大数据广泛应用于各个行业中的今天,每时每刻都在产生着庞大的数据碎片信息,企业则需要收集、分析、总结、分辨出真正的客户,才能发掘有价值的商机,分辨出谁是我们的真正客户。而这些大量的较为分散的信息是非常复杂的,已经无法单纯地通过“人工处理”,而必须依托云计算的技术,因此,企业纷纷借助CRM客户关系管理系统来实现。
快速获取潜在客户
寻找大量的潜在客户,是每个企业获得商机的最佳方式。使用CRM客户关系管理系统,可以和网站、电子邮件、短信等多种营销方式相结合,能够实现线上客户自动抓取,迅速扩大商机数量。同时,CRM系统具有审批、邮件营销和短信营销的功能,这些功能帮助企业获取更多的潜在客户,提高企业的商机数量。
360度全面接触客户
CRM系统作为连接企业和客户的重要纽带,覆盖了与客户接触的全部阶段,衔接了各部门的工作协同。CRM系统能记录客户所有相关信息,能统一收集整理各环节的客户信息,而且共享权限不仅限于本部门的成员,能让所有接触客户的各个部门同时共享所需数据信息。避免了与客户沟通时出现“重复内容”。同时,规范了客户服务流程,通过CRM系统,工作人员能有针对性地满足客户的个性化需求,有效推进与客户的互动,提升客户体验,增加客户黏性。
分析与评估营销效果
有了CRM系统就有了准确的数据支撑,也就能够科学的评估活动效果。同时也是个“查漏补缺”的过程,在这个过程中能够清晰的呈现各环节的问题,更加精准的对销售过程进行控制,辅助业务人员对客户需求的做到更加及时的响应以便改进。
留住老客户,创造新商机
留住老客户的成本远远低于开发新客户的成本。只有提高客户满意度和忠诚度,才能够留住老客户。CRM通过对老客户的跟踪服务记录,能够提供客户关怀,提升客户的满意度和忠诚度,并且能够发现老客户的新需求,这样就产生了新的商机。而后提供满足老客户需求的产品或服务,那么,新的客户价值又产生了。
大数据时代下,企业选择一款合适的CRM系统来帮助实现商机增长,是最正确的选择。
『贰』 大数据时代如何把握商机
大数据时代如何把握商机
一、如何发现大数据,它在哪里?
很多大中小型企业,或者不知道该如何使用手中已有的数据资源,或者认为大数据只有BAT才有,一个小网站或APP应用是没有大数据的,果真如此吗?
随便举个例子:法国的一些航空公司推出免费的APP方便旅客在移动设备上跟踪自己的行李,之后在追踪的数据平台上发现一部分商务旅行客户中途在某一城市进行短暂的商业会晤不需入住酒店,行李成了累赘,于是航空公司推出专人看管全程可追踪的增值服务,此项服务每周的新创造大概可达100万美元。
正是基于对数据的洞察产出附加价值。对数据的掌控,就是对市场的支配,意味着丰厚的投资回报。IN位一直都在致力于大数据的营销,帮助客户定制不同场景的服务,把营销做到极致。
二、数据是身份地位
数据的形式多种多样,呈数量级爆发的UGC内容(User-generated Content——用户生产内容)如何可以被我们拿来运用?比如飞泻而下的中国股市,股民巨量的埋怨和牢骚能以怎样的数据化形式展示?“除了耐心等待,最好再找个地方让自己发泄一下,找些跟自己同病相怜的人,还能缓解一下压力,避免跳楼。弹幕,就是最好的形式了。”——有人建了一个网站,在K线图上配上弹幕供吐槽。
结果被同样郁闷的股民玩的特别魔性,汇集出的数据随着K线走势变化拥有了实时鲜明的情绪特征,可以在一定程度上预估使用者下一步卖出或继续持有的动向。
IN位正在改变营销的思路和方法,数据无处不在,每一个数据都有自己的地位,有自己的属性,如何能给数据合理的身份,是我们一直在探索的课题。
三、IN位用5W1H方法玩转大数据
消费数据可综合为5W1H:
1.Who&Whom:潜在用户分类?谁是决策者?谁是使用者?谁对决定购买有重大影响以及谁是实际购买者?
2.What:不同品牌的市场占有率、具体型号的销售情况;
3.When:了解在具体的季节、时间甚至时点所发生的购买行为,比如配合节假日促销;
4.Where:研究适当的销售渠道和地点,还可以进一步了解消费者是在什么样的地理环境、气候条件、甚至于地点场合使用;
5.How:了解消费者怎样购买、喜欢什么样的促销方式,比如是去线下体验店还是看测评等;
6.Why:探索消费者行为动机和偏好,比如为什么喜欢特定的款式并拒绝别的品牌或型号;
不同特征的消费者会产生不同的心理活动的过程,通过其决策过程导致了一定的购买决定,最终形成了消费者对产品、品牌、经销商、购买时机、购买数量的选择。
数字营销人员如果能比较清楚地了解各类购买者对不同形式的产品、服务、价格、促销方式的真实反应,就能够适当地影响、刺激或诱发购买者的购买行为。
大数据时代,如何您还不知道数据去哪里找,如何用数据,那建议您找IN位这样专业的机构或者自己多学习相关内容。
『叁』 大数据的商业机会在哪
大数据的商业机会在哪
近些年,大数据已经和云计算一样,成为时代的话题。大数据是怎么产生的,商业机会在哪?研究机会在哪?这个概念孕育着一个怎样的未来?
