导航:首页 > 网络数据 > ryanbaker大数据

ryanbaker大数据

发布时间:2023-01-15 09:45:47

❶ “人工智能”,“大数据”+教育如何驱动教育的未来

近日,由论答公司主办的教育大数据研讨会在北京举行,讨论会主题为“大数据+教育,有哪些可能性?”。本次研讨会主要关注数据在教育领域的应用,具体包括自适应学习、学习数据分析和教育数据挖掘。来自宾夕法尼亚大学、人民大学、华中师范大学的专家和企业界代表,共同探讨了教育大数据和自适应学习领域的技术趋势和产业机会
Ryan Baker是国际教育数据挖掘协会(International Ecational Data Mining Society)的创始人、《教育数据挖掘》杂志(Journal Ecational Data Mining)主编,在各类期刊和会议发表了260余篇学术论文,先后主持了美国科学基金会(National Science Foundation)、盖茨基金会(Gates Foundation)等研究基金的多项重大项目,累计获得研究经费超过1600万美元。
他也在哥伦比亚大学教育学院和爱丁堡大学同时担任教职,他在Coursera和edX上开设的“Big Data in Ecation(教育大数据)”课程,有来自100多个国家和地区的学生注册。
研讨会现场,Ryan Baker通过远程视频,分享了他对教育大数据的体验和应用。据他介绍,目前在教育大数据领域主要有四大研究组织,分别研究人工智能与教育、教育数据挖掘、学习数据分析和大规模学习。
Ryan Baker表示,在教育领域广泛应用大数据的时代正在到来。教育数据挖掘有很多的应用方向,包括:预测学生是会辍学,还是会成功完成学业;自动检测学生的学习投入程度、情感、学习策略,以更好地达到个性化;给教师和其他相关人员提供更好的报告;教育科学的基础研究和发现。
他认为,个性化教育至少要做到三件事情:
1、确定学生的有关数据;
2、了解对于学生的学习来说什么是真正重要的;
3、有针对性地为学生提供合适的教学。
而通过教育数据挖掘,我们可以推断很多事情:
学生的元认知和求助。比如,这个学生有多自信?当他需要帮助时,有没有在寻求帮助?他有没有在给自己解释问题,有没有思考这个答案是正确的还是错误的?最重要的,当他面临挑战时,能否坚持下去?
没有投入学习的行为。比如,“玩弄”系统,为了找到正确的答案,有的学生会试各种不同的答案,从“1”试到“38”。粗心,本身会做,但是不用心,最后给出的答案是错的。有些孩子会做非常难以解释的行为,比如不用方程符号,而是画了一个笑脸。
学生情感。Baker的研究团队和其他研究团队,已经创造了研究模型,可以根据数据推断,学生是否感到厌倦、沮丧、困惑、好奇、兴奋、快乐,是否投入,等等。
长期的学习结果。比如,学生能够记住刚才他学的东西吗?学生准备好学习下一个主题、下一个知识没有?中学生能上大学吗?他会从大学毕业还是辍学?
Ryan Baker表示,要获得这样的推断,只需要学生与系统交互的数据,不需要学生戴上头盔检测器。目前,这些模型已经开始大规模应用于自适应学习,应用于几十万的美国学生。Ryan Baker列举了一些自适应学习系统的案例。
Knewton
通过系统决定学生下一个要学习的问题是什么,已在全球的多个领域多个学科中运用。
ALEKS-ALEKS
用的是先行知识结构和知识点模型,来选择最适合学生的学习材料。比如,一个学生在学习上出现了问题,系统能够检测出来,是以前学的知识点出了问题,然后让学生回到以前的知识点上去学习。ALEKS系统应用于美国高中、大学的数学、科学学科。
Cognitive Tutor
系统能自动检测学生的知识,直到学生掌握为止。比如,系统不会让学生学习下一步的知识,直到他展示出他已经学好了他现在正在学习的知识。系统能够给学校提供数据报告,学校根据报告能够更好地让学生投入到学习中去。每年大约被50万的美国初高中生用于数学学习。
论答
论答公司的系统与ALEKS的系统有些类似,也是用先行结构和知识点模型,选择合适的学习材料。同时也是自动检测学生的知识状态直到学生掌握为止。应用领域目前包括数学和英语,完全针对中国学生开发。
Reasoning Mind
