom Filter的思想就是引入多个哈希函数来解决冲突的问题。也就是说对每个URL,经过多个哈希函数的运算,得到多个值,每个数值对应的BitMap的对应的位置都赋值为1。这个两个URL经过多个哈希函数结果还是一样的概率就大大降低。

但是由于依然存在冲突的可能性(其实冲突就是来源于我们BitMap的长度小于了数据量的基数,这也就是牺牲了准确性换来了空间使用的减少),所以Bloom Filter 存在假阳性的概率,不适用于任何要求 100% 准确率的场景,也就是说Bloom Filter 只能用来判无,不能用来判有。比如一个URL经过多次哈希运算之后,发现对应的BitMap的位置都已经是1了,那也不能说明,这个URL之前存在过了,也有可能是哈希冲突的结果。但是一个URL经过多次哈希运算之后,发现对应的BitMap的位置不是都是1,那当前URL之前一定是没有存在过的。

可以看到,Bloom Filter 引入多次哈希,在查询效率和插入效率不变的情况下,用较少空间的BitMap解决大数据量的判断问题。

大部分情况下仅仅做有无的判断是不能满足使用需求的,我们还是需要真正意义上的BitMap(可以方便的用来做交并等计算),但是最好可以在基数比较大的时候,依然可以占用相对比较小的空间。这就是RoaringBitMap所要实现的。

简单来说RoaringBitMap是BitMap的一种带索引的复杂BitMap数据结构。以32位的RoaringBitMap为例,首先划分2^16 个空间(Container),每个Container内部都是一个大小为2^16 bit的BitMap,总的内存使用量还是2^32 = 512Mb。这样的话和普通的BitMap是没有区别的,而RoaringBitMap的创新之处在于每个Container内的BitMap是在没有使用到的情况下是可以不分配内存空间的。这样可以大大减小内存的使用量。

(这个图片是Roaring Bitmaps: Implementation of an Optimized Software Library 论文原图)

要将一个4个字节的数据插入RoaringBitMap,首先要用数据的高16位,找到对应的Container,然后用数据的低16在Container中插入。
在每个Container内部,RoaringBitMap不是简单的用BitMap来进行数据的存储,而是把Container的类型划分为几种,不同的Container用来存储不同情况的数据。

当2个字节(4个字节的原数据,低16位用来插入具体的Container中)的数据,总的个数小于4096个的时候,当前Container使用 array Container。为什么是4096个呢?4096*2B=8Kb,而一个Container如果是bitmap的结构的话,最多也就是2^16bit=8Kb的空间。所以这里当数据个数小于4096使用array Container会更节省空间。当然这里名字为array Container,实际上是链表结构,不需要最开始就初始化4096个short int的数组。

当array Container存储的数到4096个的时候(也就是使用内存到8Kb的时候),array Container会转换为bitmap container,bitmap container就是一个2^16 bit普通的bitmap,可以存储2^16 = 65536个数据。这个8Kb还有一个好处,是可以放到L1 Cache中,加快计算。

这个严格的说,只是一种数据压缩存储方法的实现。其压缩原理是对于连续的数字只记录初始数字以及连续的长度,比如有一串数字 12,13,14,15,16 那么经过压缩后便只剩下12,5。从压缩原理我们也可以看出,这种算法对于数据的紧凑程度非常敏感,连续程度越高压缩率也越高。当然也可以实现其他的压缩方法。

RoaringBitMap其核心就在于加了一层索引,利用复杂的数据结构换取了空间上的效率。需要注意的是这里并没有增加计算的复杂度,其出色的数据结构让其在做交并计算的时候性能也毫不逊色。

ClickHouse中有bloom_filter类型的Skipping indexs,可以方便的用来过滤数据。

ClickHouse实现了大量的BitMap的函数,用来操作BitMap。ClickHouse中的BitMap在32位的时候用的是Set实现的,大于32位的时候也是使用RoaringBitMap实现的。我们这里不看具体的函数,我们来看一个典型的使用场景。

最常见的一个场景是根据标签来进行用户的圈选。常见的解决办法是有一张用户标签表,比如

要查询标签tag1='xx'和tag2='xx'的用户需要执行SQL:

但是由于不可能对每个tag列构建一级索引,所以这条SQL执行的效率并不高。可选的一种方式是先构建关于标签的BitMap数据结果,然后进行查询:

(1) 创建tag的bitmap表:

(2)写入数据

(3)查询

如果有多张tag表,进行交并计算(要比普通的用户表进行JOIN或者IN计算要高效很多):

Ⅶ MySQL 如何存储大数据

行格式为Compact是如何存储大数据的:

[vb]view plain

Ⅷ PHP的算法可以实现大数据分析吗

1.Bloom filter

适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集

基本原理及要点:
对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。

还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为 0,则m 应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。

举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。

注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。

扩展:
Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。

问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢?

根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个 bit。现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。

2.Hashing

适用范围:快速查找,删除的基本数据结构,通常需要总数据量可以放入内存

基本原理及要点:
hash函数选择,针对字符串,整数,排列,具体相应的hash方法。
碰撞处理,一种是open hashing,也称为拉链法;另一种就是closed hashing,也称开地址法,opened addressing。 (http://www.my400800.cn)

扩展:
d-left hashing中的d是多个的意思,我们先简化这个问题,看一看2-left hashing。2-left hashing指的是将一个哈希表分成长度相等的两半,分别叫做T1和T2,给T1和T2分别配备一个哈希函数,h1和h2。在存储一个新的key时,同时用两个哈希函数进行计算,得出两个地址h1[key]和h2[key]。这时需要检查T1中的h1[key]位置和T2中的h2[key]位置,哪一个位置已经存储的(有碰撞的)key比较多,然后将新key存储在负载少的位置。如果两边一样多,比如两个位置都为空或者都存储了一个key,就把新key 存储在左边的T1子表中,2-left也由此而来。在查找一个key时,必须进行两次hash,同时查找两个位置。

问题实例:
1).海量日志数据,提取出某日访问网络次数最多的那个IP。

IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存,然后进行统计。

3.bit-map

适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下

基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码

扩展:bloom filter可以看做是对bit-map的扩展

问题实例:

1)已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。

8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。

2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map。

4.堆

适用范围:海量数据前n大,并且n比较小,堆可以放入内存

基本原理及要点:最大堆求前n小,最小堆求前n大。方法,比如求前n小,我们比较当前元素与最大堆里的最大元素,如果它小于最大元素,则应该替换那个最大元素。这样最后得到的n个元素就是最小的n个。适合大数据量,求前n小,n的大小比较小的情况,这样可以扫描一遍即可得到所有的前n元素,效率很高。

扩展:双堆,一个最大堆与一个最小堆结合,可以用来维护中位数。

问题实例:
1)100w个数中找最大的前100个数。

用一个100个元素大小的最小堆即可。

5.双层桶划分 ----其实本质上就是【分而治之】的思想,重在“分”的技巧上!

适用范围:第k大,中位数,不重复或重复的数字

基本原理及要点:因为元素范围很大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行。可以通过多次缩小,双层只是一个例子。

扩展:

问题实例:
1).2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

有点像鸽巢原理,整数个数为2^32,也就是,我们可以将这2^32个数,划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就可以直接解决了。也就是说只要有足够的磁盘空间,就可以很方便的解决。

2).5亿个int找它们的中位数。

这个例子比上面那个更明显。首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。然后第二次扫描我们只统计落在这个区域中的那些数就可以了。

实际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。即可以先将int64分成2^24个区域,然后确定区域的第几大数,在将该区域分成2^20个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。

6.数据库索引

适用范围:大数据量的增删改查

基本原理及要点:利用数据的设计实现方法,对海量数据的增删改查进行处理。
扩展:
问题实例:

7.倒排索引(Inverted index)

适用范围:搜索引擎,关键字查询

基本原理及要点:为何叫倒排索引?一种索引方法,被用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射。

以英文为例,下面是要被索引的文本:
T0 = "it is what it is"
T1 = "what is it"
T2 = "it is a banana"
我们就能得到下面的反向文件索引:
"a": {2}
"banana": {2}
"is": {0, 1, 2}
"it": {0, 1, 2}
"what": {0, 1}
检索的条件"what", "is" 和 "it" 将对应集合的交集。