昨天在车库咖啡参加了一个小型的研讨活动,就这些问题进行了一些讨论,我结合自己的一些理解做一个总结。
首先,大数据是怎么产生的?
1)物理世界的信息大量数字化产生的
例如刘江老师指出的好大夫网,将医生的信息,门诊的信息等数字化。其实还有很多,比如新浪微博将茶馆聊天的行为(弱关系产生信息数字化),朋友聊天的行为数字化(强关系产生信息数字化)。视频监控探头将图像数字化。
2)社交网络产生的
在雅虎时代,大量的都是读操作,只有雅虎的编辑做一些写操作的工作。进入web2.0时代,用户数大量增加,用户主动提交了自己的行为。进入了社交时代,移动时代。大量移动终端设备的出现,用户不仅主动提交自己的行为,还和自己的社交圈进行了实时的互动,因此数据大量的产生出来,并且具有了极其强烈的传播性。
3)数据都要保存所产生的
一位嘉宾指出,旧金山大桥保留了百年的历史数据,在时间跨度上产生了价值,很多网站在早期对数据的重视程度不够,保存数据的代价很大,存储设备的价格昂贵,但是时代变了,存储设备便宜了,用户自己产生的数据得到了重视,数据的价值被重视了。因此越来越多的数据被持续保存。
其次,大数据和大规模数据的区别?
big data之前学术界叫very large data,大数据和大规模数据的差距是什么?我认为在英文中large的含义只是体积上的,而big的含义还包含重量上的,价值量上的。因此我认为:
1)大数据首先不是数量上的堆砌,而是具有很强的关联性结构性。
比如有一种数据,记录了世界上每一颗大树每年长高的程度,这样的数据不具有价值,因为只是简单堆砌。
如果数据变成,每一个大树记录它的,地点,气候条件,树种,树龄,周边动植物生态,每年长高的高度,那么这个数据就具有了结构性。具有结构性的数据首先具有极强的研究价值,其次极强的商业价值。
在比如,淘宝的数据,如果只记录一个交易的买家,卖家,成交物品,价格等信息,那么这个商业价值就很有限。淘宝包含了,买家间的社交关系,购物前后的其他行为,那么这个数据将非常有价值。
因此,只有立体的,结构性强的数据,才能叫大数据,才有价值,否则只能叫大规模数据。
2)大数据的规模一定要大,而且比大规模数据的规模还要大。
要做一些预测模型需要很多数据,训练语料,如果数据不够大,很多挖掘工作很难做,比如点击率预测。最直白的例子,如果你能知道一个用户的长期行踪数据,上网的行为,读操作和写操作。那么几乎可以对这个人进行非常精准的预测,各种推荐的工作都能做到很精准。 最后,大数据的机会在哪里?对小公司的机会在哪?
围绕数据的整个产业链上,我认为具有以下机会:
1)数据的获得
大量数据的获得,这个机会基本属于新浪微博等这类大企业,大量交易数据的获得,也基本属于京东,淘宝这类企业。小企业基本没机会独立得到这些用户数据。
2)数据的汇集
例如如果你要能把各大厂商,各大微博,政府各个部门的数据汇集全,这个机会将是极大的。
但,这个工作,做大了需要政府行为,做中档了,要企业间合作,做小了,也许就是一个联盟或者一个民间组织,比如中国爬盟。
3)数据的存储
汇集了数据后,立即遇到的问题就是存储,这个代价极大,原始数据不能删除,需要保留。因此提供存储设备的公司,执行存储这个角色的公司,都具有巨大的市场机会,但是这也不属于小公司,或者早期创业者。
4)数据的运算
在存储了数据以后,怎么把数据分发是个大问题,各种API,各种开放平台,都是将这些数据发射出去,提供后续的挖掘和分析工作,这个也需要有大资本投入,也不适合小公司。
5)数据的挖掘和分析
数据需要做增值服务,否则数据就没有价值,big也big不到哪里去,是没有价值的big.因此这种数据分析和挖掘工作具有巨大的价值,这个机会属于小公司,小团体。
6)数据的使用和消费
在数据做到了很好的挖掘和分析后,需要把这些结果应用在一个具体的场合上,来获得回报,做数据挖掘和分析的公司,必须得找到这些金主才行,而这些金主肯定也不是小公司。
大数据未来的形态,或者产业链结构一定是分层的,巨大的,价值的体现发生在各个层次,每个层次都是生态链的重要一环,都孕育着巨大的机遇和挑战,我们能做的唯有努力,做适合自己的工作。
『肆』 大数据时代 企业在数据中寻觅商机
大数据时代 企业在数据中寻觅商机_数据分析师考试
在大数据时代,很多企业在整体数据入口方面的竞争变得越来越激烈,这种对于入口级的大数据“争夺战”让很多企业在数据挖掘和收集的技术方面开始加快更新速度。
曾经有一个大数据技术专家表示,从目前的大数据市场发展前景来看,大数据时代的竞争大致可以分为三个层面,也就是大数据本身的竞争、大数据技术层面的竞争和大数据思维的竞争。
