⑴ 31省份老年人口大数据,11省超千万,你如何看待这些数据
从这个数据可以看出来,每一个省份的人口老龄化都非常的严重,每一个省份的财政任务都非常的重,人口老龄化已经影响到了国家。
⑵ 量化派大数据“识人”有绝招
量化派大数据“识人”有绝招
没有信用卡、没有贷款记录、没有央行个人征信系统里的任何相关信息,只要把自己的网上消费记录、话费详单等信息上传到一款手机APP上,你就有可能在10分钟之内获得几万元的贷款。看似天方夜谭的生活场景,金融大数据就能帮你实现。
网购记录助“草根”贷款“对不起,您的情况,没有办法办理贷款。”想要贷款2万元做点小生意时,“85后”男孩崔浩遭到了银行的拒绝。
崔浩每月都有四五千元的固定收入。可他却没有信用卡、没有工资卡,在工地上打零工的他,所有工资都是以现金形式拿到手。
除了平日里吃饭、交房租,他所有的开销几乎都在网购中完成。惟一能够证明他手中有稳定现金流动的痕迹,就是一份稳定的网购消费记录。但这样的记录,银行现在还没法承认。
近日,通过一个名叫“信用钱包”的APP,崔浩却成功地从一家网贷平台拿到了贷款。
“人们的信用可以通过很多方式评估,我们的作用就是通过大数据分析和机器学习等技术,帮用户把这些零碎的信息数据收集和分析,让过去没法‘量化’的信用受到重视,为用户增信。”“信用钱包”研发企业、量化派创始人周灏说。
在“信用钱包”注册登录进入主页后,用户可以把淘宝消费账号、话费详单查询账号、教育信息查询账号等信息输入,并随即进入贷款申请页面。填入申请贷款额度、用途、时间等需求信息,系统就会在几分钟内自动生成一份用户风险分析报告。
是否为黑白名单用户、是否属于高风险人群……根据报告提供的这些信息,原本在银行、网贷平台、融资租赁公司眼中“信用不足”的人,也有可能获得贷款。
2012年,在美国留学并工作6年的周灏回国发展,当时没有户口、没有本地社保、没有身份证,即便他收入状况不错,拥有多张国外信用卡并且记录良好,但想要得到一张国内银行的信用卡却十分困难。
“评价‘信用’的标准其实可以很丰富,除了车房抵押、银行流水,消费记录、手机号码使用记录都应该成为一个人是否应该获得贷款的评价因素。”周灏说。
今年1月上线以来,量化派已经帮用户累计成功申请数千万元贷款,注册用户超过十万人。
10万个角度绘出“信用画像”
银行专业人员无法判别的信息,一家大数据企业凭什么就能从中看出风险高低?
在量化派位于中关村互联网金融中心11层的办公室里,周灏向记者解释了数据“识人”背后的秘密。
首先,数据分析人员需要用计算机建立一个数据模型。为了便于理解,人们可以把这个数据模型当作一个“黑盒子”。“黑盒子”会通过一项名叫“机器学习”的技术进行自我完善和调整。
举例来说,当既有数据显示,1万个信用良好的人全部都有两年稳定淘宝购物记录的话,“黑盒子”会“学”到一个小知识——有两年稳定淘宝购物记录的人信用风险可能比较小。
什么样的细节,“黑盒子”会判断它为“高风险”呢?“假设申请人填写的工作地、常住地为北京,他的手机通讯数据却显示他常年在边远地区活跃,那么有很大的可能是他说谎了。”周灏说。
通过与银行、征信机构合作,周灏的公司拿到了不少可供“黑盒子”自我学习的基础数据。当模型积累了成千上万个小知识,这个“黑盒子”逐渐成熟,便可以用来检验、筛选贷款人了。
当一名贷款申请人把自己的信息查询渠道授权给“信用钱包”,所有与他相关的信息会迅速进入这个“黑盒子”,接受检验。除了用户主动提交的信息,“信用钱包”还与征信机构等第三方机构合作共享信息。
“分析一名用户的信用情况,我们最多已经有十万个特征信息可供参考了。”周灏说。也就是说,为一位贷款人绘制一幅信用画像前,“黑盒子”最多已经有了十万个观察角度。
大数据下埋“金矿”
在国外从事信用模型分析工作时,一些有趣的现象让周灏被大数据的“聪明才智”所震撼。
根据数据分析结果,一天只刷一次牙和不刷牙的人,比每天刷两次牙的借款人,贷款风险较大。在美国的加油站,一天刷三次以上信用卡的人,贷款风险较大。工作人员探究后发现,一天刷两次牙的人,比较注意保护自己的健康,而他们通常也更加注意保护自己的信用健康,不会轻易借钱不还、损伤自己的名誉和信用。而一天内多次在加油站刷卡的人,可能存在刷卡套现的不良行为。
火眼金睛般捕捉人们不经意间留下的“痕迹”,大数据真能“识人”。
其实,除了帮助金融机构识别贷款人的信用度,大数据在本市的电商、文化创意、城市管理等领域都已经开始挖掘“金矿”。
在商业中,大数据被京东用来预测用户购买行为——注重生活质量的年轻女性在购买加湿器时,往往会顺便购买花生豆等零食,因此加湿器和花生豆摆放在相邻的货架能够提高物流效率;在文化创意领域,大数据被新影数讯公司用来预测票房——演员、题材内容、档期、首映口碑,都会成为影响一部电影卖座率的因素;在城市管理领域,大数据被用来提供决策参考——整个城市的地铁闸机刷卡数据被收集、分析后,能够直观地看出人流流向和拥堵情况。
⑶ 数据之巅读后感
细细品味一本名著后,大家心中一定是萌生了不少心得,此时需要认真思考读后感如何写了哦。你想好怎么写读后感了吗?以下是我帮大家整理的数据之巅读后感范文,仅供参考,大家一起来看看吧。
大数据,一个近年来的流行词汇,随着互联网信息技术的普及开始深入人心,又随着互联网对各类行业各种关系的颠覆和变革开始广泛普及。当越来越多的人开始对大数据无比推崇的时候,其实只是跟着趋势而已。这时候,如果能跳出来,看看这种趋势的源头和足迹,或许更容易找出一些能够指导未来的价值。在如今这个数据浪潮之中,《数据之巅》就提供了这么一个别样的视角。
要了解大数据,先得认清数据;要认清数据,先得看清数据的作用和价值。这方面,建国不过二百余年但已然是超级大国的美国无疑是最好的标本。都说美国的文明是建立在印刷术的基础上,这其实就是数据文化的基础——信息可以通过便捷的纸张与文字组合,实现一种虚拟化和抽象化,而这种抽象化很快就得到了广泛的信任。这是最早为数据创造价值准备的基础。在此之上,美国建国的先贤们考虑到了权力的分配、社会的发展等各项因素,建立了民主、共和相互制约的执政体系。事实上,所有的美好都是限制之后的产物,自由、民主和平等这人类的三大追求之间就是相互制约的关系。那么,该怎么进行有效的制约?如何让大家都能接纳?这时候,最能代表客观现实的数据就出现了。
《数据之巅》的第一部分就是这样展开的,从各种历史事件中数据的作用以及人们对数据的态度、反应、应用方式,勾勒出了数据文化的成长和成熟。解决权力分配的问题、决定改变历史的战争、制定从战略到战术的安排、考虑政治的计算以及商业层面上的利用;从搜集、统计、筛选、量化、抽样的方式方法演变到了解、安排、预测、准备、发掘、规范的效果体现,经历的历史似乎并不长,但造就的变革尤其精彩。数据其实一直都在,只在于人们是否需要它、重视它、愿意聆听它的意见……而人们往往也都在遇到了问题难以决断的时候才会想到数据这个伙伴,这也是为什么在第一部分的结尾中日本崛起的思考——二战后空前繁荣的美国工业因为遇上了供不应求的状态,自然走上了粗放型路径,冷落了相应的数据应用,而战败的日本正因为深陷困境,在快速汲取先进知识的同时也迅速接纳了数据文化,通过数据抽样的方式快速提升了质量……日本的崛起可以看作穷则思变的例子,但变革中数据的作用尤其明显。数据的优化作用由此可见一斑,书中更有很多案例,但要参透这一点,先得认识到数据的重要性才行,这可以算作是数据文化的入门吧!
