导航:首页 > 网络数据 > 大数据新闻深度挖掘

大数据新闻深度挖掘

发布时间:2023-01-15 08:34:03

1. 舆情大数据信息去哪里查询呢

一般来说,最为常见的方法的就是指派专人去网上各个平台进行搜查,如舆情信息网站网络舆情网、社交媒体平台等。还有就是借助搜索引擎工具进行收集查询,如通过检索与政务相关的舆情关键词进行相关信息数据的收集。
由于上面两种方式都是需要靠人工进行搜集筛选,执行起来需要耗费大量的人力物力,且无法确保舆情信息接收的及时性。所以,建议借助像蚁坊软件这类专业的舆情监测系统进行舆情大数据信息收集查阅。

2. 大数据技术有在工业领域的成功应用案例吗

. 深圳市儿童医院成功部署IBM集成平台与商业智能分析系统
IBM利用其行业领先的大数据与分析技术,支持深圳市儿童医院搭建信息集成平台,整合原有分散在多系统中的海量数据,实现各部门的信息共享;同时通过商业智能分析对集成数据进行深入挖掘,为医院各部门人员的科学决策提供全面的辅助,提升医院的服务水平和管理能力。
2. Informatica帮助紫金农商银行深挖数据价值
紫金农商银行ODS数据仓库项目建设使用Informatica产品完成数据的加载、清洗、转换工作显得尤为简单,图形化、流程化设计使维护人员能够快速、顺畅的操作,即使数据源结构发生变化,也不会像以前必须修改大量的程序代码,只需要在PowerCenter中配置一下即可。
3. 华为大数据一体机服务于北大重点实验室
经过大量的前期调查,比较和分析准备工作,北大重点实验室选择了华为基于高性能服务器RH5885 V2的HANA数据处理平台。HANA提供的对大量实时业务数据进行快速查询和分析以及实时数据计算等功能,在很大程度上得益于华为RH5885 V2服务器的高可靠、高性能和高可用性的支撑。
4. IBM携手汉端科技为飞鹤乳业打造全产业链可追溯体系
IBM、汉端科技与中国飞鹤乳业联合宣布,通过利用IBM业界领先的全面大数据与分析能力,和汉端科技在商业智能领域丰富的行业经验,飞鹤乳业实现了产品的可追溯与食品安全的数字化管理,完成了系统数字化、透明化、服务化的升级
5. 浪潮大数据平台大大提升了济南的警务工作能力
浪潮在帮助济南公安局在搭建云数据中心的基础上构建了大数据平台,以开展行为轨迹分析、社会关系分析、生物特征识别、音视频识别、银行电信诈骗行为分析、舆情分析等多种大数据研判手段的应用,为指挥决策、各警种情报分析、研判提供支持,做到围绕治安焦点能够快速精确定位、及时全面掌握信息、科学指挥调度警力和社会安保力量迅速解决问题。
6. 英特尔携杭州诚道科技构建智能交通
面对大数据挑战,杭州市和杭州诚道科技有限公司紧密合作,部署了基于英特尔大数据解决方案的诚道重点车辆动态监管系统,通过集中的数据中心将全市卡口、电子警察、视频监控、流量检测设备、信号机、诱导设备等有效地连接起来,从交通案件侦破能力、交通警察对机动车辆的监管能力到利用关联车辆的数据分析能力,都得到了极大提升。
7. 步步高集团借Oracle Exadata 大大提高了IT投资回报率
步步高集团采用 Oracle Exadata数据库云服务器搭建信息化平台,凭借Oracle Exadata数据库云服务器的高扩展性、安全性和冗余性,步步高集团得以在该基础架构上运行一系列Oracle零售行业以及Oracle的应用软件。此外,基于Oracle Exadata的步步高IT新架构比传统架构拥有更好的性价比,最大限度地增加了IT的投资回报率。
8. 华为Anti-DDoS助阿里巴巴检测DDoS变革
阿里巴巴现网多个数据中心出口都部署了华为的Anti-DDoS解决方案,平均每天防护的DDoS攻击次数超过100次,每年达数万次,峰值防护的DDoS攻击流量超过100Gbps。如今,DDoS攻击在阿里巴巴安全工程师眼里已经习以为常,由华为Anti-DDoS方案自动调度进行清洗防护即可。“双11”期间,华为Anti-DDoS方案一如既往地成功防护了多轮DDoS攻击事件,有力保障了阿里巴巴网络交易的顺畅平稳。
9. 华为大数据方案在福建移动的应用
为进一步提升外呼成功率,从2014年初开始,福建移动联合华为公司开展基于大数据的精准营销工作,采用大数据分析的方法选择外呼目标价值用户。基于大数据分析方法和传统外呼方法分别提供20万目标客户清单,在前台无感知下进行对比验证,确保对比效果不受人为因素影响,经过外呼验证,基于大数据分析方法较传统方法外呼成功率提升50%以上,有效支撑了福建移动4G用户发展战略。
10. 北京市人民政府“12345”便民电话中心选择Oracle Exadata 实现便携服务
为了进一步提升部门的调度能力、办理水平和群众满意度,北京市人民政府“12345”便民电话中心选择Oracle Exadata数据库云服务器,升级成为北京市非紧急救助服务综合受理调度平台,通过Oracle Exadata Database Machine支撑起新平台的数据库访问需求。升级后的平台能够整合全市的便民呼叫服务,支撑来自群众的各类诉求、求助、批评和建议,并可为公众提供方便、快捷的公共信息服务,真正成为全市的舆情中心、信息汇集中心和城市名片。