虽然这三种竞争力都是不可替代的,但最终大部分价值还是必须从数据本身出发来挖掘,并且大数据本身作为公司的一种私有资产,是很难被竞争对手短期复制的,数据的拥有者也成为立足的重要砝码。
企业机会在信息的“数据化”当中
在当前IT行业激烈竞争环境之下,对于入口产品的控制成为了大数据厂商的必争之地,现在是一个万物互联的世界,我们身边的所有事物之间其实都具有“数据化”的联系,所有的事物所产生的信息都是数据。
只不过目前的大数据理论和技术还只是停留在“线下”阶段,只有将“线下数据”转变为“线上数据”,大数据的价值才可能真正意义的释放,同时形成自己的数据竞争壁垒。
硬件竞争成为“入口”
我们常说的数据化一定是伴随着硬件技术的发展延伸而来的,比如,纸笔让有形文字得以记录,万能条码和条形码扫描器使零售进入信息化运营时代,而最新的GoogleGlasses更是可以将人们的视觉注意力进行“数据化”。
未来,可植入人体的高智能芯片、可穿戴终端、智能网络与物联网等都会成为帮助信息进一步“数据化”的工具。近年来,美国互联网公司的正在增加自身的消费电子化元素,Google、Amazon这些IT行业巨头一直都在从一些消费电子企业身上学习并融合新的元素。
其实这样做的目的并不是为了要争取那一丁点的硬件利润,更多的还是为了拥有一个更加前置产品的数据入口。回归国内,其实在硬件层面的竞争压力也是相当大的,很多企业都是在拥有了大数据的核心竞争力之后,再配合数据思维和数据技术的发展,最终会带来数据价值的实现。
硬件数据能给我们带来什么
通过物联网、车联网等等万物互联的产物已经可以看得出我们的生活方式正在受到数据化的影响,据可靠数据预计,新一代科技产品的出货量和用户量将会是上一代科技产品的10倍量级,那随之而来的则是大量量化用户数据的产生。
不单是对于个人用户,对企业来说也一样,数据化带来的行业竞争开始变得越发激烈,很多不同行业的企业开始利用大数据对自身的优势方面不断扩大化。比如医疗行业,传统的医疗诊断过程更多的依托于“望闻问切”得到的短期的、粗粒度数据,现代医学引入大量的医疗设备,但也仅仅是在医院现场取得的扫描结果。
以上是小编为大家分享的关于大数据时代 企业在数据中寻觅商机的相关内容,更多信息可以关注环球青藤分享更多干货
『伍』 机会来了,互联网时代的商机 这些你们想知道吗
一.互联网思维的显著特征
1、效率思维。具体体现在效率管理由过去的某一个环节转化为全面管理,以往的效率管理强调的是生产效率而忽略了决策层面的效率,互联网思维强调的是整体思维。互联网时代又是大数据时代,大量数据为我们进行高效决策提供了技术上的支持和保障。
2、智能思维。在整体企业经营的各环节中都需要植入智能化。在企业经营的整体过程中需要智能的支撑。新零售在更多层面上是由人到人工智能的转变。
3、价值思维。传统的经营思维指的是为企业创造财富,为股东创造价值。进入互联网时代后,企业的经营思维转变为为社会创造价值,为行业的进步创造价值。互联网的价值思维要求企业必须成为行业的领军者。
4、共享思维。指的是以往企业的经营资源、技术、人才属于企业自身,互联网思维则要求资源、技术、人才的共享,使得资源可以得到最大化的利用。
5、创新思维。互联网时代彻底打破了以往的信息壁垒,也将逐渐产出信息不对称而产生的资源浪费。在信息对称的情况下,要求企业需要做到创新,做到行业领先。
小编解读:思维的概念略像空泛,对于“互联网思维”,小编更理解为:是一种与时俱进和不断去认知和理解新兴事物的欲望。然后把这种欲望不断转化成实际行动,就是思维进步的表现形式。无论是效率思维、价值思维还是共享思维,都逃不出这个概念。
互联网思维就是在互联网时代下的思维方式,跟上了成功也许就要看你行不行动了!
现代企业的组织架构变革
传统的组织形态模式是紧密型的;
从企业功能上讲是生产型的;
从技术层面上讲是人力型的;
从企业和员工的关系上讲是雇佣型的;
从员工在企业的角色上讲是全职型的。
互联网时代,企业的组织形态由紧密型转化为松散型,从工作场所及工作时间都变得碎片化;
从企业功能上讲是平台型的;
从技术层面上讲是智能型的;
从企业和员工的关系上讲是合作型的;
从员工在企业的角色上讲是兼职型的,使得企业能够吸纳更多的更高层次人才。
『陆』 大数据时代的商业法则
大数据时代的商业法则
大数据时代给企业带来了前所未有的商机,在大数据时代,企业必须学会利用大数据精确地分析、导入用户、促成交易,并用最有效率的方式组织生产。在大数据时代,企业必须遵循新的商业法则,否则就会被大数据的浪潮所淹没。法则1:解读用户的真实需求 解读用户的真实需求,就是通过数据的收集、分析挖掘出用户内心的欲望,提高企业产品推送的成功率,并将其转化为企业的订单。
