A. 大数据需要什么基础
学习大数据需要以下几个方面的基础: 新手学大数据,首先要具备的是编程语言基础,如java、C++等,要初步掌握面向对象、抽象类、接口、继承、多态和数据流及对象流等基础,编程语言在大数据中占据了不可逾越的地位,掌握一门编程语言再学习大数据会轻松很多,甚至编程语言要比大数据学习的时间更长。 linux系统的基本操作是大数据不可分割的一部分,大数据的组件都是在这个系统中跑的
B. 大数据的基础是什么
大数据的基础是存储和计算。大数据的特点就是数据量的规模较大,因此首要问题就是存储问题。然后核心问题就是大数据量的计算问题。这两个部分组成了大数据的根基。
C. 学习大数据需要哪些基础
第一:计算机基础知识。计算机基础知识涉及到三大块内容,包括操作系统、编程语言和计算机网络,其中操作系统要重点学习一下Linux操作系统,编程语言可以选择Java或者Python。如果要从事大数据开发,应该重点关注一下Java语言,而如果要从事大数据分析,可以重点关注一下Python语言。计算机网络知识对于大数据从业者来说也比较重要,要了解基本的网络通信过程,涉及到网络通信层次结构和安全的相关内容。
第二:数据库知识。数据库知识是学习大数据相关技术的重要基础,大数据的技术体系有两大基础,一部分是分布式存储,另一部分是分布式计算,所以存储对于大数据技术体系有重要的意义。初学者可以从Sql语言开始学起,掌握关系型数据库知识对于学习大数据存储依然有比较重要的意义。另外,在大数据时代,关系型数据库依然有大量的应用场景。
第三:数学和统计学知识。从学科的角度来看,大数据涉及到三大学科基础,分别是数学、统计学和计算机,所以数学和统计学知识对于大数据从业者还是比较重要的。从大数据岗位的要求来看,大数据分析岗位(算法)对于数学和统计学知识的要求程度比较高,大数据开发和大数据运维则稍微差一些,所以对于数学基础比较薄弱的初学者来说,可以考虑向大数据开发和大数据运维方向发展。
D. 学习大数据需要什么基础
1、了解大数据理论
要学习大数据你至少应该知道什么是大数据,大数据一般运用在什么领域。对大数据有一个大概的了解,你才能清楚自己对大数据究竟是否有兴趣,如果对大数据一无所知就开始学习,有可能学着学着发现自己其实不喜欢,这样浪费了时间精力,可能还浪费了金钱。所以如果想要学习大数据,需要先对大数据有一个大概的了解。
2、java
90%的大数据框架都是Java写的。如:
●MongoDB--最受欢迎的,跨平台的,面向文档的数据库。
●Hadoop--用Java编写的开源软件框架,用于分布式存储,并对非常大的数据集进行分布式处理。
●Spark --Apache Software Foundation中最活跃的项目,是一个开源集群计算框架。
Hbase--开放源代码,非关系型,分布式数据库,采用Google的BigTable建模,用Java编写,并在HDFS上运行。
需要了解java设计与编程思想;Java面向对象;Java高级;Web前端开发;HTML基础;CSS3;JS脚本编程;JavaEE程序开发;JavaWeb后端开发。
3、 MySQL(必须需要掌握的)
4、Linux
大数据的框架安装在Linux操作系统上
5、Hadoop,Scala, HBase, Hive, Spark
在学习的过程中,投入时间和精力,以兴趣来驱动学习。代码实战是必须的,看的是别人的代码,动手写出来的才是自己的。
以上就是学习大数据需要什么基础的详细内容
E. 学习大数据要什么基础
大数据开发学习要掌握java、linux、hadoop、storm、flume、hive、Hbase、spark等基础知识。
学会这两项基础后,接下来就需要学习大数据相关的技术了。首先学习Hadoop,需要学习它的HDFS、MapRece和YARN的组件,学会了这些,接下来就按顺序学习Zookeeper,Mysql,Sqoop,Hive,Oozie,Hbase,Kafka,Spark。当我们把这些技术都学会了,基本上就能成为一个专业的大数据开发工程师了。
之后再进阶提高一下,学习一下python、机器学习、数据分析等知识,能让自己在今后的工作中更好的配合算法工程师、数据分析师,让自己变得更进步更优秀。
F. 大数据需要什么基础
学习大数据要有一定的编程基础,这是大数据大部分岗位都需要的。目前从事大数据方向的程序员比较普遍使用的语言有四种,分别是Python、Java、Scala和R,这四种语言都有一定的应用场景,不同岗位的程序员使用的语言也稍有不同。
G. 学习大数据需要什么基础
学习大数据需要的基础:
学习大数据开发技术相关的开发技术知识体系是比较庞大的,对于大数据的学习来说学,确实逻辑思维能力是更重要的。基础知识是可以通过学习进行弥补的,大数据培训则成为小伙伴比较靠谱的学习方式。在大数据培训班第一阶段就是基础内容的学习。
不同的大数据培训机构在课程内容上侧重点可能会有所不同,所以在培训周期上也会有所差异。硅谷大数据培训班,学习课程内容除了第一阶段学习Java语言基础之外,还要学习HTML、CSS、Java、JavaWeb和数据库、Linux基础、Hadoop生态体系、Spark生态体系等课程内容。
项目实战对学习大数据的同学来说是一个必须经过的过程。学习大数据的同学只有经过项目实战训练,才能在面试和后期工作中从容应对,这是一个很重要的过程。
当然了,项目实战训练时间与项目的难度、项目的数量相关,项目难度较大、项目较多,当然学习的时间会更长。
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
H. 大数据分析需要什么基础
大数据分析需要的基础有:
1、编程语言基础
学大数据,首先要具备的是编程语言基础,掌握一门编程语言再学习大数据会轻松很多,甚至编程语言要比大数据学习的时间更长。
2、Linux系统的基本操作
Linux系统的基本操作是大数据不可分割的一部分,大数据的组件都是在这个系统中跑的。
3、数据库
只要跟数据打交道就离不开数据库,SQL语言是每个数据分析师必不可少的一项硬技能。
4、Hadoop架构基础
完成大数据环境的配置搭建,也是学习大数据的第一步。
5、机器学习
要使得大数据相关内容得到应用,则必然会涉及大量机器学习及算法的内容,发挥出大数据的优势,让你的办公效率更快,更强。
I. 大数据分析的基础是什么
1、可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2、数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3、预测性分析能力
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4、语义引擎
大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配。
5、数据质量和数据管理
大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。