用各种自动检测的模型来检测老师的教学是否有效。通过数据生成报告给每个地区的教学管理员,让他们找到方法帮助老师提高教学。主要是用于美国的小学数学。
Duolingo
自动检测学生记忆,来决定什么时候回顾已经学过的知识。在全世界范围内应用于外语词汇的学习。
其他的像Civitas,Course Signals,Zogotech都是地区供应商,运用风险预测模型提供行动信息预测。它们会对学生做出预测,可能学不好、会失败,把报告提供给老师。已在世界范围内的大学应用。
Ryan Baker指出,在这些系统中,有足够的证据证明,至少以下两个系统是非常好的。
1、胡祥恩教授在美国做了大量实证研究,证明ALEKS系统对于帮助学生学习是有效的。他的研究证明,ALEKS系统对于不同人群的学生是同样有效的;特别值得提出的是,ALEKS可以帮助少数人群群体提高学习成绩。
2、Ryan Baker本人领导的研究团队与论答公司合作的研究表明,学生通过论答系统学习,比通过传统的在线学习系统学习,效果更好。他们在中国3个不同的地区做的3次实证研究,都证明了论答系统的有效性。
Ryan Baker分析了教育大数据算法模型的潜在发展方向。他认为,这些模型的长期潜力是,通过学生的知识和学习模型来确认,学生什么时候需要更多的支持:
首先是“mastery learning”,学生在掌握一个知识前,不会让他去学习下一个知识。当学生需要支持的时候,自动介入;同时告诉老师和父母,这个学生什么时候需要支持。
通过学习投入程度模型判断,学生什么时候开始变得厌倦、沮丧了,并调整学习活动,让厌倦的学生不再厌倦,让沮丧的学生的学习变得更容易一些。
学习投入程度模型还可以检测,在线学习中,什么样的学习活动,能让学生更容易地投入进去,并最终发现,什么样的学习活动对学生更好、对什么样的学生更好。
这样的模型也能告诉老师和父母,学生什么时候开始变得不再投入学习了。
还可以运用学习模型确认,学生什么时候没有真正学会,需要更多支持。
最后,Ryan Baker指出,下一步的目标是优化之前已经验证的经验和方法,然后把它们运用到系统中,最终让中国和世界上的数十亿学生受益。
讨论:“因材施教”的千年理想该如何照进现实?
王枫博士,论答公司(Learnta Inc.)创始人兼CEO
胡飞芳博士,美国乔治华盛顿大学(George Washington University)统计学终身教授,中国人民大学统计与大数据研究院的教授
胡祥恩博士,美国孟菲斯大学(University of Memphis)心理系、计算机科学系、计算机工程系终身教授,华中师范大学心理学院院长
马镇筠博士,论答公司联合创始人兼首席数据科学家
辛涛博士,北京师范大学中国基础教育质量监测协同创新中心常务副主任、博士生导师,兼任国家督学、教育部基础教育课程教材专家工作委员会委员、中国教育学会学术委员会委员。
技术发展到今天,“因材施教”如何实现?
王枫:因材施教,我首先到的是,每位学生学习的内容都不一样。如果有新的技术或者系统,系统应该像一个好老师一样,不会头疼医头脚疼医脚。比如说,一元二次方程做错了,好老师不会简单说一元二次方程做错了,你继续再做十道一元二次方程的题目,这其实是很差的老师,他没有真正去全面评判学生,到底是哪些掌握好、哪些掌握不好。
一个好的老师可能会说,我全面地看了你整个学习,可能你的问题不是出在一元二次方程上面,老师看了你做的题目,一元一次方程没有掌握好、因式分解也没有掌握好,你继续做一元二次方程是浪费时间。这就是从系统角度来说,系统做到了根据每个学生最基础的先行知识点的结构,给你提供最适合你当前学习的知识点,题目也好、视频也好、还有其他各种各样的学习内容。
胡飞芳:因材施教是我们教育的理想状态。孔子很早提出因材施教,在他当时的历史环境里面,因材施教可能更多是个体性的,因为那时学生少、老师也少,因材施教相对比较容易做到。
随着历史的发展,我们有更多的人需要教育时,我们做的一件事情是什么呢?就是做了一个标准化。标准化做的是什么?课堂教育。课堂教育从某种意义上来讲是标准化。现在这个历史阶段,教育大数据可能真正要做到的就是因材施教,自适应学习本身想做的也是这个。
胡祥恩:因材施教事实上在学习理论里有两个:一个是outerloop“学什么”,一个是innerloop“怎么学”。用技术来细化因材施教是教育产业走向成熟的一个标志。但是这个路非常非常难,因为“怎么学”那个层次非常非常难。