大数据看似神秘莫测,其实在解读用户需求上的操作思路却极其简单,即尽可能掌握用户的个人信息和关注信息。当关注信息指向个人时,就能够相对精准地定义出用户的需求。
在这一过程中,主要的操作模式有两种:静态辐射模式和动态跟踪模式。
静态辐射模式
静态辐射模式的数据分析在一个时间节点上进行,尽量扩大分析对象,并用标签来筛选出最可能成交的用户。这是大数据应用中最典型的一种模式。由于一些大企业主动会进行用户标签的管理,需要大数据助力营销的企业就可以“借船出海”。
标签与购买的关系有两种:一类标签与购买的关系非常明显。例如,一个常常浏览经管类书籍的用户一定是这类书籍的潜在购买者。
另一类标签与购买的关系却并不十分明显。这就需要企业提前进行分析,有时还需要借助第三方专业机构的分析结果。
例如,新浪微博会根据用户平时的浏览和表达为用户贴上“标签”。但是,这些标签与有些购买行为之间的关系就并不明显。金夫人是国内婚纱摄影巨头,他们首先利用自己作为网络大客户的身份,无偿获取了网络提供的婚纱摄影客户调研分析数据,发现美食、影院等标签的用户最有可能购买婚纱摄影产品。利用这一跨数据库的结果,金夫人在新浪微博的平台上锁定了“年龄20~35左右的某地区女性”群体,加上了美食、影院等标签,精准锁定了高转化可能的用户,并购买了平台提供的“粉丝通”服务,对他们进行定向广告推送。一般来说,推送5~6万个用户大约会得到70~80个电话咨询,这种转化过来的电话咨询顾客被称“顾客资源”,从顾客资源到最后的成单,转化率优异,大约在40%。
动态跟踪模式
动态跟踪模式的数据分析在一个时间周期内进行,尽量缩小分析对象,不断通过用户的行为来为用户贴上标签,伺机发现产品推送的时点。由于这种分析针对小群体,无法由第三方机构提供统一的规模化服务,所以,对于企业来说是有高门槛的,需要企业练好内功。这种模式中,企业对于用户不断产生的新数据,要进行随时跟踪,并随时在云端进行处理。
例如,Target超市以20多种怀孕期间孕妇可能会购买的商品为基础,将所有用户的购买记录作为数据来源,通过构建模型分析购买者的行为相关性,能准确地推断出孕妇的具体临盆时间,这样Target的销售部门就可以有针对地在每个怀孕顾客的不同阶段寄送相应的产品优惠券。在一个个例中,他们居然比用户更早知道了她怀孕的信息。
又如,亚马逊基于自己对用户的了解来进行精准营销,在网站上的推荐和电子邮件对于产品的推送成为了促进成交的利器。调研公司Forrester分析师苏察瑞塔·穆尔普鲁称,根据其他电子商务网站的业绩,在某些情况下,亚马逊网站推荐的销售转化率可高达60%。这一转化率远远高于其他电子商务网站,难怪一些观察员将亚马逊的推荐系统视为“杀手级应用”。最新的消息显示,亚马逊已经注册了“未下单、先发货”的技术专利,这是更加精准的需求预判和更加直接的产品推送,他们对于大数据的应用已经是炉火纯青!
法则2:形成社会化协作的生产安排
如果能依靠大数据进行产品推送实现购买,海量需求就会从互联网汹涌而来。这意味着产品的数据增多、涉及原料增多、消费者零散下单……这一变化使得工业时代标准化的产品生产模式受到前所未有的颠覆,生产端需要基于大数据形成前所未有的柔性,来对接消费端的柔性。
互联网商业环境对价值链提出了新的挑战:链条上的采购、生产、物流、分销、零售各环节中,除了生产之外的其他环节也需要强大的数据处理能力,各个环节的数据处理系统和数据本身必须是共享的,而且,这些系统和内容还必须向全社会开放。要达到这种要求,显然应该应用价值链接网,并用大数据来进行生产协调。
大数据的确给价值链重塑带来了机会。在工业经济时代,生产更多地通过“规模经济”来获利,大规模标准化的生产最大程度地降低了单位成本。但在互联网经济时代,生产更应该通过“范围经济、协同效应和重塑学习曲线”来获利,因为,多种类、小规模的生产需要价值链上的灵动协作。
基于互联网这样一个平台,所有的价值链环节可以实现数据共享和集中处理。另外,因为使用统一的数据构架,所以不会出现数据孤岛,浪费有价值的数据。由此,价值链各个环节之间可以无缝链接,实现最敏捷、最合理的生产。基于互联网这样一个平台,企业入围合作即可以获得充分的信息,也不再会遭遇太高的学习门槛。更厉害的是,用户参与生产也变得容易,模块化的选择题,让业余者也可以发出专业的需求信号。由此,从始端原料的生产者到终端的消费者,全部都被植入了价值链(或称为价值网),社会化协作得以真正实现。而在大数据出现以前,这几乎是不可能的!