11. 民生银行借IBM BigInsights应对金融业的大数据挑战
IBM BigInsights大数据解决方案和企业级NoSQL数据库SequoiaDB合作,为民生银行搭建低成本、高性能、高可靠且水平扩张的数据平台,帮助民生银行通过大数据分析应对金融业的大数据挑战,完善交易流水查询分析系统,产业链金融管理系统,以及私人银行产品货架管理系统。
12. 中信银行信用卡实施EMC Greenplum 数据仓库解决方案
中信银行信用卡中心选择实施EMC Greenplum 数据仓库解决方案。Greenplum 数据仓库解决方案为中信银行信用卡中心提供了统一的客户视图,借助客户统一视图,中信银行信用卡中心可以更清楚地了解其客户价值体系,从而能够为客户提供更有针对性和相关性的营销活动。基于数据仓库,中信银行信用卡中心现在可以从交易、服务、风险、权益等多个层面分析数据。通过提供全面的客户数据,营销团队可以对客户按照低、中、高价值来进行分类,根据银行整体经营策略积极地提供相应的个性化服务。
13. 惠普助力雅昌集团掘金大数据
成立于1993年的雅昌集团首创“传统印刷+IT技术+文化艺术”的商业模式,形成环环相扣的文化产业链,为艺术市场提供全面、综合的一站式服务。基于企业内容数据管理体系,惠普为雅昌搭建了从数据采集、处理、管理到应用的全过程处理流程,使雅昌可以快速利用所需数据,缩短新品上线时间,快速响应市场变化。
14. 德国足球队采用SAP大数据方案迎战世界杯
德国足协和SAP公司通过联合创新引入SAP Match Insights解决方案,该方案基于SAP HANA平台运行处理海量数据,可以为球员和教练提供一个简明的用户界面,帮助双方开展互动性更强的对话,分析球队训练、备战和比赛情况,从而提升球员和球队的成绩。
15. 1号店借Oracle Exadata改善终端客户体验
1号店采用Oracle Exadata数据库云服务器成功优化统一整合的数据平台,满足了不断增长的业务处理需求,并进一步改善了终端客户体验。经过Oracle Exadata整合后的新平台采用混合负载互备架构,将平均处理性能提升7倍,既可以支持目前规划业务量的业务处理,还能够随着业务量的增长进行在线升级、扩容,满足处理能力和数据量的增长需求。软、硬件集成设计的Oracle Exadata 协助解决了1号店的I/O瓶颈问题,实现了比传统架构更高的性能和可扩展性。同时,基于Exadata的1号店IT新架构比传统架构拥有更好的性价比,最大限度地发挥了IT投资回报率。
16. 大数据在青岛银行:提升银行交易性能、简化运营和管理
利用IBM大数据专家PureData,青岛银行能够高效集成业务数据,简化运维。PureData for Transactions作为青岛银行重要业务处理系统,能够在一个系统中整合超过几十个数据库,同时提供良好的性能、可用性和可扩展性支持实现广泛的业务目标,例如地域扩张,突发的业务交易高峰,新柜面、流程银行等大规模的业务上线等。
17. Informatica方案帮助南京儿童医院实现信息互通共享
南京市儿童医院目前已建成包括HIS、LIS、PACS、电子病历EMR、医生工作站、移动护理、病案、财务管理、库房管理和手术麻醉等几十个应用系统,这些异构系统间数据调用分散,不能集中统一标准化管理。通过采用Informatica ETL工具构建数据仓库系统,并基于数据仓库建设医院数据调用公共资源中心库,南京市儿童医院实现了实时的数据交互和信息共享,干净、标准的数据为跨应用系统数据关联分析打下扎实基础。
18. 东吴大学采用达索系统EXALEAD启动大数据应用暨产学合作
台湾东吴大学采用达索系统EXALEAD大数据智能应用开发解决方案,全方位地整合校务信息,积极开发校务经营发展的各项应用。此外还将启动三方产学合作计划,协助建立校内大数据相关课程、人才培训和实习机制,使学生自入学就开始不断提升其未来职场所需的关键竞争力,学用合一,实现学校、学生、企业三赢。
19. 网络大脑PK人脑 大数据押高考作文题
为了帮助考生更好地备考,网络高考作文预测通过对过去八年高考作文题及作文范文、海量年度搜索风云热词、历年新闻热点等原始数据与实时更新的“活数据”进行深度挖掘分析,以“概率主题模型”模拟人脑思考,反向推导出作文主题及关联词汇,为考生预测出2014年高考作文的六大命题方向。