马镇筠:“因材”代表认识到学生的个体化差异,“施教”指进行差异化教学,这是根本思想。但如果考虑到时代背景,孔夫子时代专注的是学生的职业发展方向,也就是说,把适合当政治家的培养成政治家,把适合当学者的培养成学者。现在再提因材施教,我们其实能做得更多、更精细化。
比如,“因材”,对“材”的分类不仅是职业方向,还会考虑到学生的学习状态、学习目标、潜在能力、兴趣偏好等。而且,传统意义上的因材施教考虑的是学生个体间的差异,没有重视学生本身状态是在发生变化的,学生在不断学习,状态甚至兴趣各方面都可能发生变化。
但这些是自适应学习能够做到,甚至比传统的因材施教做得更好的地方。再说到“施教”,现在我们能做的几件事,包括学习路径推荐,给不同的学生匹配他最合适的学习内容,这种非常精细化的层面,我们已经有了一定的技术积累。
怎么判断一个产品做到了真正的自适应?
马镇筠:大多数产品的学习过程可以分为测、学、练,可以从这三个环节去看这个产品做到什么程度。
测,各种学习机构都有测评。但是国内只有论答团队第一个做出来能够在几十道题内,精准判断你一百个知识点,哪21个没掌握,哪79个掌握了。市场上大部分竞品,只会告诉你,知识点掌握率或者分数,79分或者知识掌握率达到79%;或者一些其他维度的总结,比如逻辑思维能力比较强、阅读的磨炼技巧比较好、学习动力哪方面稀缺。他们做了降维,本来很复杂的学习状态这样说出来,相对比较容易实现。但如果要做到具体告诉你,哪些知识点掌握、哪些知识点没掌握,这个难度就高很多了。
关于学习路径推荐的话,很多题库类的软件,知识点学完之后,会给一些题目推荐,但真正实现路径推荐的很少很少。路径推荐也是很核心的,有20个知识点没掌握,先学哪个知识点,后学哪个知识点,学习顺序是非常关键的,必须遵循循序渐进的原则,哪些知识点是前提知识点,哪些知识点是后续知识点,随机给你知识点去学习的话不能起到最好效果。真正到了练或学的环节,推荐什么样的视频,先推视频还是先推文字讲义,推简单题、中等难度题还是复杂题目,都需要根据学生实际情况来决定。
刚才只是举了几个例子,具体涉及到背后的算法、整个系统跟学习内容的结合以及整个教学流程的实现,中间很多环节必须要打通,形成一个闭环,才能对最终的结果负责。
辛涛:我的研究领域是教育和心理学的测量和评价。我个人的学术观察,基本上在现代这领域是两个类型。一个是心理测量领域,有一套成熟的方法,包括早期的IRT(Item Response Theory)和现在的ADT。另外一个是人工智能检测。心理测量系统,是一小群人在做;人工智能化是大的方向,现在是显学,给大家提供了明显的可能性。重要的是,那些背后的算法,能够在企业里真正实现出来。现在可能很多算法已经在那儿了,大体上路径是通的。
自适应学习基本上是把学习和评价联动起来了。因为,要自适应学习,必须有一个系统随时看到学生学到什么程度,这个完全是评价。但是,评价完了之后有一个新的呈现。这一块现在已经有一些很成熟的一些东西了,但不是一时半时可以说得特别具体的。
我做教育的测量和心理测量,人工智能那块我不熟。但是,从教育测量角度来说,在自适应学习和新技术结合之前,很大一块还是自适应考试,CAT(computer adaptive test)。系列化产生一个CAT变成了一个自适应学习的过程。总的来说,使用最简单、最机械化的方法,连续的CAT实际上是可以破解一个学习过程的。
测评本身经历了好几个阶段,通常用三个应用介词表示。
accessment to learning and teaching;
现在国家倡导的,accessment for learning and teaching,测评要对学习和教学有帮助;
跟信息化结合,accessment as learning and teaching,它是学习提供的完全融合的一个环节。
王枫:什么样的自适应学习系统才是真正的高级自适应学习系统?在中国的落地到底是怎么样才能真正落地?我在马博士的基础上想补充一点。
自适应系统如果一定要分级,也可以简单分一下。一种最基础的系统是基于规则的,比如说埋点。一个学生做10道一元二次方程题目,我预先埋好了,你做错了,立马给你推五道一元一次方程题目、五道因式分解题目。这个是埋点埋好了,这是规则,预先由老师或公式设置好了。
