㈠ 大数据量数据存储问题
大数据(big
data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)
㈡ 大数据时代,数据应该如何存储
PB或多PB级基础设施与传统大规模数据集之间的差别简直就像白天和黑夜的差别,就像在笔记本电脑上处理数据和在RAID阵列上处理数据之间的差别。"
当Day在2009年加入Shutterfly时,存储已经成为该公司最大的开支,并且以飞快的速度增长。
"每N个PB的额外存储意味着我们需要另一个存储管理员来支持物理和逻辑基础设施,"Day表示,"面对大规模数据存储,系统会更频繁地出问题,任何管理超大存储的人经常都要处理硬件故障。大家都在试图解决的根本问题是:当你知道存储的一部分将在一段时间内出现问题,你应该如何确保数据可用性,同时确保不会降低性能?"RAID问题解决故障的标准答案是复制,通常以RAID阵列的形式。但Day表示,面对庞大规模的数据时,RAID解决问题的同时可能会制造更多问题。在传统RAID数据存储方案中,每个数据的副本都被镜像和存储在阵列的不同磁盘中,以确保完整性和可用性。但这意味着每个被镜像和存储的数据将需要其本身五倍以上的存储空间。随着RAID阵列中使用的磁盘越来越大(从密度和功耗的角度来看,3TB磁盘非常具有吸引力),更换故障驱动器的时间也将变得越来越长。
"实际上,我们使用RAID并不存在任何操作问题,"Day表示,"我们看到的是,随着磁盘变得越来越大,当任何组件发生故障时,我们回到一个完全冗余的系统的时间增加。生成校验是与数据集的大小成正比的。当我们开始使用1TB和2TB的磁盘时,回到完全冗余系统的时间变得很长。可以说,这种趋势并没有朝着正确的方向发展。"
对于Shutterfly而言,可靠性和可用性是非常关键的因素,这也是企业级存储的要求。Day表示,其快速膨胀的存储成本使商品系统变得更具吸引力。当Day及其团队在研究潜在技术解决方案以帮助控制存储成本时,他们对于一项叫做纠删码(erasure code)的技术非常感兴趣。
采用擦除代码技术的下一代存储
里德-所罗门纠删码最初作为前向纠错码(Forward Error Correction, FEC)用于不可靠通道的数据传输,例如外层空间探测的数据传输。这项技术还被用于CD和DVD来处理光盘上的故障,例如灰尘和划痕。一些存储供应商已经开始将纠删码纳入他们的解决方案中。使用纠删码,数据可以被分解成几块,单块分解数据是无用的,然后它们被分散到不同磁盘驱动器或者服务器。在任何使用,这些数据都可以完全重组,即使有些数据块因为磁盘故障已经丢失。换句话说,你不需要创建多个数据副本,单个数据就可以确保数据的完整性和可用性。
基于纠删码的解决方案的早期供应商之一是Cleversafe公司,他们添加了位置信息来创建其所谓的分散编码,让用户可以在不同位置(例如多个数据中心)存储数据块或者说数据片。
每个数据块就其自身而言是无用的,这样能够确保隐私性和安全性。因为信息分散技术使用单一数据来确保数据完整性和可用性,而不是像RAID一样使用多个副本,公司可以节省多达90%的存储成本。
"当你将试图重组数据时,你并不一定需要提供所有数据块,"Cleversafe公司产品策略、市场营销和客户解决方案副总裁Russ Kennedy表示,"你生成的数据块的数量,我们称之为宽度,我们将重组数据需要的最低数量称之为门槛。你生成的数据块的数量和重组需要的数量之间的差异决定了其可靠性。同时,即使你丢失节点和驱动器,你仍然能够得到原来形式的数据。"
㈢ 海量数据存储有哪些方式与方法
从数据存储的模式来看,海量存储技术可以分为DAS(Direct Attached Storage,直接附加存储)和网络存专储两种,其中网络存储又可以分为NAS(Network Attached storage,网属络附加存储)和SAN(Storage Area Net、Work,存储区域网络)。