顺应法则赢未来
独具特色的大数据商业法则,将会引发未来商业格局的变化。未来的赢家,将属于能够适应新的商业法则和新的商业逻辑的代表者。
在用大数据掘金的世界,谁掌握大数据,并能利用大数据实现上述两大商业法则的变革,谁就能赢得未来。
因此,我们可以肯定地判断出,掌握了大数据的资源整合类企业,将会成为大数据时代的企业赢家。这类企业是商业生态(价值网)中的“舵手”,通过灵敏地识别市场需求,指挥网络成员协同生产,获得组合创新优势。由于控制了整个网络,此类企业拥有网络收益的剩余索取权,往往获利最为丰厚。工业经济时代,企业是依赖品牌、声誉和社会资本实现资源整合。互联网时代,资源变得无限丰富,协作变得极度频繁,企业更需要依靠大数据来发现需求、整合资源。可以这样说,掌握了大数据,这类企业就知道“用户要什么,哪里有什么,如何用资源去满足用户需求”。
未来的资源整合企业将基于大数据来运作。维克托·迈尔·舍恩伯格等人在《大数据时代》中,将基于大数据的资源整合企业分为三种:第一种是掌握数据的企业,这类企业掌握了端口,掌握了数据的所有权;第二种是掌握算法的企业,负责处理数据,挖掘有价值的商业信息,这些企业被称为“数据武士”;第三种是掌握思维的企业,他们往往先人一步发现市场的机会,他们既不掌握数据技能,也不掌握专业技能,但正因为如此才有广阔的思维,能够最大程度串联资源,形成商业模式,他们相当于“路径寻找者(pathfinder)”。
按照各自生产要素的价值性和稀缺性,很难说哪类企业真正将在大数据的商业模式中获益,三类企业各自有各自的贡献,各自有各自的稀缺之处。
ITASoftware是美国四大机票预订系统,是一个典型的掌握数据的企业,其将数据提供给Farecast这家提供预测机票价格的企业,后者是一个典型的掌握算法和思维的企业,直接接触用户。结果,ITA Software仅仅从这种合作中分得了一小块收益。
Overture是搜索引擎付费点击模式的鼻祖,如果把谷歌看作是媒体,那么Overture则是相当于广告代理公司,通过算法细分不同的浏览用户,向广告投放企业提供目标用户的付费点击(选出他们最需要的用户)。Overture是典型掌握算法和思维的企业,雅虎、谷歌则是掌握数据的企业。事实上,谷歌的两大金矿AdWords和AdSense技术,都是借鉴了Overture的算法。但是,Overture不能直接接触到用户,没有数据,丧失了话语权,只能获得少量收益,以至于最后被雅虎收购。
基于大数据的资源整合类企业,它们的生态链又将遵循两个法则。
法则一:接触用户的企业总是能够获得最多的收益,这和价值链上的分配原则是高度一致的。终端价格和原料供应之间的差价全部是由售卖终端产品的企业获取的。
法则二:掌握数据的企业具有这个商业生态内最大的议价能力,最终最有可能成为赢家。算法可以攻克,也可以购买,事实上,挤入这个行业的企业并不在少数。而思维则存在一种肯尼斯·阿罗所说的“信息悖论”,即信息在被他人知晓前都价值极高,但却无法被证实。一旦公开证实它,又因所有人都知道而失去了价值。所以,不管思维和算法企业走得多快,只要数据企业随时可以封锁数据源,就依然把握着“杀手锏”。甚至,有的数据企业在看不清楚商业模式时,将数据释放让思维和算法企业进行试错,而一旦试错成功,则收回数据所有权,模仿其商业模式。
BAT的数据帝国
因此,我们可以说,在大数据时代,资源整合企业的竞争,将会决定未来商业世界的版图。
在很多人还没有弄清楚大数据时代的商业法则时,国内互联网三巨头BAT(网络、阿里、腾讯)已经在迅速地构建自己的“数据帝国”。
在互联网的大世界中,用户有诸多的入口,可以通过不同的APP上传数据。BAT的原则是,有关吃穿用住行的一切服务商,只要能够增加他们的数据种类和质量,他们通通拿下。这里,体现出一种典型的“数据累积的边际收益递增效应”,即每多增加一个单位的数据,可挖掘的价值就有一个加速的增长,每增加一个种类的数据,可挖掘的价值就有一个加速的增长。某些时候,BAT甚至根本不考虑数据在现阶段能否变现为收益,仅仅是纳入麾下,等待未来的开发。
现实的情况是,经过了几轮的收购之后,BAT基本上覆盖了吃、穿、用、住、行、社交等各个领域的数据入口,加之其原来的庞大数据入口,在数据规模上的优势已经无与伦比。短时间内,任何企业想要超越他们,几乎都是不可能的。
BAT不仅是在做掌握数据的企业,也是在做掌握算法和思维的企业。一方面,拥有庞大的商业用户群和拥有用户群消费偏好的大数据,只要具有相应的内容,就可以形成成交、获取收益。另一方面,他们甚至可以开放应用程序接口(APIs)把自己掌握的数据授权给别人使用,这样数据就能够重复产生价值。这方面,阿里巴巴的百川计划就是一个典型。简单来说,他们向其他厂商的APP免费开放数据,但他们不收费,仅仅需要他们回馈数据作为代价。这个计划实施以后,所有的APP都会是他们的入口。