但这个规则有用性是非常有限的,因为每个学生不一样,A学生是因为一元一次方程不会,B学生可能是因式分解不会,C学生可能连小学的乘法快速运算都不会,这个没法预先直接埋点准备好。
所以自适应系统真正到了更高级一点的话,一定是真正通过大数据、根据算法模型来分析学生的学习数据,匹配下一步应该学什么。
在中国,自适应学习有效应用于教学有三个前提条件。做到这三点,自适应学习在中国的教育里面前途无限。
好的产品。必须要有针对中国本土化的自适应学习产品,把它开发出来。像ALEKS系统的确算法不错,但里面连一套国内的高考题都没有,家长不会让小孩子用这样的系统,因为直接影响应试目标。真正本土化开发的话,没有一成不变的算法,世界上最好算法就是没有开发出来的。教育非常复杂,每个学科不一样。比如数学后台有强大的关系,先行后续关系;英语没达到数学这么强的相关性,但算法是一样可以应用的。
好的学生、家长、老师。有了好的产品,首先学生应该真正投入进去学习。像Ryan Baker教授讲的,学生如果随便学一下,再好的系统也没用。第二,家长得督促孩子学习。第三,老师非常重要。老师应该做有价值的事情,比如给学生做个性化的辅导答疑,给学生针对性的讲解,组织学习活动小组,鼓励学生发挥创造能力,领导能力的培养。
学校以点带面。学生大部分时间都在学校里面学习。如果学校里最基本的、有效的在线教学产品都不应用的话,其实是有问题的。但是改变绝对不是简单的行政命令可以解决的。一个好的产品,一定是从点到面,逐步推广。自适应学习,更适合有明确目的的学习,像应试教育这块可以做得更好。所以学校可以应用进去。
胡祥恩:我觉得大家做自适应也好、因材施教也好,比较好的例子大家可以看一看。教育这个领域有多大,自适应概念就该有多宽。所以说,实验室里面有很多小的做得非常非常好的东西,只是没有到市场上面去,有很多非常非常巧妙的算法、一些东西。你会发现很多欧洲的、美国的实验室做的system,我每次看了都有种,自己是坐井观天的感觉。
怎么看待人工智能在教育中的应用?
胡飞芳:AlphaGo跟master,谷歌做了一个非常好的广告,人工智能在某些方面可以做得非常好。但是,我现在给你们讲另外一个谷歌自己不会去说的例子,但这也是事实。2008年、2009年的时候,谷歌推出一个免费产品,用各种搜集到的数据,预测美国的流感发展趋势。开始时很成功,预测跟实际发生的情况很相似。但到2015年,他自动撤回去了,不再提供预测。因为在2012跟2013年预测的时候,预测结果跟实际情况相差非常远。
这说明像这种不确定性的问题,人工智能还有非常大的局限性。一旦有不确定的数据,就有噪音。数据量很大时,大数据可能产生大噪音。怎样使噪音下降?2015年一个哈佛教授的研究团队在谷歌的基础上,用谷歌的数据去做同样的预测。他用了什么呢?就是用了模型,实际上模型在很多时候降噪是很有用的,用模型去预测,而不完全是人工智能的方式去预测。结果,他做出来的预测基本都比较准。
人工智能相对比较成功的,是比较确定的问题,所谓的确定是不管有多少种可能性,还是一个确定的东西。而流感很多时候是完全不确定的因素。
教育其实很多时候也是不确定的。同样一个人,现在让他回答这个问题,他可能思路清楚地回答出来;过了一个小时后,即使是同样类型的问题,按道理他应该回答出来,结果他回答不出来。这是说,实际上有很多因素在干扰的时候,人工智能的功能是不是会减少一点。把模型跟人工智能加在一起,会弥补人工智能在某些方面的弱点,这样会更好。
怎样促进商界和学界的交流,更好地把学界已经有的一些成果,运用到市场上来?
胡祥恩:教育产业应该是一个最大的产业,教育产业事实上是一个知识产业链。到目前为止,很多人认为自己要做一整套系统而在美国汽车业,最赚钱的是供应商,是做轮胎、做玻璃的。一旦标准化之后,一个人如果螺丝钉生产得最好,他就能够养活几家人、几代人。
到目前为止,美国推的就是教育标准化,教育内容的标准化、教育技术的标准化。比如说97年的时候,就说怎么样把内容标准化,你做的东西我可以用。我只是做整个教育知识产业链里面一个小块,做得很好。教育整个的产业链,有可能发挥特别特别技巧的那些小的公司,就能够在这个产业链里面生存、可以做得很好。第一个是要标准化,第二个要理解整个教育是一个产业链。