从数据存储系统的组成上看,无论是DAS、NAS还是SAN,其存储系统都可以分为三个部分:首先是磁盘阵列,它是存储系统的基础,是完成数据存储的基本保证;其次是连接和网络子系统,通过它们实现了一个或多个磁盘阵列与服务器之间的连接;最后是存储管理软件,在系统和应用级上,实现多个服务器共享、防灾等存储管理任务。
如果需要更多资料可以追问
㈣ 大数据存储的三种方式
1、不断加密:任何类型的数据对于任何一个企业来说都是至关重要的,而且通常被认为是私有的,并且在他们自己掌控的范围内是安全的。
然而,黑客攻击经常被覆盖在业务故障中,最新的网络攻击活动在新闻报道不断充斥。因此,许多公司感到很难感到安全,尤其是当一些行业巨头经常成为攻击目标时。随着企业为保护资产全面开展工作,加密技术成为打击网络威胁的可行途径。
2、仓库存储:大数据似乎难以管理,就像一个永无休止统计数据的复杂的漩涡。因此,将信息精简到单一的公司位置似乎是明智的,这是一个仓库,其中所有的数据和服务器都可以被充分地规划指定。然而,有些报告指出了反对这种方法的论据,指出即使是最大的存储中心,大数据的指数增长也不再能维持。
3、备份服务云端:大数据管理和存储正在迅速脱离物理机器的范畴,并迅速进入数字领域。除了所有技术的发展,大数据增长得更快,以这样的速度,世界上所有的机器和仓库都无法完全容纳它。
由于云存储服务推动了数字化转型,云计算的应用越来越繁荣。数据在一个位置不再受到风险控制,并随时随地可以访问,大型云计算公司将会更多地访问基本统计信息。数据可以在这些服务上进行备份,这意味着一次网络攻击不会消除多年的业务增长和发展。
㈤ 大数据解决方案主要用于存储哪种类型的数据
大数据解决方案主要用于存储二进制类型的数据。
数据还包括了结构化数据和非结构化数据,邮件,Word,图片,音频信息,视频信息等各种类型数据,已经不是以往的关系型数据库可以解决的了。非结构化数据的超大规模和增长,占总数据量的80~90%,比结构化数据增长快10倍到50倍,是传统数据仓库的10倍到50倍。
大数据特点:
海量数据有不同格式,第一种是结构化,我们常见的数据,还有半结据化网页数据,还有非结构化视频音频数据。而且这些数据化他们处理方式是比较大的。数据类型繁多,如网络日志、视频、图片、地理位置信息,等等。
㈥ 大数据时代需要什么样的存储
众多专家认为,大数据时代的存储,应当是分布式的存储,并呈现出与计算融合的趋势。当然,不同专家对融合的理解也有所区别。 SNIA-China技术委员会主席雷涛表示,在当前的大数据时代,由于数据量TB、PB级的急剧膨胀,传统的数据搬移工作已经不现实,因而存储服务器出现新的融合趋势。在这样的架构中,数据不再移动,写入以后分散在STORAGE,它的计算节点融合在数据旁边的CPU,数据越来越贴近计算。 雷涛补充说,大数据只谈商业分析的数据支持,这是小数据思维,从金融、运营商、政府行业我们做的项目里面发现,大数据是嵌入到整个行业里面,替换以前的存储和计算的系统架构的过程。 华为存储产品线Marketing部长经宁认为,大数据带来的三大变化,包括从集中式走向分布式,从水平走向纵向,从计算为中心转向以数据为中心,总结一句话,即在大数据下架构方向走向分布式存储的架构。 2013年,华为存储产品线把理念进行升级,变成“存以致用,融以致远”。经宁表示,融合架构是我们面对大数据挑战一个很好的选择。华为更多的希望把数据智能用起来产生价值,通过融合架构实现计算存储融合,可以带来更高的管理效率更高效能,大大降低我们管理上的开销。 中桥国际调研咨询公司首席分析师王丛女士则从虚拟化、云计算数据保护和融合架构三个维度谈了中国数据中心的发展变化。