可以说现实中的一切都是越用越少的,但看似虚拟的数据却越用越多。所谓大数据时代,背景正是高度发展科技能让更多的数据得以留存,这种留存和挖掘完全由机器实施,由此得到的结果也是叹为观止的。如果说科技的发展趋势已经越来越超乎我们的想象,那总有一些规律或者原则可以抓住——比如数据。书中第二部分的大数据崛起便将重点放到了当下,由此展望未来的可能性。诚然,大数据是被技术发展所推动的,但更是被重视数据的人们所推动的。
技术降低了数据获取、积累的成本,增加了计算的可能和利用的空间,但这只是一个表象。深层次需要在意的则是数据的开放,只有数据开放才有多元的整合,这需要由人来推动,而推动者必须有多元认知的思维方式、开放的心态——这是数据文化中尤为重要的一部分。如果之前我们认为智慧是属于人的,那么未来这个词将更多的形容一些别的体系,比如“智慧城市”。其实人的'智慧依靠的是学习、理解和经验,那么机器的学习靠的就是数据,还有那些我们为其规划的应用方式和我们的需要。如何确定我们的规划和需求?靠数据,更得靠能够深入人心的数据文化!
正如作者提到中国社会要将“大数据”这个科技符号转变为文化符号,因为只有文化才能真正驱动人们的成长和发展,科技只是手段而已。只有建立了数据文化,愿意尊重数据、善于整合数据、敢于发掘数据中的异动……才能正真利用好大数据。数据文化是尊重事实、强调精确、推崇理性和逻辑的文化,这种文化将是发展最重要的动力,更是最好的参考。从《数据之巅》中,隐约可以看到一条隐约的轨迹,通向未知的远方却一直步步为营,这便是数据,来自于人而胜于人。
歌德把历史称为“上帝的神秘作坊”。在徐子沛先生新作《数据之巅》的精彩演绎下,关于数据文化如何形成、数据治国理念如何深入人心的历史画卷徐徐展开,令我们再次饱览古今中外因数据成就的神奇瞬间,领略统计文史的山风水韵和数据文化的悠远回音。康德说,数字是重要的透视方式。此言不虚。
子沛先生一如既往把中国作为本书的重心和出发点。从中国历史上的吉光片羽到第一次现代意义上的人口普查,从中国数据可视化先驱人物陈正祥的执着努力到民族复兴能否量化的中国话题,这些元素无疑令中国读者感到亲切和温暖。遗憾的是,在悠久的中华文明史上,这样的“统计事件”不仅凤毛麟角,亦未能带动整个民族和社会形成用数据说话、以数据治事的风尚。即使今天,我们依然面对这样一个不容回避的事实:统计数据虽然证明了中国已经成为世界第二大经济体,在数据使用上,特别是大数据的收集、分析、应用的手段、意识、水平和能力方面,我们与美国、欧洲,甚至同处亚洲的日本,仍有不小差距。作为统计人,在享受本书呈现的统计和数据文化盛宴时,无疑更平添了一份独有的清醒与忧思。
中国需要进一步营造数据文化氛围。美国的历史,就是一部“善用数据”的历史。说数据成就了共和政治、数据终结了南方的奴隶制度,尚属见仁见智。“布兰代斯诉讼方法”及后来的汉德公式,公共预算制度的普及,统计学理论方法用于公共政策的制定,以及成本效益分析方法在美国政府的推行等,实实在在证明了数据在保障公平正义、促进进步发展、增进自由和理性方面的决定性支撑作用,体现了数据治国的基本理念。党的十八大把实现国家治理体系和治理能力的现代化作为新的奋斗目标,更加迫切需要大力弘扬建立在数据基础上的科学与理性,需要建树“尊重事实、强调精确、推崇理性和逻辑的数据文化”,需要进一步营造善用数据的社会氛围,使注重数据、使用数据真正成为一种习惯和风尚。
中国统计人要做大数据的先行者和引领者。在统计的“纯真年代”,政府统计是权威一般的存在,是统计生产的当然主导者。大数据时代,海量的网络化电子化信息使每一个人、每一个单位都可能成为信息的生产发布主体,政府统计包打天下的格局正在被打破。我们当然可以通过法律手段来“宣示主权”,但我相信大多数统计人凭着专业精神、职业尊严,将不屑于采取这么“简单而直率”的方法,而更愿意像一名“骑士”一样为荣誉而战。作为统计数据的生产者、发布者和使用者,没有人比我们更了解大数据的意义、价值和力量。“用大数据打造统计基础数据‘第二轨’”,深刻阐明了国家统计局应用大数据的战略思想和战略思维。目前,国家统计局已经与17家企业签订利用大数据战略合作框架协议,在贸易统计、价格统计、交通运输统计、农业统计等多个领域取得重要进展。我们不仅要直接应用大数据,还要在推动数据开放和共享、建立和统一相关应用标准,实施国家大数据创新驱动战略等方面,发挥应有作用。
中国统计人还要成为数据文化的倡导者和传播者。在宣传统计工作、弘扬数据文化方面,统计人有着天然的优势和便利。家喻户晓的GDP、CPI、PPI、PMI等统计拳头产品,大型的经济普查、人口普查、一套表联网直报等重要统计事件,为宣传统计、传播数据文化发挥了重要而积极的作用。我们还可以做得更好,也有理由做得更好。中国统计也要创建类似美国普查局的LEHD—工作单位和家庭住址的纵向动态系统,当超级飓风“桑迪”来袭,该系统大显神通,成功帮助纽约市政府组织救灾,并迅速对灾害影响作出准确评估。这样的统计“明星”产品,能够使人们更加信赖数据、依靠数据,推动数据融入政府管理、商业运营和社会治理以及人们的日常生活。
近年来,国家统计局在统计文化宣传方面做了大量工作,精心打造了统计网站、中国统计开放日、统计微讯微信等一系列新的统计宣传平台,政府统计的形象和公信力不断提升。今后更要以启沃公众数据意识为己任,以记录中华民族复兴的伟大进程为使命,从更大的视野,以更宏大的叙事,讲述中国的统计故事,书写中国的统计历史,把数据文化理念播撒得更广、更深、更远。