❷ 站在“大数据”的台风口,石油行业能起飞吗三分钟带你全面了解

加大油气勘探开发力度、保障国家能源安全是当前面临的迫切任务。但随着优质资源的不断开发,剩余资源开采难度越来越大,成本越来越高,迫切需要创新技术提升油气勘探开发效率和效益。在大数据、人工智能( artificial intelligence,AI)、5G、云计算、物联网等技术推动下,油气田的智能化水平将会越来越高,这既是油田降本提质增效的有效途径,也是油气技术发展规律的必然趋势。

1、大数据技术定义

2012年兴起的“大数据”潮流,让“Big Data”这个IT圈子里的名词一下风靡了各个行业。虽然大数据的重要性得到了大家的一致认同,但是对大数据的理解却众说纷纭。大数据是一个抽象的概念,除去数据量庞大这一特征,大数据还有一些其他的特征,这些特征决定了大数据与“海量数据”和“非常大的数据”这些概念之间的不同。

高德纳分析员Doug Laney曾于2001年在一次演讲中指出,数据增长有3个方向的挑战:数量(volume),即数据多少;速度(velocity),即资料输入、输出的速度;种类(variety),即多样性,这3方面的特征即大数据最先提出的3V模型。2011年,在国际数据公司(IDC)发布的报告中,大数据被定义为:“大数据技术描述了新一代的技术和架构体系,通过高速采集、发现或分析,提取各种各样的大量数据的经济价值。”大数据的特点可以总结为4个V,即volume(体量浩大)、variety(模态繁多)、velocity(生成快速)和value(价值巨大但密度很低)。这种4V定义得到了更广泛的认同,指出了大数据最为核心的问题,就是如何从规模巨大、种类繁多、生成快速的数据集中挖掘价值。

2、大数据技术的发展

大数据是人工智能的血液,当前大数据、云计算、人工智能以及区块链技术之间的关系密不可分,也被称作数据智能。比如,先进的工业互联网,其中既有区块链技术也有大数据技术,还有云计算技术,三者合成一体,又衍生出了人工智能和物联网的概念。

在大数据基础上的人工智能,目前已进入数据智能的深度学习时代,其快速发展引起了 社会 和产业的颠覆性变化。从大数据和人工智能技术全行业的发展来看,目前美国仍处于领先地位,中国紧随其后,且具有赶超趋势。中国在人工智能相关的论文发表总数和高引论文数量实现对美国的超越,但在人工智能理论发展和技术方向的引领方面美国还占据支配地位。