正向索引开发出来用来存储每个文档的单词的列表。正向索引的查询往往满足每个文档有序频繁的全文查询和每个单词在校验文档中的验证这样的查询。在正向索引中,文档占据了中心的位置,每个文档指向了一个它所包含的索引项的序列。也就是说文档指向了它包含的那些单词,而反向索引则是单词指向了包含它的文档,很容易看到这个反向的关系。

扩展:

问题实例:文档检索系统,查询那些文件包含了某单词,比如常见的学术论文的关键字搜索。

8.外排序

适用范围:大数据的排序,去重

基本原理及要点:外排序的归并方法,置换选择 败者树原理,最优归并树

扩展:

问题实例:
1).有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。返回频数最高的100个词。

这个数据具有很明显的特点,词的大小为16个字节,但是内存只有1m做hash有些不够,所以可以用来排序。内存可以当输入缓冲区使用。

9.trie树

适用范围:数据量大,重复多,但是数据种类小可以放入内存

基本原理及要点:实现方式,节点孩子的表示方式

扩展:压缩实现。

问题实例:
1).有10个文件,每个文件1G, 每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。要你按照query的频度排序 。

2).1000万字符串,其中有些是相同的(重复),需要把重复的全部去掉,保留没有重复的字符串。请问怎么设计和实现?

3).寻找热门查询:查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个,每个不超过255字节。

10.分布式处理 maprece

适用范围:数据量大,但是数据种类小可以放入内存

基本原理及要点:将数据交给不同的机器去处理,数据划分,结果归约。

扩展:

问题实例:

1).The canonical example application of MapRece is a process to count the appearances of

each different word in a set of documents:
void map(String name, String document):
// name: document name
// document: document contents
for each word w in document:
EmitIntermediate(w, 1);

void rece(String word, Iterator partialCounts):
// key: a word
// values: a list of aggregated partial counts
int result = 0;
for each v in partialCounts:
result += ParseInt(v);
Emit(result);
Here, each document is split in words, and each word is counted initially with a "1" value by

the Map function, using the word as the result key. The framework puts together all the pairs

with the same key and feeds them to the same call to Rece, thus this function just needs to

sum all of its input values to find the total appearances of that word.

2).海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。

3).一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数的中数(median)?

经典问题分析

上千万or亿数据(有重复),统计其中出现次数最多的前N个数据,分两种情况:可一次读入内存,不可一次读入。

可用思路:trie树+堆,数据库索引,划分子集分别统计,hash,分布式计算,近似统计,外排序

所谓的是否能一次读入内存,实际上应该指去除重复后的数据量。如果去重后数据可以放入内存,我们可以为数据建立字典,比如通过 map,hashmap,trie,然后直接进行统计即可。当然在更新每条数据的出现次数的时候,我们可以利用一个堆来维护出现次数最多的前N个数据,当然这样导致维护次数增加,不如完全统计后在求前N大效率高。

如果数据无法放入内存。一方面我们可以考虑上面的字典方法能否被改进以适应这种情形,可以做的改变就是将字典存放到硬盘上,而不是内存,这可以参考数据库的存储方法。

当然还有更好的方法,就是可以采用分布式计算,基本上就是map-rece过程,首先可以根据数据值或者把数据hash(md5)后的值,将数据按照范围划分到不同的机子,最好可以让数据划分后可以一次读入内存,这样不同的机子负责处理各种的数值范围,实际上就是map。得到结果后,各个机子只需拿出各自的出现次数最多的前N个数据,然后汇总,选出所有的数据中出现次数最多的前N个数据,这实际上就是rece过程。

实际上可能想直接将数据均分到不同的机子上进行处理,这样是无法得到正确的解的。因为一个数据可能被均分到不同的机子上,而另一个则可能完全聚集到一个机子上,同时还可能存在具有相同数目的数据。比如我们要找出现次数最多的前100个,我们将1000万的数据分布到10台机器上,找到每台出现次数最多的前 100个,归并之后这样不能保证找到真正的第100个,因为比如出现次数最多的第100个可能有1万个,但是它被分到了10台机子,这样在每台上只有1千个,假设这些机子排名在1000个之前的那些都是单独分布在一台机子上的,比如有1001个,这样本来具有1万个的这个就会被淘汰,即使我们让每台机子选出出现次数最多的1000个再归并,仍然会出错,因为可能存在大量个数为1001个的发生聚集。因此不能将数据随便均分到不同机子上,而是要根据hash 后的值将它们映射到不同的机子上处理,让不同的机器处理一个数值范围。