尼采在《查拉图斯特拉如是说》中有这样一句话:在有力量的地方,数字这位女主人就会生成,她更有力量。数据不仅代表“真正的事实”,还蕴藏着事物的发展规律。随着大数据时代的到来,数据资源及其开发利用正逐渐成为决定和影响各国核心竞争力的关键因素。中国不仅要做数据大国,更要成为数据强国。
我们这代统计人注定无法甘于淡泊和平凡,唯有顺应时代要求,以更先进的理念、更开放的姿态、更高超的技术积极拥抱大数据,广泛应用大数据,生产出更多更具竞争力的统计产品,才能在智能时代、智慧城市建设以及实现国家治理现代化的进程中,续写政府统计新的辉煌。
最近我读了涂子沛先生的《数据之巅》这本书,我深深的被作者的思考的深度和数据的力量所震撼。全书从数据角度出发,以美国政府历史以来“依数治国”的成功经验来阐释数据带给社会带来的挑战与变革。
进入21世纪第二个十年以来,随着互联网信息技术的普及与广泛应用,大数据时代正式到来。时代的变革意味着新的发展机遇与挑战,要想在数据浪潮当中立于不败之地,这就需要我们在精确的掌握数据之后,通过数据的创新来创造未来。
精确的掌握数据,需要从认识数据开始。简而言之,数据就是体现客观事实的表象,是客观性与抽象性有机结合的产物,容不得半点虚假。我们不能否认的是,所有的美好都是在限制之后的,而能够有效地进行限制,且又能够得到大家的一致认可客观现实,唯有那一张便捷的纸片上数据与文字的组合体,其实这就是数据文化的基础。数据创造价值准备的基础从侧面印证了中国的四大发明印刷术是西方国家文明的基础。
所谓的大数据时代就是在当下高度发展科技能让更多的数据得以保存。保存下来的数据是一种依据,更是一种工具。世间万物的发展都呈现各种各样的规律性,数量庞大且规律复杂,很难让我们掌握,但是一旦转换成数据保存之后,从数据的角度去分析规律变化的轨迹,能够很容易掌握并加以运用。而我作为基层执法工作者,运用数据进行执法,以控制数据达到预期管理预期,是这本书给予我最大的启发。
古代中国传统的执法者,是通过简单甚至带有粗暴的手段对执法对象进行强制管理,执法效果虽然容易操作,且直观,但是这是一种凌驾于规律之上,片面的追求短期效果的低级执法模式。进入新中国以来,尤其是改革开放以来,我国坚持依法治国,党的十八届四中全会更提出了全面推进依法治国的新常态,这是数据文化的有力体现,是我党在大数据时代下,一项重大举措。
我认为,大数据时代下运用数据进行执法,是执法能力现代化的利器。我从事交通执法这个职业已经数载,经历过从无到有,又逐渐的从有变成无。这个前后并不矛盾,从前的“无”是法律不健全,无章可循,有章难循状态。只能够自身党性约束和对事物客观理解进行执法,甚至有的时候片面的依靠上级,人类对事物的理解具有局限性,这难免会造成决策错误。
从无到有,是法律慢慢健全,法律的约束更加全面,但有的时候简单的照本宣科,眉毛胡子一把抓,也就成了教条主义。而从有到无,是一种利用客观的数据,以法律为准则,通过科学执法,将数据调整趋于合理。类似国家利用经济规律宏观调控国民经济,用一只看不见的“大手”将全国的经济发展形势引导至合理增长的区间。数据合理了,管理预期也就达到了。相对于我们有肉眼去观察,显得更为精确,且具很高的可信度。这样一来,对我们基层执法工作者带来的巨大的福利,我们从此以后再也不用担心对工作进展情况不了解而心急火燎了。
在大数据时代变革的今天,客观、精确、理性和逻辑的“数据文化”理念是推进国家治理体系和治理能力的现代化利器。大数据时代下的执法行为更是离不开数据,只有充分的利用数据化管理、数据化创新,才能在当前数据浪潮当中主动适应新常态,科学地实现新突破和新作为。
《数据之巅》读后感这是涂子沛先生关于大数据的第二本书,读了以后可以说是振聋发聩,醍醐灌顶。
第一本书本身就写得很棒了,其主要是从美国现代社会应用大数据成功解决的许多问题入手,说出了大数据的实际用处。而这本书抽丝剥茧从历史上美国对于数据的发展带给我们启迪。
1、数据分权
何为民主,何为共和,如何防范多数人的暴政?基于这个问题美国给出了参议院代表的共和与众议院代表的民主,权利与义务统一,即投票与纳税都按所代表的的人口来。
这里就诞生了对精确人口掌控的需求。基于这一点,逐渐养成了按数据说话的传统。并逐渐将单一的人口数量统计扩展到宗教,种族,性别,年龄。
2、数据引领改革
之前是北美大陆种植烟草亟需黑奴,美国解放后烟草行业败落。后来棉花兴起,死灰复燃。北方工业化也需要劳动力。黑人自由就发疯的言论源于统计上的失误,错误稀释原因因基数不同。一项战役向大海进军完全依靠准确数据抢掠补给。谢尔曼格兰特。背后的原因:维护美国的统一,(解放黑奴后其的生计太难),动员黑奴使其转败为胜。
3、数据推动技术
用数据研究社会,普通人的历史。统计学将研究粒度缩小到一个个人。加菲尔德将普查上升到了专业部门。迅速上升的统计内容,不断增加的人口给数据处理提出了挑战。于是技术创新制表机诞生了(数据处理),依靠这个IBM发展壮大,商业模式:只租不卖设备及服务。
4、数据争取权益
量化提高质量。经济发展带来劳资冲突,政治,道德失范。这时候为了改善工人生活又依靠数据兴起了数据分析法,成本收益分析法又在美国水利方面大显身手,继而福特车的风波也加速了成本收益分析法传播同时依靠数据公开使得企业不断提升产品质量,并将人的价值考虑进来。
5、抽样