3、大数据技术流程

大数据处理的关键技术流程主要包括:数据采集、数据预处理(数据清理、数据集成、数据变换等)、海量数据存储、数据分析及挖掘、数据的呈现与应用(数据可视化、数据安全与隐私等)。

4、大数据的核心算法

大数据的核心算法可以分为监督学习(有标签)和无监督学习(无标签)两大类,其中:

监督学习分为回归和分类:即给定一个样本特征,希望预测其对应的属性值,如果是离散的,那么这就是一个分类问题,反之,如果是连续的实数,这就是一个回归问题。无论是分类还是回归,都是想建立一个预测模型,给定一个输入,可以得到一个输出。不同的只是在分类问题中,是离散的;而在回归问题中是连续的。

无监督学习分为聚类和降维:即如果给定一组样本特征,我们没有对应的属性值,而是想发掘这组样本在维空间的分布,比如分析哪些样本靠的更近,哪些样本之间离得很远,这就是属于聚类问题。如果我们想用维数更低的子空间来表示原来高维的特征空间,那么这就是降维问题。聚类也是分析样本的属性,事先不知道样本的属性范围,只能凭借样本在特征空间的分布来分析样本的属性。这种问题一般更复杂。而常用的算法包括 k-means (K-均值),GMM(高斯混合模型)等。

5、大数据在油气勘探开发领域的应用

目前大数据技术在地质分析、测井解释、地震解释、甜点预测、地质建模、油藏模拟、钻井、压裂、采油、产能预测等方面均开展了大量 探索 性研究,收到了良好的效果。但是目前,大数据与油气行业相关领域的融合还处于起步阶段,面临来自数据、算法和地下未知因素的诸多挑战。未来在大数据、人工智能、5G、云计算、物联网等技术推动下,油气田的智能化水平将会快速发展,这既是油气技术发展规律的必然趋势,也是油田降本提质增效的有效途径。在发展的过程中,智能油气田建设需要油气勘探开发与大数据、人工智能、云计算以及区块链等技术的深度融合,进而催生一批油气田领域的颠覆性技术,解决油气勘探开发的技术需求,提升油气田勘探开发的经济和 社会 效益。

下期将向您详细解读大数据在油气行业的具体应用 )。

注:本文部分参考资料来源如下:

李阳,廉培庆,薛兆杰,等.大数据及人工智能在油气田开发中的应用现状及展望[J].中国石油大学学报(自然科学版),2020,44(4):1-11

Gantz J,Reinsel D.Extracting Value from Chaos. IDC iView Report,2011

Team O R. Big Data Now:Current Perspectives from O’Reilly Radar.Sebastopol:O’Reilly Media,2014

Grobelnik M. Big data tutorial. http://videolectures.net/eswc2015grobelnik big data/,2012

Walters, R. J., Zoback, M. D., Baker, J. W. 2015. Characterizing and Responding to Seismic Risk Associated With Earthquakes Potentially Triggered by Fluid Disposal and Hydraulic Fracturing. Seismol. Res. Lett. 86 (4): 1–9. https:// doi.org/10.1785/0220150048.

周松兰.中美欧日韩人工智能技术差距测度与比较研究[J].华南理工大学学报 ( 社会 科学版),2020,22(2):10-22.

HINTON G E,OSINDERO S,TEH Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2016,18: 1527-1554.

LECUN Y,BOTTOU L,BENGIO Y,et al.Gradientbased learning applied to document recognition[J].Proceedings of IEEE,1988,86( 11) : 2278-2324.