可以说,BAT的帝国是基于数据建立的。甚至有人预言,数据作为“表外资产”一定会在某个时候被会计准则纳入。因为,相对于无形资产,这种资产的价值更大。
值得一提的是,传统工业经济思维的人根本看不懂大数据时代的商业逻辑。某学者曾对阿里巴巴的收购(零售、文化、金融等)提出过质疑,他列举苹果和谷歌收购的案例,认为他们都是在进行专业领域的收购,这是有利于增强竞争力的,但阿里进行的都是多元化收购,是不利于增强竞争力的。
实际上,这是没有看懂阿里巴巴商业模式的表现。互联网时代的大多数商业模式,早就脱离了行业的限制,而在某种程度上走向了“大一统”,即“导入流量+大数据分析变现流量”。这种模式里数据就是通用的逻辑,难怪在大数据出现时,维克托·迈尔·舍恩伯格等人就断言,行业专家和技术专家的光芒会被数据专家掩盖住,因为后者不受旧观念的影响,能够聆听数据发出的声音。
尽管BAT强悍如斯,但在他们的夹缝中,仍然有一些商机,企业也可以搭建入口、解读需求、安排生产。如果说大数据改造商业的神奇已经毋庸置疑,那为何众多企业依然拿不起放在眼前的这把金钥匙?很大程度上是因为这些企业缺乏数据基因。
大数据和互联网经济的来袭,使得企业只能“被动接网”。面对海量的潜在需求,不仅无法解读,也无法调动生产进行对接。这就出现了大量企业被互联网的海量需求“反噬”,并导致供应链失控的案例。
在大数据时代,企业规模、资金、生产技术不再重要,品牌也不再拥有神力。获取数据、分析处理数据、挖掘数据价值的能力成为企业的立身之本。目前我国大部分企业还没有意识到我们已经进入大数据时代,就像我们大多数消费者没有意识到我们的消费行为随时在被计算一样。在这样的一个时代,只有建立在数据之上的企业、按照大数据时代的商业法则运营的企业才能更好地生存。
以上是小编为大家分享的关于大数据时代的商业法则的相关内容,更多信息可以关注环球青藤分享更多干货
『柒』 大数据之父将再论网络时代的商机
大数据之父将再论网络时代的商机
“互联网+”、“大数据”、“创新创业”三者碰撞将会迸发出怎样的思想火花?11月7日,有“大数据之父”之称的维克托·迈尔-舍恩伯格将带来大数据领域最前沿的观点,和与会嘉宾围绕“互联网+”与城市建设、产业转型,探寻区域发展新路径。
由亚洲教育北京论坛、成都商报社联合相关政府部门共同主办的2015中国(成都)城市群高端对话将于11月7日在成都举行,有“大数据之父”之称的维克托·迈尔-舍恩伯格将带来大数据领域最前沿的观点,并与京东、腾讯等互联网公司的相关部门负责人以及各市(州)、区(市)县政府官员、本地企业代表等嘉宾,围绕“‘互联网+’与创新创业背景下的区域发展”展开思想交锋。
11月7日,舍恩伯格不仅将带来互联网以及大数据领域最前沿的发展趋势。在现场,京东、腾讯等互联网企业相关部门负责人以及各市(州)、区(市)县政府官员、大数据应用企业家等嘉宾,都将把自己正在进行的实践、经验甚至困惑,通过圆桌对话的形式,围绕“互联网+”与城市建设、产业转型,探寻区域发展新路径。
舍恩伯格和参加此次高端对话的嘉宾,将实地参观和考察相关区域,为区域“互联网+”、创意产业以及“大众创业、万众创新”建言献策。 城市群是在特定的区域范围内云集相当数量的不同性质、类型和等级规模的城市,以一个核心城市为中心,依托一定的自然环境和交通条件,城市之间的内在联系不断加强,共同构成一个相对完整的城市“集合体”。从未来发展潜力看,城市群将聚集更多人口,创造更多经济财富,对城市将是新的发展机遇。也可以说,城市群将成为我国最有发展潜力的地区,并将成为我国国民经济的支撑点。
2014年,成都商报联合亚洲教育北京论坛共同主办了首届中国(成都)城市群高端对话,邀请国内顶尖专家、共同把脉城市群协同发展,智力支持成都城市群持续发展。
舍恩伯格现任牛津大学网络学院互联网治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研中心负责人,被称为“大数据商业应用的引路人”。他的咨询客户包括微软、惠普和IBM等全球顶级企业;他也是众多机构和国家政府高层的信息政策智囊。维克托·迈尔·舍恩伯格最具洞见之处在于,他明确指出,大数据时代最大的转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。这就颠覆了千百年来人类的思维惯例,对人类的认知和与世界交流的方式提出了全新的挑战。大数据将为人类的生活创造前所未有的可量化的维度。大数据已经成为了新发明和新服务的源泉,而更多的改变正蓄势待发。
以上是小编为大家分享的关于大数据之父将再论网络时代的商机的相关内容,更多信息可以关注环球青藤分享更多干货
『捌』 大数据对网络营销的影响
大数据对网络营销的影响
在这股大数据时代背景下,消费者行为的变迁也越来越趋于不确定,移动互联网更是加速了这种不确定因素,那么,大数据对网络营销有何影响呢?