运用抽样的方法降低数据处理的工作量,省时省力。盖洛普引领的总统预测,乱世佳人的精准预测,准确定位。把数据引入电影工业。质量管理大师戴明将统计方法引入质量管理领域,成就日本经济奇迹。
⑷ 企业大数据 一座值得开垦的金矿
企业大数据:一座值得开垦的金矿
虽然尚处起步阶段,但是大数据已经成为多个行业的关注热点之一。如何更好地利用大数据推动自身业务的运营发展,这是众多企业不断探索的问题,而运营商也无法忽视这个未来的大金矿。
一、现阶段大数据业务市场状况
从全球情况来看,2015年全球大数据市场规模达到421亿美元,同比增长了47.7%。以此增速进行推算,到2020年全球大数据市场规模可突破3000亿美元。
今年年初,中国信息通信研究院日前发布的《中国大数据发展调查报告(2017)》称,2016年中国大数据市场规模达168亿元,预计2017年~2020年仍将保持30%以上的增长。调查显示,目前近六成企业已成立数据分析相关部门,超过1/3的企业已经应用大数据。
对比起全球情况,中国大数据产业市场规模增长还有很大空间。
二、运营商进入大数据行业思路
运营商先天优势在于掌控大量数据中心资源,这是大数据业务硬件基础。更为重要的是运营商本身拥有大量存量客户资源和客户数据,这也是对运营商进入大数据领域一个有力支撑。
运营商大数据业务运营SWOT分析:
三、运营商大数据业务发展对比
联通
今年9月,中国联通集团正式宣布,旗下的联通大数据有限公司正式揭牌成立。中国联通大数据公司定位于中国联通大数据对外集中运营主体和大数据产业拓展的合资合作平台,全面对接国家和联通集团战略,建立专业化子公司开展市场化运营、建设全产业链大数据生态体系。此外,联通还与中国银联签署了战略合作协议,双方决定建立长期稳定的合作伙伴关系,在数据资源、技术能力、产品研发等方面开展全方位合作。
电信
早在2015年末,中国电信正式发布“天翼大数据”品牌,并推出精准营销、风险防控、区域洞察、咨询报告四类数据型产品和大数据云平台型产品,重点服务于旅游、金融、广告、政府、交通等行业。这是中国电信运营商第一个大数据业务品牌。
电信所有的大数据都是在云平台和云设施之上搭建的,2016年下半年其大数据平台建设从原来的5个省份现在扩展到31个省份,数据种类从开始的几类主要数据扩展到十几类,实效性从原来以“周”为单位到现在以“小时”为单位的延时。
移动
在今年“世界电信和信息化社会日大会”上,中国移动通信集团公司副总经理李正茂表示:“发展大数据不是简单的建设IDC,根本目的还是为了应用。大数据正在从炒作的高峰期间,向产业落地期间发展。”
中国移动在六个方面积极推动大数据加速行业转型升级:
第一,社会管理方面,大数据能够分析用户的消费、行为、位置等特征,为政府的社会治理提供保障。
第二,信息传播,大数据成为公众获取信息的新渠道。移动借助位置漫游等信息向公众发布舆情热点的分析。
第三,医疗健康领域,中国移动构建健康云平台在贵州省取得成效,一方面帮助贵州卫集委收集信息,同时为政府医疗机构提供智能审核,疾病救助,疾病预防等多方面的投入,由此为当地医疗支出节省了上千万。
第四,行业创新能力提升,大数据为传统行业打造新的能力。中国移动的大数据提供人流预警,公交道路等服务,为公交管理,游客出行提供参考。
第五,社会热点问题处理支撑,中国移动基于大数据构建了反电信网络,欺诈防范技术体系,在2-10分钟可以识别市场号码源,来源区域,受害人集中地等等,同时实现最高风险等级,影响最大的境外异常号码源时时阻断。
第六,商业模式创新,2016年,中国移动和招商局集团共同投资设立试金石信用服务有限公司。
虽然三大运营商大数据布局在实际操作上不同,但是都明确把大数据从布局转移到实行阶段,软硬件资源日益充实,并且已经打造出不少成功案例。
四、布局大数据市场
1、攻坚热点领域
智慧城市
早在2014年,国家发改委会同中央网信办等25部委组成部际协调工作组,启动新型智慧城市试点建设。2016年又明确提出了到2018年要分级分类建设100个新型示范性智慧城市。
智慧城市建设带来的商机是巨大的,而大数据恰好在智慧城市建设中扮演重要角色。可以通过方方面面渗入,如城市交通、环境监测、治安管理、卫生管理等城市生活每个细节。
当然,运营商也已经对此领域有所行动。比如联通大数据公司就有“智慧足迹”这一项业务,提供“以人为本”的群体位置数据应用,为政府和企业提供包括人流量、人流密度、职住空间分布、人口时空分布在内的位置大数据解决方案。
政务
通过IDC、ICT基础通信业务为政府部门提供服务,并且为其构建大数据管理分析平台。政府运作效率和质量提升已经不仅仅拘泥于办理业务、处理业务时间上的减少,还要做到未雨绸缪,及时发现潜在民生问题,做好预防工作:比如通过婚姻注册数据挖掘离婚率提升因素,从而地提出针对性措施;又比如通过分析注册中小企业税务数据,了解税收政策对中小企业是否存在推进作用,有消极作用的加以改善。
医疗健康
根据前瞻产业研究院发布的《2017-2022年全球健康医疗大数据行业发展前景预测与投资战略规划分析报告》显示,2010年我国健康医疗大数据行业市场规模约为171亿元,到2015年快速增长到466亿元,年均复合增长率超过20%。
可穿戴设备的出现使到个人身体健康实时监测得到硬件上的支持,而把这个契机转化为商机就需要完善的大数据平台作为支撑。
而通信运营商涉足该领域也有很合适的切入口,比如利用存量家庭业务客户进行拓展,享受低资费优惠。
2、提升自身运营