BENGIO Y, SIMARD P,FRASCONI P.Learning longterm dependencies with gradient descent is difficult[J].IEEE Transactions on Neural Networks,1994,5(2) :157-166

❸ 你所不知道的Learning Analytics

在介绍Learning Analytics之前,我先简单介绍一下我自己,以及开这个专栏在初衷。

我是哥伦比亚大学教育学院人类发展系学习分析专业的在读研究生,这是我在这个项目的第三个学期,眼下正值期末,按常理说是大家最繁忙的阶段。然而对我来说,整个学期都处于繁忙状态,于是也就对期末这种敏感字眼麻木了。写这篇文章,倒像是给自己一个放松的机会。

这周二上午,我跑到学校的学生组织事务部(简称OSA)去寻求一次与部门负责人Ade(此处为化名)见面的机会,为了这次会面,我等了四个多月。我跟Ade是认识的,因为我正在为另一个社团工作,所以定期汇报工作的时候会跟她有交流,而且平日里见了面都会寒暄几句。但是我们都心知肚明,有一个话题,是我们之间必须面谈的。导火索追溯到今年八月初,我收到了另一个社团的录取信,这个社团是偏向人文的社团,顺利的拿到了学校的认证和拨款。我在这个社团中担任宣传部长,也是主干成员之一。而我自己苦心经营的学习分析社团(Teachers College Learning Analytics,之后简称TCLA),却拿到了一封拒信。按照规定,每个官方社团中有三位主干成员是官方工作人员,而担任官方的社团工作人员的学生,只能任职于一个社团。由于TCLA未获得认可,所以我开始担任另一个社团的主干成员。

收到拒信,是整个TCLA的成员没有想到的,因为我们有整个专业的导师和学生做支撑,担任我们社团的指导老师不仅是我们专业的导师,也是学院图书馆的主管,身兼多职,是一位非常有分量老师。外加我们专业与大数据接轨,紧跟高新技术潮流,这些都让我们觉得,被学校认证是理所应当对事儿。然而就是这种理所应当,让我们无法接受这样的拒信。我发邮件给OSA,希望获得一次面谈的机会,一方面询问一下被拒的原因,另一方面也抱着一线生机,争取能够说服他们认可TCLA。然而,我一次次的发邮件约时间,一次次的被推迟。八月份发邮件的时候,OSA说十月后再受理。十月份发邮件的时候,OSA说十一月。一而再再而三,眼看着这学期要结束了,我跑到了OSA的办公室,要求当天必须与Ade见面面谈关于TCLA的相关事宜。终于,让我等到了。

虽然见面了,但是情况并不乐观。Ade再次拒绝认可TCLA,还提出了两个主要原因。第一,Learning Analytics这个专业太新,而且群体很小,看不到可持续性,所以并不看好。第二,TCLA设计的活动主要是Workshop和Seminar,相当于是授课形式,这会与学院的正课产生竞争关系。Ade说,如果想要得到认可,那么TCLA需要在下学期继续以非正式社团的名义举办活动,证明给OSA看,这是可持续的,那到明年秋季开学,或许可以拿到认证。就这样,我一心想要在毕业前看着TCLA拿到认可的愿望,就这么破灭了。

这个专业不被看好,Ade绝不是第一个这样表示的。而我们专业的每一个人,都在为这个专业的未来发展努力着。我们是这个专业的第二届学生,第一届的毕业生,大部分的毕业动态是不错的。有的去了高盛,有的在为联合国做相关项目,有的继续留校读博。我们这个专业,每一届只有十来个人,也是这个学院最小的专业,最小的学生群体。然而我们从来没有因为我们的渺小,而把梦想变得渺小。我们一直希望,能有更多人,了解我们专业,学习我们专业,传播我们专业。这一直是我们专业每个人的使命,也是我创建这个专栏的初衷。因为我始终坚信,这个专业,会在未来发展中,发挥着很重要的作用,是推动人类学习能力的重要基石。

说到这里,你大概对这个项目的目前状况有了了解,接下来,我就要向你介绍一下,什么是Learning Analytics。

The world's first graate program in Learning Analytics

Data about learning and learners are being generated today on an unprecedented scale. The fields of learning analytics (LA) and ecational data mining (EDM) have emerged with the aim of transforming this data into new insights that can benefit students, teachers, and administrators. As one of world's leading teaching and research institutions in ecation, psychology, and health, we are proud to offer an innovative graate curriculum dedicated to improving ecation through technology and data analysis.