她表示,具有高可移动性的虚拟机用于生产,掉了链子就很难判断是哪个物理环境,这就驱动了融合架构。融合架构避免了整合的时间和网络问题判断的时间,能够实现统一集中透明管理,可以根据工作负载去实时动态配置资源,也可以实时监控哪里出了问题,怎么解决问题。 王丛还指出,融合架构有不同的形态,其中一种是在原来硬件基础上用一个软件罩上,然后形成融合架构,实现目的是可以在线扩展,所有动态可以负载均衡,在最大限度提高部署效率前提下,又能够降低因为硬件问题而导致的应用性能降低和应用的不稳定。 老牌存储厂商NetApp同样对存储架构很有体会。NetApp公司北方区及电信事业部技术总监刘炜表示,在今天把数据存起来不是很难的问题,买一个移动硬盘就可以存储数据,但是在上面存储享受的服务级别不同的,不同于放在数据中心和网络云上面的服务级别的。 为了不让数据成为整个企业发展的负担,而是成为真正的价值点,从资料变成资产,基础架构需要快速、安全地支持一些新的技术手段。刘炜认为,应用级别和服务级别怎么定义需要有很好存储架构。NetApp集群存储系统,并不是简单地迎合新概念,而是面向实际的应用设计。NetApp做了很多IT架构的设计,满足应用分级、资源分层的需求,你可以用虚拟化,也可以不用。 Fusion-io大中国区技术总监Tonny Ai与英特尔公司通信和存储基础架构事业部存储部市场总监 Christine M Rice女士谈到了SSD在大数据时代数据中心的应用。Tonny Ai表示,让包括非结构化数据的大量数据快速变成信息,不仅仅是服务器要快,存储速度也要跟上CPU的速度,闪存正是针对当前网络存储速度落后的解决方案,能够有效提高存储的性能。 同时,Tonny Ai认为,在云计算、大数据时代,集中式存储需要的管理和维护非常困难,分布式存储模型是大势所趋。在这其中,Fusion-io提供了PCIe闪存卡、全闪存阵列以及SDK工具,支持提升各种应用的性能。 Christine M Rice女士指出,SSD不只是让数据变快。她认为,通过SSD在数据中心的使用,能够帮助节约成本,降低延迟,加快访问数据的速度,同时还能够提供非常高的可靠性和管理级别,结合了DRM的使用进行软件分层管理。 戴尔亚太存储技术总监许良谋则强调了SSD的利用要在成本和性能之间的平衡,如何更好地应对大数据——闪存的成本和寿命让很多企业对它爱恨交加。许良谋认为,大数据需要一个高容量高速度的共享存储,戴尔的流动数据架构就是一个让数据平滑迁移的平台。 戴尔实现了一个新的技术突破,即快速SLC和eMLC大容量盘可以用到流动架构里面,再加上普通的大容量盘,两级固态盘优化和流动数据架构的配合,这种方案可以比普通纯闪存的方式实现75%以上的成本节约。 许良谋介绍到,戴尔一直通过收购、合作等方式,在自身产品线中不断引入新的存储技术,力图把最好的存储产品以最经济的方式提供给用户。
㈦ 大数据的数据的存储方式是什么
大数据有效存储和管理大数据的三种方式:
1. 不断加密
任何类型的数据对于任何一个企业来说都是至关重要的,而且通常被认为是私有的,并且在他们自己掌控的范围内是安全的。然而,黑客攻击经常被覆盖在业务故障中,最新的网络攻击活动在新闻报道不断充斥。因此,许多公司感到很难感到安全,尤其是当一些行业巨头经常成为攻击目标时。
随着企业为保护资产全面开展工作,加密技术成为打击网络威胁的可行途径。将所有内容转换为代码,使用加密信息,只有收件人可以解码。如果没有其他的要求,则加密保护数据传输,增强在数字传输中有效地到达正确人群的机会。
2. 仓库存储
大数据似乎难以管理,就像一个永无休止统计数据的复杂的漩涡。因此,将信息精简到单一的公司位置似乎是明智的,这是一个仓库,其中所有的数据和服务器都可以被充分地规划指定。然而,有些报告指出了反对这种方法的论据,指出即使是最大的存储中心,大数据的指数增长也不再能维持。