运营商本身拥有着庞大数据资源,也应该很好地利用这些资源为自身运营提供动力。
一方面通过用户数据库做好用户维系和质量提升,对高危潜在离网用户及早挽留,而对潜在需求用户可以推广增值业务提升客户价值。
另一方面,涉及到数据交互(即通过与其他行业合作,双方数据通过融合整理)发掘出的更多有价值结论,能支撑双方运营,互惠互利。
五、大数据业务营销
通过IDC建设、产品建设打好基础,进行业务营销就是下一步关键所在。进行大数据业务营销通过标杆打造+体验营销是较好选择。
由于业务属于起步阶段,要吸引到市场目光和认同,必须树立业务标杆。在硬件和软件有实力的前提下,运营商要打造专业化团队,树立行业顶尖形象,以优质案例打动潜在客户。
营销人员在向潜在客户推销产品时,需要结合案例详解、实体考察、便携式设备体验进行销售活动,以具体化、专业化的方式打动客户。
需要明确的是,大数据硬件软件方面做好后,剩下最关键一环就是在营销上打动客户。
如何打动客户?用事实说话
例如2013年,微软纽约研究院的经济学家大卫?罗斯柴尔德(David Rothschild)利用大数据成功预测24个奥斯卡奖项中的19个,成为人们津津乐道的话题。2014年罗斯柴尔德再次成功预测第86届奥斯卡金像奖颁奖典礼24个奖项中的21个。在这种震撼的事实面前,展现大数据的实用性和威力。
六、展望
由于各行各业各领域都能够有机会用到大数据分析为管理运营作支撑,所以大数据业务发展潜力毋容置疑。现在对运营商而言,做好硬件软件基础的同时,更要深挖市场需求,打造营收模式标杆,以点带面地实现业务快速增长。
⑸ 大数据与会计在疫情期间最震撼的中国力量是什么
连续50天坚守在抗击疫情第一线。抗击新冠疫情期间,大数据与会计连续50天坚守在抗击疫情第一线,传播健康、可持续的大数据发展环境,为人民生命安全与健康奉献了力量。
⑹ 宇宙的“大”人类无法想象,大数据给出怎样的答案
众所周知,自从人类摆脱了普通动物的思维后,便走上了一条思考的文明道路。而当人类文明发展到一定阶段后,人类开始不满足于在地球上发展。于是,人类开始向地球之外的地方进行探索,即宇宙。古时候,人们认为地球外住着的都是神仙,比方说西方认为上帝住在天上,而东方则认为玉帝神仙居住在上。
在银河系外,还有着更大的超星系团,且这些超星系团一般都有着10万个以上的银河系。另外,人类可观测到的超星系团有几十个以上。然而,最重要的是,目前人类观测到的宇宙还不是宇宙的最大范围,至于宇宙到底有多大,或许只有在未来才有答案。
⑺ 《大数据时代》的读后感
认真品味一部名著后,你有什么领悟呢?现在就让我们写一篇走心的读后感吧。那么如何写读后感才能更有感染力呢?以下是我帮大家整理的《大数据时代》优秀读后感范文,希望能够帮助到大家。
这书读起来不费劲,没有太多晦涩的理论,所以也比较快速的用了几天的中午休息时间读完了。
网上到处都是推荐此书的文章,赞为大数据的经典之作。可是,我读了一遍下来,却没有这种经典之感,只是必须叹服作者思维严密、涉猎广泛,书中有关大数据的例子真是不少,会给我们的阅读带来一定的舒适感和现实感。
已经看过太多网上的关于大数据的文章、案例分析,但是我认为大数据仅仅是一种手段,是我们分析认识世界的诸多手段中的一种。我们既不要拒绝排斥大数据的应用,但也没必要神话大数据。
在读此书过程中,稍带也看了几部关乎大数据分析的影片,有本书中提到的《少数派报告》,还有《永无止境》、《源代码》。少数派报告中,人类借助先知的超能力获取对犯罪的预测和提前打击,但是书中和影片中都提到的有一个悖论的问题:如果你预测某犯罪要发生,所以去提前抓捕,阻止了案件的发生,但案件没有发生,又以什么为依据来抓捕嫌疑人呢?!所以,我认为大数据的应用在预测方面的作用,不应该涉及任何行政司法等严肃方向。因为,人是善变的,也许在预测之后的时间里,由于其它因素影响,t她的决定就突然改变,预测就彻底无效了。大数据,更应该在提供思路、途径方向,在我们还没有发现其原理之前,先依照大数据的分析去做些突破常规、有创造性的事情。
从古至今,对数据的统计应用一直没有中断过,我们人类在发挥聪明才智的过程中,创造了文字记录历史,通过积累和总结为人类的文明发展做出了极大的贡献。只不过,现在我们利用计算机系统对日益暴涨的数据信息能够处理的数据量更大、想法更多了。在这个角度上,大数据其实不过是人类信息化发展历史中的一个必然过程。
大数据爆发的背景,是计算机普及应用、工作和生活信息化、网络尤其是互联网的发达等因素,为之提供了能够使用的超大规模数据化信息。就如计算机与人下棋的程序一样,掌握了足够的棋局数据、能够推算每一步之后的可能,快速的运算能力是实现这些的基础。
大数据本身是无意识的,或者叫无目的,是因为使用的人的发现或主观意识,才从中抓取到符合所想或支持所想的一些数据和比例。人才是核心。别以为有个所谓的大数据中心就能够挥斥方遒、指点江山了。这也是我说要对大数据去神化的一点。书中所举例子,成功的案例其实都基本是一个打破常规、奇思异想的人或一个具备创新思维的团队,而这个人或团队一旦陷入对现有模式的僵化应用或崇拜,失败的结果也是必然。我想说的是,无论是大数据还是快数据什么的玩意,都仅仅是我们了解世界了解社会的一个角度一种手段,都始终无法摆脱依赖于人的思考这个根本。别一叶障目不见泰山的意味有了大数据就拥有了整个世界,你的心有多大,舞台才有多大。只有当你的思考抵达,那些个曾经没有价值的数据垃圾,才会焕发出价值!不要荒废了你的思考这个核心!