上图是来自哥伦比亚大学教育学院学习分析项目的官方介绍,简言之,学习分析就是通过教育大数据对学习者的学习行为和学习能力进行分析,以帮助学习者获得更加个性化的学习方式。广义来讲,学习分析是将大数据、统计、机器学习、教育理论、心理学、认知科学、人工智能等融合在一起的一种研究方式。

维基网络给出的定义是:

Learning analytics  is the measurement, collection, analysis and reporting of data about learners and their contexts, for purposes of understanding and optimizing learning and the environments in which it occurs. A related field is ecational data mining.

哥伦比亚大学教育学院是世界上第一个创建Learning Analytics专业的学校,当然,随着大数据的崛起,其他学校也陆续开展了这方面研究。比如,Learning Analytics专业的创始人 Ryan S. Baker 在现任学校宾夕法尼亚大学也创建了相似的专业,叫Learning Science & Technologies。此外,还有美国东北大学、波士顿大学、卡内基梅隆大学、加州大学伯克利分校、乔治城大学、悉尼大学、爱丁堡大学、萨斯喀彻温大学等。马里兰大学还专门开设了Learning Analytics Research Group。

不难发现,这个专业是一个实打实的跨学科的教育专业,要将各个领域的知识融合在一起,才能修炼成合格的教育数据科学家。Frederick Hartwig曾在他的著作Exploratory Data Analysis中说过,一个合格的研究人员应该学习尽可能多的知识和方法来协助他探索数据中各种变量的深刻含义,并与理论和社会科学紧密结合起来。

这是一个由跨学科主宰社会的时代,跨学科研究可以在一定程度上是研究更具说服力和可信度。我曾经与一位在亚马逊的教育研究员有过交流,她明确指出,做教育方向的数据分析,如果没有教育背景和实践经验,单凭数据分析的结果说话,是非常可怕的,因为有的时候,数据结果并不合情合理。跟她对话后,更让我坚信学习分析的重要性,也在一定程度上认识到跨学科的重要性。

试想,一门课上,教授用一种教学方式来教三十个学生,有的学生可以很快吸收知识,有的学生却学的非常吃力。期末考试,有的学生拿了满分,有的学生刚刚及格。拿满分的学生就是优秀的学生吗?刚及格的学生就是学渣吗?答案是否定的。因为在个性化学习中,每个学生的学习能力、学习方式、学术背景及接受程度是不同的,如果单单通过考试成绩来评价一个学生,是对学生的不公正。那么,如何来发掘学生的学习能力,以最有效的方式帮助学生达到最佳学习效果呢?这就是学习分析专业所探索的事情。具体问题具体分析,才是教育的本质。

数据挖掘和数据分析的成果是为研究人员在分析学习者的学习能力时提供最有效的参考,但是,数据的结果并不一定是真正的结果。

以上,是对Learning Analytics 专业的简单介绍,如果你对此专业感兴趣,欢迎留言进行交流。文中仅代表个人观点,欢迎指正与沟通。

本专栏不定期更新,由于本身日常课程和工作比较多,所以长期不更新也是有可能的。

阅读全文

与ryanbaker大数据相关的资料

热点内容
maya粒子表达式教程 浏览:84
抖音小视频如何挂app 浏览:283
cad怎么设置替补文件 浏览:790
win10启动文件是空的 浏览:397
jk网站有哪些 浏览:134
学编程和3d哪个更好 浏览:932
win10移动硬盘文件无法打开 浏览:385
文件名是乱码还删不掉 浏览:643
苹果键盘怎么打开任务管理器 浏览:437
手机桌面文件名字大全 浏览:334
tplink默认无线密码是多少 浏览:33
ipaddgm文件 浏览:99
lua语言编程用哪个平台 浏览:272
政采云如何导出pdf投标文件 浏览:529
php获取postjson数据 浏览:551
javatimetask 浏览:16
编程的话要什么证件 浏览:94
钱脉通微信多开 浏览:878
中学生学编程哪个培训机构好 浏览:852
荣耀路由TV设置文件共享错误 浏览:525

友情链接