然而,在某些情况下,企业可能会租用一个仓库来存储大量数据,在大数据超出的情况下,这是一个临时的解决方案,而LCP属性提供了一些很好的机会。毕竟,企业不会立即被大量的数据所淹没,因此,为物理机器租用仓库至少在短期内是可行的。这是一个简单有效的解决方案,但并不是永久的成本承诺。
3. 备份服务 - 云端
当然,不可否认的是,大数据管理和存储正在迅速脱离物理机器的范畴,并迅速进入数字领域。除了所有技术的发展,大数据增长得更快,以这样的速度,世界上所有的机器和仓库都无法完全容纳它。
因此,由于云存储服务推动了数字化转型,云计算的应用越来越繁荣。数据在一个位置不再受到风险控制,并随时随地可以访问,大型云计算公司(如谷歌云)将会更多地访问基本统计信息。数据可以在这些服务上进行备份,这意味着一次网络攻击不会消除多年的业务增长和发展。最终,如果出现网络攻击,云端将以A迁移到B的方式提供独一无二的服务。
㈧ 传统大数据存储的架构有哪些各有什么特点
数据时代,移动互联、社交网络、数据分析、云服务等应用的迅速普及,对数据中心提出革命性的需求,存储基础架构已经成为IT核心之一。政府、军队军工、科研院所、航空航天、大型商业连锁、医疗、金融、新媒体、广电等各个领域新兴应用层出不穷。数据的价值日益凸显,数据已经成为不可或缺的资产。作为数据载体和驱动力量,存储系统成为大数据基础架构中最为关键的核心。
传统的数据中心无论是在性能、效率,还是在投资收益、安全,已经远远不能满足新兴应用的需求,数据中心业务急需新型大数据处理中心来支撑。除了传统的高可靠、高冗余、绿色节能之外,新型的大数据中心还需具备虚拟化、模块化、弹性扩展、自动化等一系列特征,才能满足具备大数据特征的应用需求。这些史无前例的需求,让存储系统的架构和功能都发生了前所未有的变化。
基于大数据应用需求,“应用定义存储”概念被提出。存储系统作为数据中心最核心的数据基础,不再仅是传统分散的、单一的底层设备。除了要具备高性能、高安全、高可靠等特征之外,还要有虚拟化、并行分布、自动分层、弹性扩展、异构资源整合、全局缓存加速等多方面的特点,才能满足具备大数据特征的业务应用需求。
尤其在云安防概念被热炒的时代,随着高清技术的普及,720P、1080P随处可见,智能和高清的双向需求、动辄500W、800W甚至上千万更高分辨率的摄像机面市,大数据对存储设备的容量、读写性能、可靠性、扩展性等都提出了更高的要求,需要充分考虑功能集成度、数据安全性、数据稳定性,系统可扩展性、性能及成本各方面因素。
目前市场上的存储架构如下:
(1)基于嵌入式架构的存储系统
节点NVR架构主要面向小型高清监控系统,高清前端数量一般在几十路以内。系统建设中没有大型的存储监控中心机房,存储容量相对较小,用户体验度、系统功能集成度要求较高。在市场应用层面,超市、店铺、小型企业、政法行业中基本管理单元等应用较为广泛。
(2)基于X86架构的存储系统
平台SAN架构主要面向中大型高清监控系统,前端路数成百上千甚至上万。一般多采用IPSAN或FCSAN搭建高清视频存储系统。作为监控平台的重要组成部分,前端监控数据通过录像存储管理模块存储到SAN中。
此种架构接入高清前端路数相对节点NVR有了较高提升,具备快捷便利的可扩展性,技术成熟。对于IPSAN而言,虽然在ISCSI环节数据并发读写传输速率有所消耗,但其凭借扩展性良好、硬件平台通用、海量数据可充分共享等优点,仍然得到很多客户的青睐。FCSAN在行业用户、封闭存储系统中应用较多,比如县级或地级市高清监控项目,大数据量的并发读写对千兆网络交换提出了较大的挑战,但应用FCSAN构建相对独立的存储子系统,可以有效解决上述问题。