作者说大数据只讲结果不讲原因。这个状态我认为仅仅是一个过渡时期的表现,如果要实现对大数据分析应用的更加精准、甚至可以作为某种依据,必然要获得对大数据分析的果的可靠解释,也从而能对我们现有的行为、制度等获得新的认识,来进行可行的改变、升级或者重造,大数据的指导意义才发挥更深。
人们都说,中外著述的差距有时是很大的,中国的作家习惯铺垫和描绘,将简单的事情复杂化;国外的就相反,喜欢直捣要害,将复杂的事情抽象简单化。不知道是不是我不很适应国外这类书籍的缘故,对大数据时代一书,我没有感受到很多的震撼和脑洞大开感,也许和现在各类大数据的文章太多有关,已经把此书的观点各自领用发挥了一番,也许是我还没有领会到精华所在。既然人们都奉为经典,那我想或许我应该隔一段时间、换个姿势,再重读此书,看看是不是会有新的感受吧。
对于畅销书刊、热点话题、时尚科技,始终不太感兴趣。书刊,喜欢有一定年份的。话题,钟情于务虚的观点。新奇的产品于我无缘,习惯使用成熟的科技产品。既不清高,也非冷漠,就是要与现实保持一定的距离,给自己留一点思考的空间。这一习惯最近破了例。由于工作的原因,耳濡目染,“大数据”这个新兴概念开始频繁步入我的视野。按捺不住内心的好奇,网购《大数据时代》,手不释卷,三天读完,颇有收获。此书有如下特点。
首先,作者站在理论的制高点上,条理清楚地阐述了大数据对人类的工作、生活、思维带来的革新,大数据时代的三种典型的商业模式,以及大数据时代对于个人隐私保护、公共安全提出的挑战。其次,文中的事例贴近现实生活,贴近时代,令读者既印象深刻,又感同身受。此外,作者没有使用大量的专业术语,没有假装一副专业的面孔。纵观全书,遣词造句,均通俗易懂。
作者认为大数据时代具有三个显著特点。
一、人们研究与分析某个现象时,将使用全部数据而非抽样数据。
二、在大数据时代,不能一味地追求数据的精确性,而要适应数据的多样性、丰富性、甚至要接受错误的数据。
三、了解数据之间的相关性,胜于对因果关系的探索。“是什么”比“为什么”重要。
作者指出,随着技术的发展,数据的存储与处理成本显著降低,人们现在有能力从支离破碎的、看似毫不相干的数据矿渣中抽炼出真知烁见。在大数据时代,三类公司将成为时代的宠儿。一是拥有大数据的公司与组织。如政府、银行、电信公司、全球性互联网公司(阿里巴巴、淘宝网)。二是拥有数据分析与处理技术的专业公司,如亚马逊、谷歌。
三是拥有创新思维的公司,他们可能既不掌握大数据,也没有专业技术,但却擅长使用大数据,从大数据中找到自己的理想天地。面对即将来临的大数据时代,个人将如何应对自如?这是个严肃的问题。
如今说起新媒体和互联网,必提大数据,似乎不这样说就OUT了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典着作——舍恩佰格的《大数据时代》。维克托·迈尔舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和IBM等全球企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,才能能与之进行一场思想上的对话。
舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:
一、更多:不是随机样本,而是全体数据。
二、更杂:不是精确性,而是混杂性。
三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?
我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。
我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。
世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出”不是因果关系,而是相关关系。“这一论断时,他在书中还说道:”在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。“[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。
大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可”量化“,大数据的定量分析有力地回答”是什么“这一问题,但仍然无法完全回答”为什么“。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。
在风险社会中信息安全问题日趋凸显。如何摆脱大数据的困境?舍恩伯格在最后一节”掌控“中试图回答,但基本上属于老生常谈。我想,或许凯文·凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:”大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考的答案,帮助是暂时的,而更好的方法和答案还在不久的未来。“谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考的答案。此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。
读完《大数据时代》这本书后,我意识到:我们即将或正在迎接由书面到电子的跳跃之后的又一重大变革。
这本书介绍了大数据时代来临后,接踵而至的三项变革——商业变革、管理变革和思维变革。
其实,这场变革已经打响。商业领域由于大数据时代的到来而推陈出新。前几年,一家名为Farecast的公司,让预订到更优惠的机票价格不再是梦想。公司利用航班售票的数据来预测未来机票价格的走势。现在,使用这种工具的乘客,平均每张机票可以省大约50美元,这就是大数据给人们带来的便利。
大家应该都知道2009年出现的H1N1型流感,就拿美国为例,疾控中心每周只进行一次数据统计,而病人一般都是难以忍受病痛的折磨才会去医院就诊,因此也导致了信息的滞后。然而,对于飞速传播的疾病,Google公司却能及时地作出判断,确定流感爆发的地点,这便是基于庞大的.数据资源,可见大数据时代对公共卫生也产生了重大的影响!在我看来,如果想在在大数据时代里畅游,不仅要学会分析,而且还要能够大胆地决断。
在美国,每到七、八月份时,正是台风肆虐之时,防涝用品也摆上了商品货架。沃尔玛公司注意到,每到这时,一种蛋挞的销售量较其他月份明显增加。于是,商家作了大胆的推测,出现这样的结果源于两种物品的相关性,便将这种蛋挞摆在了防涝用品的旁边。这样的举措大大增加了利润,这就是属于世界头号零售商的大数据头脑!大数据时代的到来,可以让我们的生活更加便利。但是,如果让大数据主宰一切,也存在一定的风险。
大家应该都知道电子地图,它可以为人们指引方向。但大家应该还不知道,它会默默地积累人们的行程数据,通过智能分析可以推断出哪里是自己的家,哪里是工作单位。我们的隐私就这样被不为人知地收集着。大数据时代的到来,让我们的生活更安全,更方便,但与此同时,我们的隐私不再是隐私,数据的收集变得无所不包、无孔不入。世界已经向大数据时代迈进了一小步,一个崭新的时代正向我们走来。让我们用知识武装大脑,做好准备,迎接新时代的到来!