[摘要] 互联网时代的发展推动了数据和信息加速传播。大数据在这种大背景下应运而生,并逐步渗入到各行各业。而互联网企业通过大数据,促进信息的实效转化,为网络营销的精准决策和整个营销行业的发展提供了数据来源与支撑。文章主要通过阐述了大数据的定义、大数据的处理,进而总结大数据下网络营销管理优化措施及有效的网络营销策略,力求为各互联网企业的网络营销决策提供参考与借鉴。
[关键词] 大数据;网络营销;互联网
1前言
21世纪是一个信息大爆炸的时代,各种各样杂乱无章数据的出现,一方面给企业以及人们的日常生活造成了一定程度的困扰;另一方面人们也想从这繁杂的数据中找出规律,发现商机,从而抓住商机,开拓新的市场。大数据的出现恰恰能妥善地解决这一问题,大数据分析技术是通过对海量的数据信息进行系统的筛选与分析,力求寻求其中的规律,从而为企业的经营决策提供有力依据与支撑,使企业的经营决策变得更加准确且高效。现今,社会上人们之间的交流越来越密切,科技在高速发展,大数据就应运而生。阿里巴巴创办人马云曾经在演讲中提到,未来的时代将是DT的时代,DT即DataTechnology数据科技,对大数据的分析是阿里巴巴的重点工作之一。[1]互联网在改变人们生活方式的同时也在改变企业的运作模式,这是信息技术发展的必然。然而随着大数据的来临,网络营销也在不断地进行营销模式与管理模式的创新,试图寻求企业与消费者的利益最大化。现在越来越多的企业通过互联网平台抓取到的消费者的各种数据进行分析整理,获取消费者的消费趋向及特征,以此为依据来制定相应营销策略,不仅可以提高市场决策的准确性,还能大大缩短市场调查与决策分析的时间,提高了企业的经济效益,促进企业各个环节的高效运作。因此大数据与网络营销的结合将是必然的,它将为企业开创全新局面,带来前所未有的.机遇,同时也带来了挑战。
2大数据概述
麦肯锡全球研究对大数据的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合。[2]大数据技术在互联网时代的战略意义,不是在于掌握海量的数据信息,而在于对收集到的数据进行高度专业化处理,力求找出其中的规律与价值,为企业经营决策服务。[3]简而言之,大数据技术关键在于提高对数据的“加工处理能力”,通过“高加工”实现数据的“高增值”。它具有以下四大特征:分别为海量的数据规模、多样的数据类型、快速的数据流转和价值密度低,具体分析如下:
(1)海量的数据。从互联网或传统渠道收集到的海量数据,涉及面更广、种类繁多,只有运用大数据技术对数据进行分类,才能够满足企业的需求。
(2)多样的数据类型。大数据容纳的信息量大,信息种类也繁多,容量也比传统的数据仓库更大,通常有用户的查询信息、浏览信息、消费记录、消费周期等数据。
(3)快速的数据流转。大数据技术要求在短时间内对海量的数据进行高速处理,对庞大的数据进行分析、处理,从中找出有价值的数据资料,因此对数据的处理速度有很高的要求。(4)商业价值高,价值密度低。大数据需要从海量的数据当中提取出有价值的信息,对技术的要求很高,往往数据的价值密度低而商业价值高。
3大数据处理与网络营销
3.1大数据时代下的网络营销
网络营销是借助网络、通信和数字媒体技术实现营销目标的商务活动。其中可以利用多种手段,如微信营销、微博及博客营销、E-mail营销、视频营销等。大数据技术为网络营销带来了技术创新,也为企业带来了前所未有的机遇与挑战。网络营销的发展主要依赖于对消费者消费信息的了解,掌握了消费者消费信息相关的数据,就能够以此来制定合理化的营销策略,能够提前预测市场的发展方向,提高企业的生产效率,降低了企业的运营成本。同时也为企业开发新产品提供数据来源与支撑,有利于提高企业产品在市场的占有率。
3.2网络营销需要借力大数据
(1)科技的发展。互联网时代的到来,收集海量的数据信息显得更加简单可行,人们可以通过互联网平台收集到各种数据,还可以对数据进行反复的使用与共享,实现数据的循环利用,使数据创造出更多的价值。
(2)个性化需求的增加。社会的发展使人们的消费习惯与心理发生了显著的变化,不再希望自己所使用的产品与别人一样,希望自己是独特的,与众不同的,而企业恰恰能通过对消费者的消费偏好进行大数据分析,来为其制定个性化消费方案。
(3)用户数据易获取。互联网企业与传统的企业相比,其不同点之一就是数据的获取方式不同。传统企业能知道客户当时的需求和购买意向,但是无法获得更多与客户有关的信息与资料;而互联网企业通过用户的访问记录和消费行为
3.3商业定位的转变
大数据时代背景下,消费者对品牌的忠诚度不断下降,使得大数据时代商业模式必须从以品牌为中心向以消费者为中心转变。[3]阿里巴巴于2016年提出了以“消费者的生命周期”来做销售。充分体现了现在商业社会对品牌的转变逐步增加到了以消费者为中心的转变。在工业时代,我们无法获知消费者的翔实数据,但是在大数据时代下数据的原始积累和获取变得容易,借助于智能手机和穿戴设备等科技的发展,数据变得越来越翔实,因此让商家更容易全方位了解消费者,能够针对消费者做到千人千面。从而增加产品的依赖性和忠诚度。所以未来企业的竞争力逐步转变为:谁能提供专业化的产品和服务,谁能全面了解和分析信息,谁就会站在商业的浪潮上。
3.4商业理念
从以商品为主向服务转型大数据时代,消费者的知识水平越来越高,消费者会从已有的大量数据中全面了解商品的功能、价值等,如果仅仅是在商场或互联网简单的介绍商品品牌、包装及使用方法已经远远不能满足消费者的需求了。消费者依据大量的数据,对产品的了解程度甚至比营业员还要充分,因此企业不仅要非常精准地把商品构架、各种性能指标等解剖出来外,还必须向消费者提供大量的解决方案,即大数据时代企业卖出的不仅仅是简单的商品,而是方案的系统集成和商品的服务。所以转型势在必行,从以商品为主转向以服务为主,增加顾客对商品的忠诚度和依赖度,迎接新一轮的商业变革。
4结论
2016年是大数据的发展年,据保守估计,未来大数据的市场规模至少达到万亿元以上。在这股大数据时代背景下,消费者行为的变迁也越来越趋于不确定,移动互联网更是加速了这种不确定因素,电商和传统企业变得越来越离不开数据,数据即将成为未来企业的核心竞争力,企业要不断完善自己的企业治理结构,抓住市场潮流的变化,让不确定的消费者变得确定,这样才能有针对性地做到千人千面,提供个性化的商品和服务,在未来竞争格局中占据一席之地。
参考文献:
[1]AllisonCerra,KevinEasterwood,JerryPower.商业模式重构:大数据、移动化和全球化[M].北京:人民邮电出版社,2014:29-43.