面对视频监控系统大文件、随机读写的特点,平台SAN架构系统不同存储单元之间的数据共享冗余方面还有待提高;从高性能服务器转发视频数据到存储空间的策略,从系统架构而言也增加了隐患故障点、ISCSI带宽瓶颈导致无法充分利用硬件数据并发性能、接入前端数据较少。上述问题催生了平台NVR架构解决方案。
该方案在系统架构上省去了存储服务器,消除了上文提到的性能瓶颈和单点故障隐患。大幅度提高存储系统的写入和检索速度;同时也彻底消除了传统文件系统由于供电和网络的不稳定带来的文件系统损坏等问题。
平台NVR中存储的数据可同时供多个客户端随时查询,点播,当用户需要查看多个已保存的视频监控数据时,可通过授权的视频监控客户端直接查询并点播相应位置的视频监控数据进行历史图像的查看。由于数据管理服务器具有监控系统所有监控点的录像文件的索引,因此通过平台CMS授权,视频监控客户端可以查询并点播整个监控系统上所有监控点的数据,这个过程对用户而言也是透明的。
(3)基于云技术的存储方案
当前,安防行业可谓“云”山“物”罩。随着视频监控的高清化和网络化,存储和管理的视频数据量已有海量之势,云存储技术是突破IP高清监控存储瓶颈的重要手段。云存储作为一种服务,在未来安防监控行业有着可观的应用前景。
与传统存储设备不同,云存储不仅是一个硬件,而是一个由网络设备、存储设备、服务器、软件、接入网络、用户访问接口以及客户端程序等多个部分构成的复杂系统。该系统以存储设备为核心,通过应用层软件对外提供数据存储和业务服务。
一般分为存储层、基础管理层、应用接口层以及访问层。存储层是云存储系统的基础,由存储设备(满足FC协议、iSCSI协议、NAS协议等)构成。基础管理层是云存储系统的核心,其担负着存储设备间协同工作,数据加密,分发以及容灾备份等工作。应用接口层是系统中根据用户需求来开发的部分,根据不同的业务类型,可以开发出不同的应用服务接口。访问层指授权用户通过应用接口来登录、享受云服务。其主要优势在于:硬件冗余、节能环保、系统升级不会影响存储服务、海量并行扩容、强大的负载均衡功能、统一管理、统一向外提供服务,管理效率高,云存储系统从系统架构、文件结构、高速缓存等方面入手,针对监控应用进行了优化设计。数据传输可采用流方式,底层采用突破传统文件系统限制的流媒体数据结构,大幅提高了系统性能。
高清监控存储是一种大码流多并发写为主的存储应用,对性能、并发性和稳定性等方面有很高的要求。该存储解决方案采用独特的大缓存顺序化算法,把多路随机并发访问变为顺序访问,解决了硬盘磁头因频繁寻道而导致的性能迅速下降和硬盘寿命缩短的问题。
针对系统中会产生PB级海量监控数据,存储设备的数量达数十台上百台,因此管理方式的科学高效显得十分重要。云存储可提供基于集群管理技术的多设备集中管理工具,具有设备集中监控、集群管理、系统软硬件运行状态的监控、主动报警,图像化系统检测等功能。在海量视频存储检索应用中,检索性能尤为重要。传统文件系统中,文件检索采用的是“目录-》子目录-》文件-》定位”的检索步骤,在海量数据的高清视频监控,目录和文件数量十分可观,这种检索模式的效率就会大打折扣。采用序号文件定位可以有效解决该问题。
云存储可以提供非常高的的系统冗余和安全性。当在线存储系统出现故障后,热备机可以立即接替服务,当故障恢复时,服务和数据回迁;若故障机数据需要调用,可以将故障机的磁盘插入到冷备机中,实现所有数据的立即可用。
对于高清监控系统,随着监控前端的增加和存储时间的延长,扩展能力十分重要。市场中已有友商可提供单纯针对容量的扩展柜扩展模式和性能容量同步线性扩展的堆叠扩展模式。
云存储系统除上述优点之外,在平台对接整合、业务流程梳理、视频数据智能分析深度挖掘及成本方面都将面临挑战。承建大型系统、构建云存储的商业模式也亟待创新。受限于宽带网络、web2.0技术、应用存储技术、文件系统、P2P、数据压缩、CDN技术、虚拟化技术等的发展,未来云存储还有很长的路要走。