现在已经进入到了二十一世纪了,当今社会已经摆脱了上个世纪的那种消息滞后的时代了,我们最应该感谢的就是科学的进步为我们带来了这么多便利。与此同时,科学的进步还为我们带来了“大数据”这个让人类减少了很多工作量的东西。
在这个学期的名著导读课上我们就被要求读:《大数据时代》这本书。《大数据时代》是国外大数据系统研究的先河之作,本书作者维克托·迈尔·舍恩伯格被誉为“大数据时代的预言家”,他是一个特别厉害的人,他作为一个教师,他曾经在哈佛大学、牛津大学、耶鲁大学和新加坡国立大学等多所世界前列名校任教的经历。他作为一个科学家,早在2010年就在《经济学人》上发布了长达14页对大数据应用的前瞻性研究。他是十余年潜心研究数据科学的技术权威。他是最早洞见大数据时代发展趋势的数据科学家之一,也是最受人尊敬的权威发言人之一。现任牛津大学网络学院互联网治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人,哈佛国家电子商务研究中网络监管项目负责人;曾任新加坡国立大学李光耀学院信息与创新策略研究中心主任。并担任耶鲁大学、芝加哥大学、弗吉尼亚大学、圣地亚哥大学、维也纳大学的客座教授。
他作为一个研究学者,他的学术成果斐然,有一百多篇论文公开发表在《科学》《自然》等著名学术期刊上,他同时也是哈佛大学出版社、麻省理工出版社、通信政策期刊、美国社会学期刊等多家出版机构的特约评论员。他是备受众多世界知名企业信赖的信息权威与顾问。他的咨询客户包括微软、惠普和IBM等全球顶级企业;"大数据"在网络上搜索到的解释是:称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。特点:数量、速度、品种、真实性。而舍恩伯格认为,大数据并不能定义一个确切的概念。他提到"大数据是人们获得新的认知,创造新的价值的源泉;大数据还是改变市场、组织机构,以及政府和公民关系的方法。"这是一种更具有人文色彩和社会意义的诠释。
大数据不仅改变了公共卫生领域,整个商业领域都因为大数据而重新洗牌。购买飞机票就是一个很好的例子。就像书中写到2003年,奥伦·埃齐奥尼准备乘坐从西雅图到洛杉矶的飞机去参加弟弟的婚礼。他知道飞机票越早预订越便宜,于是他在这个大喜日子来临之前的几个月,就在网上预订了一张去洛杉矶的机票。在飞机上,埃齐奥尼好奇地问邻座的乘客花了多少钱购买机票。当得知虽然那个人的机票比他买得更晚,但是票价却比他便宜得多时,他感到非常气愤。于是,他又询问了另外几个乘客,结果发现大家买的票居然都比他的便宜。
飞机着陆之后,埃齐奥尼下定决心要帮助人们开发一个系统,用来推测当前网页上的机票价格是否合理。作为一种商品,同一架飞机上每个座位的价格本来不应该有差别。但实际上,价格却千差万别,其中缘由只有航空公司自己清楚。
埃齐奥尼表示,他不需要去解开机票价格差异的奥秘。他要做的仅仅是预测当前的机票价格在未来一段时间内会上涨还是下降。这个想法是可行的,但操作起来并不是那么简单。这个系统需要分析所有特定航线机票的销售价格并确定票价与提前购买天数的关系。
在信息时代,信息安全问题的日趋凸显,数据独裁与隐私保护之间的矛盾更是立于风口浪尖,成为众矢之的,舍恩伯格在本书的最后章节曾试图寻找一种解决方式来摆脱这一种困境,但最终没能做到,但是他提出"大数据并不是一个充斥着算法的和机器的冰冷世界,人类的作用仍无法被完全代替。"这里表明人在数据时代同样的重要,数据是为人类服务的,也就该人类驱使下完成相应的目的。在这样的大环境下,常引起我更多的思考和担忧。
大数据时代对于我们同是机遇与挑战,一些国家已开始步入大数据时代的行列,并在各个领域开始研究和使用。而对于我国庞大的人口,以及较大的领土面积,都可以在大数据时代为我们提供数据的保障,而能否面临挑战,在大国之间的新一轮角色角逐间崭露头角,我们更需要解决技术等方面的问题,更应在政策上逐步开放各领域的数据,保证数据来源、权限等问题得到解决,不断学习先进的计算机技术,缩小与其他国家的差距。
⑻ 大数据在供应链中的应用
大数据在供应链中的应用
大数据在供应链中的应用,大数据这个词现在我们经常会听到,而且我们只知道生活已经离不开大数据,却不知道它具体在哪些方面发挥着作用,下面看看大数据在供应链中的应用。
1、有关大数据
1.1分析大数据
在这个信息公开的社会里,我们每天都可以从外界获得大量的信息。但是随之而来的疑问也出现了,在这样庞大的数据中我们如何知道哪些信息是对我们有利的呢?在大数据时代里,如何快速精确的获得有用信息成为了我们迫在眉睫的问题。
1.2大数据分析在供应链管理中的作用
数据的分类有着很重要的作用,大数据的种类也对他的表现形式有着至关重要的影响,比如说收集这个信息的方式和方法。在如今的公司供应链管理中,影响最大的就是EPR数据,它包含了企业在运行过程中的各方面的数据,这也是我们去了解一个企业的重要数据。
还有一些数据是有关社会数据和客户数据,通过这些数据我们可以了解到一个新的项目所涉及的参与的人数,达到的效果,从而是企业达到更加高效合理的发展。
1.3大数据分析的特色
和传统数据分析不同的是,大数据分析可以更加具体的去描述。因为时间在流逝而大数据分析记载下来的东西却不会自动流逝或者更新,所以大数据分析具有流逝性,因为所有的信息都是人们记载得来的,只有人们的参与与分享才能获得大数据,所以大数据分析和人们不可或分。因为大数据分析具有智慧性,所以它可以通过我们平时的搜索词或者喜好自动为我们推送我们可能感兴趣的资料。
2、大数据分析与供应链之间的关系
2.1供应链管理的作用
在有大数据分析的前提下,供应链才能找到合适的原料供应商。供应链就像一条食物链,都处在他们各自应该有的分支上。所制造的产物要在合适的渠道下一层层的在相应的分支下传递下去。供应链管理这个时候起到了作用,它的作用是通过合适的方法让客户的花费最小而得到的效益最高,从而实现共赢。
2.2二者的有效应用
供应链与大数据分析从头到尾都有着密不可分的联系。中国在社会主义市场经济改革的道路上越走越远,所以企业供应链管理工作也在提高。我们也更加重视企业供应链管理方面的有效利用,这就不可避免地与大数据分析联系起来,大数据分析在企业供应链管理的每一步都有着不可缺少的作用。想要好的质量和效率,就一定要重视大数据的分析结果,将它与企业供应链管理工作巧妙结合。
大数据分析也可以给我们提供一个广阔的视野,去观察各个环节是怎样利用我们所提取的信息,这样会更加方便我们了解通过大数据分析所得到的效益。通过大数据分析对企业某项目走势进行猜测、分析、整理。为了保证利润的最大化,需要我们对大数据分析的结果进行研究,用最有用的信息来提高工作的效率和质量。