[2]蔡承秉.掘金大数据数据驱动商业变革[M].北京:时代华文书局,2013:103-110.
[3]黄升民,刘珊.“大数据”背景下营销体系的解构与重构[J].现代传播: 中国传媒大学学报,2012 ( 11) : 13 - 20.
[摘要]
文章对当前有关大数据时代网络营销模式的相关概述进行了梳理和分析,进而对大数据时代网络营销模式的创新、精准性以及效果性研究作以归纳,最后进行了总结与展望。
[关键词]
大数据;网络营销模式;综述
1引言
大数据对时展产生了深远影响,网络营销模式如何充分发挥数据带来的机遇,从而促进其发展成为当前热门话题。数据具有的四大特点能为企业网络营销模式发展提供更加精准、个性化的信息,此外,大数据时代下的网络营销模式不仅重视创新性、精准性,也重视效果性。
2大数据与网络营销模式相关概述
2.1大数据的定义
20世纪80年代大数据被提出,到2008年才广泛传播。麦肯锡定义其为在一定时间内使用传统数据库软件无法对数据内容进行搜集、存储等的数据集合;《Science》将其定义为数据集规模无法在可容忍的时间内用目前的技术、方法等去获取、管理的数据;[3]维基网络将大数据定义为运用当前主流软件工具难以在合理时间内为企业经营决策提供完整分析过程的资源。比较有影响力的是Gartner的定义,其认为大数据通过新的处理模式能增强决策力、洞察力以及流程能力,并具备多样、快速增长性以及数据量大的信息资产。本文将大数据定义为以其主要特征为基础,通过运用科学的大数据处理技术能够增强其精准性、效果性等价值的信息资产。
2.2网络营销模式的定义
Rafi-AMohammed和RobertFisher等将网络营销定义为在线维护客户和公司在产品、服务等方面的关系;孙志宏认为网络营销是通过计算机网络、通信技术等为实现营销目标的市场营销方式;芦文娟、韩德昌认为其是以网络通信技术以及数字交互式为基础的营销活动;徐艳旻将网络营销定义为借助网络开展市场服务的营销活动。阎斌认为网络营销模式是企业通过有效运用互联网信息技术平台力求实现企业经营目标的营销活动。本文认为网络营销模式是借助网络、通信技术以及数字交互式媒体等进行的市场营销活动。
2.3网络营销模式主要类别
芦文娟、韩德昌认为网络营销模式主要有创建企业网站、参与网络社区、博客营销、网上广告投放;张在宏将其分为广告商、网上商店和服务、价值链服务提供商、网络渠道和虚拟社区;玄文启认为其可分为电子邮件、微博营销、病毒性营销、搜索引擎营销和博客营销;本文认为较有影响力的是周曙东等将其分为在线商店模式、中立交易平台模式、企业间网络营销模式、网上采购模式、网络拍卖模式、电子邮件营销模式、电子报关模式等的观点。
2.4大数据时代网络营销模式的特征
陈慧、王明宇认为大数据网络营销具有性价比高、时效性强、互动性强和个性化营销的特点。胡江涛研究认为关联性紧也是其主要的特点。
3大数据时代网络营销模式创新研究
张冠凤认为大数据时代网络营销模式主要包括商品关联挖掘营销、现代通信的大数据分析、大数据的用户行为分析营销和个性化推荐营销模式。张艳红认为大数据时代网络营销模式的革新还包括基于大数据的搜索引擎营销和DSP网络广告模式。高源、张桂刚认为其还包括基于大数据的商品地理营销模式。吴英鹰认为大数据背景下旅游企业网络营销新模式主要包括关联推荐和精准网络营销模式;王雯研究了大数据下电影整合营销和O2O营销模式。以上学者对大数据时代下网络营销模式创新研究较为全面,但总体上相关理论研究较少。
4大数据时代网络营销模式精准性研究
李晓龙、冯俊文提出了大数据环境下电商精准网络营销策略。牛艳红、王春国认为大数据时代网络营销模式精准性策略主要有搜索引擎、再锁定精准营销和博客营销。樊永梅发现了全数据精确制导、汽车销售整合信息对于汽车精确营销实现的重要性。倪宁、金韶认为其主要有精准定位目标消费群、精准挖掘消费需求、精准可控广告投放和精准评估广告效果。林燕提出了传播和广告精准营销策略。以上研究丰富了理论成果,但没系统分析大数据时代网络营销模式精准性营销的基本原理。
5大数据时代网络营销模式效果性研究
胡江涛发现了大数据时代网络营销实现从精准营销到效果营销的转变的关键问题,张艳红提出从政府层面、企业层面实现网络营销的效果性,目前学者对大数据时代网络营销模式效果性研究不多,还处在逐步认识的阶段。
6总结与展望
本文认为大数据时代下网络营销模式的研究还处在积极探索阶段,具体体现在缺乏成熟的网络营销模式划分标准;大数据时代下网络营销模式研究视角较单一和对其精准性和效果性缺乏深入研究,对于两者的交叉研究更是缺乏。本文认为未来研究可以结合大数据时代下网络营销模式的精准性和效果性进行综合研究;从多视角和结合具体的实际加强对其效果性研究;加强网络营销模式的系统性研究,实现大数据时代网络营销模式时效精准、效果统一。
;