而外排序的方法会消耗大量的IO,效率不会很高。而上面的分布式方法,也可以用于单机版本,也就是将总的数据根据值的范围,划分成多个不同的子文件,然后逐个处理。处理完毕之后再对这些单词的及其出现频率进行一个归并。实际上就可以利用一个外排序的归并过程。

另外还可以考虑近似计算,也就是我们可以通过结合自然语言属性,只将那些真正实际中出现最多的那些词作为一个字典,使得这个规模可以放入内存。

Ⅸ android intent跳转怎样传输大数据

在Activity或者组件之前传递信息时,一般采用intent绑定bundle的方式传值,但在使用过程中需要注意的是不要用bundle传递大容量数据:

在做项目的过程中,需要将听写界面的听写结果信息传递到听写记录界面供显示用,但是由于传递的数据量过大导致程序ANR,甚至直接报异常(传递的信息里面有bitmap转换成的byte数组、每一个词组的拼音、词语、语音信息),经过分析发现是由于bundle不能传递大容量的数据信息,在stackoverflow里面查阅发现有同行遇到类似的问题:

(1)“The size limit of Intent is still pretty low in Jelly Bean, which is somewhat lower than 1MB (around 90K), so you should always be cautious about your data length, even if your application targets only latest Android versions.”

(2)“As per my experience (sometime ago), you are able to put up to 1MB of data in a Bundleencapsulated inside Intent. I think, this restriction was valid up till Froyo or GingerBread.”

所以在通过bundle传递数据时只能传递较小的数据信息,对于在不同组件之间需要传递大容量数据的情况时,有几种替代方式可以解决不能用bundle传递这些数据的问题:

方法一:将需要传递的数据写在临时文件或者数据库中,再跳转到另外一个组件的时候再去读取这些数据信息,这种处理方式会由于读写文件较为耗时导致程序运行效率较低;

方法二:将需要传递的数据信息封装在一个静态的类中(注意当前组件和要跳转到的组件必须属于同一个进程,因为进程之间才能够共享数据),在当前组件中为类设置内容,然后再跳转到的组件中去取,这种处理方式效率很高,但是会破坏程序的独立性。

具体采用哪种替代方式取决于具体的情况,本人建议采取第二种处理方式,因为这样会大大提高程序的运行效率,至于程序的独立性,看你怎么去封装这个类了。

Ⅹ 如何进行java海量数据处理,下面一段是我摘抄的问题及处理方法

lz没理解第二步“分而治之”的思想,分治算法是将一个大问题分解为一系列与大问题性质相同的子问题,所以在分治时不可能把相同的ip分配到不同的文件中,就像你所说的,“按照IP地址的Hash(IP)%1024值,把海量IP日志分别存储到1024个小文件中”,通过hash,两个相同的ip肯定放到同一个文件中了哈

阅读全文

与bitmap大数据相关的资料

热点内容
拍照文件扫描转换word 浏览:724
电脑启动后桌面文件不见了 浏览:535
图文游戏编程作品说明如何写 浏览:197
qq浏览器wifi不安全卫士 浏览:449
文件在用户却不显示在桌面 浏览:124
delphi获取操作系统版本 浏览:722
linux定时任务执行脚本 浏览:787
招商银行app怎么查电费 浏览:739
手机代码文档翻译软件 浏览:676
青华模具学院和ug编程哪个好 浏览:736
怎么改网站关键词 浏览:581
怎么把ps图片保存成雕刻文件 浏览:771
java字符串赋空值不赋值null 浏览:556
什么是文件hash 浏览:345
文件碎片微信小程序 浏览:878
苹果手机怎么升级运营商版本 浏览:100
什么是菜鸟网络服务协议 浏览:260
11月份的销售数据是什么 浏览:439
三个数据如何列表格 浏览:92
3m互助平台升级会无法登陆吗 浏览:211

友情链接