2.3大数据分析与供应链的决策关系
大数据分析的应用可以用在已经确定的项目上,分析的结果与决策联系起来,决策有不足的地方可以通过大数据分析发现,进而弥补不足。供应链也具有风险性,所以大数据分析的结果能为供应链在目标项目上提供好的营销决策、利用大数据分析,化无用为有用。大数据分析的好处大家都知道,所以有很多公司利用大数据分析来获取供应链,但是这并不是所有的公司都能驾驭的了的,许多公司还不能满足其要求。
2.4大数据分析与供应链
大数据分析在供应链管理中的应用模式。从物料来源来讲,供应商进行风险评估,将产品以特色进行区分,物料来源渠道的选择,供应商达到一体化水准,供应商进行谈判。从加工生产来看,首先进行存货优化,再进行产能维持,接着工厂选址,最后是人力资源。
从物流配送来看的话,则是配送与物流优化,再选择好的运输方案,然后例行路线的安排,接着是指定完美的运输路线,最后配置运输车辆。从销售服务来看,首先基于地域的市场开发,其次分析店内的消费行为,接着对客户群进行精细的划分,然后进行多渠道的市场开发,最后优化开发方案。这些都是大数据分析在各个领域内的作用,所以我们要好好的利用大数据分析,从而获得较大的收益。
3、问题与现状
3.1大数据分析的现状
日常生活中我们都会获得大量的信息,而这些信息如果不加以归纳整理,一定是一堆没有用的信息,我们不能精确的从里面提取出来真正需要的东西。企业也是这样,信息不经过分析,就只是没用的数据。所以在企业里决策和分析有着至关重要的作用,只要认真发掘我们能从大数据中得到很多有用的消息,从而将商业信息变成商业智能。
3.2大数据分析的问题
从各类新型软件的兴起中我们不难发现,如今的大数据分析的应用的作用并没有被完全利用,比如抖音的兴起,抖音带给我们许多欢乐,我们也可以从这个软件上获得许多消息,但是如果我们认真的想一想,抖音带给我们的信息是不是太过于碎片化,只通过一个十几秒的视频我们不能了解一件事情的真相,而且还有可能被误导。所以供应链管理遇到了这方面的困难,解决大数据分析片面化与碎片化至关重要。
3.3大数据与市场
大数据分析可以看出是以人民大众作为目标的。在市场中渐渐的将大数据的分析结果作为核心开始转型,去面对人民群众的真正需求和解决这些需求。我们也可以利用大数据分析去寻找所需要的人,去分析他们所需要的东西,然后去供给。通过这些潜在的客户来提升公司的效益。
为公司带来效益的同时也为他们带来好处,何乐而不为。大数据分析还能为市场找到某一物品的平均价格,可以按照地区细分,这样一来,更加方便进行价格调整。
人们经常说,顾客就是上帝,所以满足顾客的需求非常重要,好的供应链管理对流程和运营有着较高的要求,所以这也需要好的大数据分析为我们提供基础。从大数据分析的预测也可以为企业提供好的基础。
4、总结
我们生活在大数据年代里,许多新兴产业已经离不开大数据,他们依赖着大数据分析为他们带来的好处,大数据分析对市场预测的准确度也为企业带来了便利,帮助公司制定好的计划企业的管理人员要了解供应链与大数据分析之间的关系,不断改进大数据分析的模式。同时他们也在努力的去了解大数据分析,期待着能从大数据分析中再得到更多的效益。我们的生活也因为大数据分析有了天翻地覆的.改变。
一、大数据的定义
那什么是大数据呢?麦肯锡将大数据定义为:无法在一定时间内用传统数据库软件工具对其内容进行抓取、管理和处理的数据集合。显然麦肯锡将大数据定义的重点放在了“大”上。诚然,人们最初接触大数据的时候,震撼于大数据爆发性增长所带来的的巨大体量,最强烈直观的感受就是“大”。但随着时间的推移,人们开始分析,挖掘数据,去探索数据背后隐藏的价值,自此数据金矿展露出矿山一角,开始在时代洪流中大放金光,大批淘金者蜂拥而上,更是助推了大数据的蓬勃发展,最终促成了大数据生态系统的形成。
笔者大胆的对时代背景下的“大数据"做出如下定义:以海量数据为基础,以数据的整理、分析、挖掘为过程,并最终以实现数据价值为结果的一整套理论和实践就是大数据。
笔者认为大数据的内在生命力是数据的持续性爆发增长,而外在特征用数据人普遍认同的5V加以描述:
Volume:数据体量巨大。就是大。
Variety:数据类型繁多。繁杂纷复的属性和行为数据以结构化或者非结构化的形式存储在形式各异的存储器上。
Value:价值密度低。数据万千,可提取的价值往往只占万一。更因此,科学的数据挖掘和高精度算法才显得如此重要。
Velocity:处理速度块。数据体量巨大,且增长迅猛,不快实在不行。
Veracity:真实性。真实的数据带来真实的价值,弄虚作假切不可取。去伪存真也是一种真实,需要每个数据人的努力。
二、大数据的应用
大数据正在渗透到我们生活的方方面面,在生产、经营活动、流通、生物医学、城市管理、安全防护、金融、营销等各个领域大放异彩。
1.智能推荐系统作为大数据在互联网领域的最广泛普遍的应用,通过分析用户的历史行为习惯,来了解用户的喜好,从而为用户推荐感兴趣的信息,满足用户的个性化推荐需求。从各大电商平台,到门户网站,再到近年大火的短视频平台,无不能发现它的踪影,给人们真正带来了千人千面的个性化优质体验。
2.大数据在生物医学领域的应用,通过统计分析大量网民搜索的流行病信息,结合气温变化,环境指数,人口流动等因素,创建一个个预测模型,预测未来疾病的活跃指数,提供疫病预防建议,来实现以防代治。
3.大数据在物流领域的应用,利用集成智能化技术,在大量数据训练下,使得物流系统能模仿人的智能,具有思维、感知、学习、判断的能力自行解决物流中的某些问题,包括但不限于存货盘点、拣货、包装、单据管理、运输、物流追踪、派送时间预测等等问题,强力助力完善物流体系的智能化进程。
再比如利用大数据打造智慧城市,在安防方面,构建7*24小时不间断的治安监控,在金融领域用于分析市场情绪,评估信贷风险等等。随着大数据的应用越来越广泛,我们在日常生活中,会越来越受益大数据带来的价值。
大数据是什么意思
大数据是指那些数据量特别大、数据类别特别复杂的数据集,这种数据集不能用传统的数据库进行转存、管理和处理,是需要新处理模式才能具有更强大的决策力、洞察发现力和流程优化能力的海量、高增差率和多样化的信息资产。
而大数据的主要特点就是数据量大、数据处理速度快、数据真实性高、数据类别复杂等,它们合起来被称为4V。
大数据也可以应用在警察预测犯罪的发生、预测选举结果,同时还能通过手机定位数据和交通数据建立城市规划,现在医疗行业也在做大数据的分析。
现在社会发展速度非常快,科技也很发达,信息的流通和人们之间的交流也非常密切,而大数据就是这个时代高科技的产物。
对于大部分行业而言,怎么运用这些大规模数据是赢得竞争的关键,但同时,大数据在经济发展中的意义不能取代一切对于社