20. IBM助力同仁医院构筑强大的分析体系
同仁医院通过与IBM合作,同仁医院建立起了强大的分析能力和体系,包括对临床、运营、科研、考核等信息的分析,实现智慧的医院管理与考核;同时也能看到医疗设备的平均故障间隔周期,从而降低了设备的故障率、平均维修时间。这一切都让工作效率稳步提升,也缓解了病人看病难的问题,提高了患者就医满意度。
21. 微软助上海市浦东新区卫生局更加智能化
作为上海市公共卫生的主导部门,浦东新区卫生局在微软SQL Server 2012的帮助之下,积极利用大数据,推动卫生医疗信息化走上新的高度:公共卫生部门可通过覆盖区域的居民健康档案和电子病历数据库,快速检测传染病,进行全面的疫情监测,并通过集成疾病监测和响应程序,快速进行响应。与此同时,得益于非结构化数据的分析能力的日益加强,大数据分析技术也使得临床决策支持系统更智能。
22. 湖南电信通过分析掌握电信市场动向、针对性定制营销计划
利用IBM大数据专家PureData,湖南电信实现了通过分析掌握市场整体经营情况、快速制定市场策略以及加强客户经理营销维系的高效执行。PureData for Analytics作为湖南电信本地数据集市建设工程重要组成部分,高效整合了湖南电信旗下各本地网数据,为进一步分析创造先机。
23. 携程借SQL Server增强了数据采集和掌控
作为国内领先的综合性旅行服务公司,携程计算机技术有限公司曾面临分支机构、服务城市和员工数量的增长所带来的运营数据分散和数据集成难的 IT 问题。借助微软SQL Server 2012 商业智能解决方案,携程增强了其对所有下属分支机构的数据采集和掌控,大大减少了计划性停机时间以及非计划性停机的时间,灵活的部署选项也可以根据携程的需要实现从服务器到云的扩展。
24. 上海公共研发平台部署Oracle Exadata应对扩展需求
上海公共研发平台部署Oracle Exadata数据库云服务器,以应对其系统和应用的扩展需求。Oracle Exadata融合了一系列同类最佳的预配置的服务器、网络、存储和软件,能为数据仓库和在线事务处理应用程序提供超强性能。上海公共研发平台运行Oracle Exadata期间相对稳定,CPU占用率控制在5%以内,极大改善了用户应用体验。同时,Exadata平台的可扩展性极好的满足了上海公共研发平台的系统需求,目前整个公共研发平台的20多个应用系统已经全部迁移到Exadata上,应用部署量增长1倍,且运行十分稳定。
25. 360手机卫士10KB解决iPhone骚扰
360手机卫士通过对海量数据的运算和精准匹配下发,将一组大小仅为10KB的数据即1000个骚扰号码同步到用户手机上,打造个性化的骚扰号码数据库,此外,每天更新的骚扰号码库数据,会依据标记趋势调整骚扰号码库中各类数据比例,即每一位360手机卫士用户手机中的1000个骚扰号码都是动态的,随地域、身份以及骚扰趋势的变化而变化。
26. 神州数码助张家港市更“智慧”
在张家港实践的城市案例中,市民登录这款“神州数码”研发的市民公共信息服务平台后,市民只要凭借自己的身份证和密码,即可通过该系统平台进行240余项“在线预审”服务、130余项“网上办事”服务等,还可通过手机及时查看办事状态。相比于以前来说,市民办事的时间最少可以节省一半以上。

27. IBM助中网组委会构建安全和敏捷的内联网
IBM专门为中网设计了具有实时大数据分析功能的MatchTracker(赛事追踪系统),可以为球迷提供数据呈现、计分等功能。 MatchTracker基于IBM SlamTracker分析技术,使球迷能够利用历史和实时性数据,洞悉比分之后的态势和策略。此外,IBM还为中网组委会构建了安全和敏捷的内联网。
28. Cortana基于微软Bing大数据预测世界杯
微软为Cortana增加了世界杯预测的功能,基于微软Bing大数据,并综合考虑世界杯各支球队的过往比赛结果、比赛时间、天气情况、主场优势以及其他因素,使用大量的博彩市场公开数据、民意调查、社交媒体以及其它在线数据,利用大数据分析来判断每场比赛的结果。
29. 中科曙光助同济大学科研领域再创新高
为了满足爆炸式增长的用户和数据量,同济大学携手中科曙光,在全面整合云计算平台和现有资产的基础上,采用 DS800-F20存储系统、Gridview集群管理系统,以及Hadoop分布式计算平台构建出了业内领先的大数据柔性处理平台,使得同济大学在信息学科及其交叉学科研究领域迈上一个新台阶。
30. 华为助农行完成海量数据分布式处理的需求
华为向农行提供了良好的计算平台,基于华为RH2288 V2服务器的分布式并行计算集群进行测试,以及还提供了快速响应客户需求的研发能力,以及业界最快捷的售后服务。农行的测试结果表明,华为解决方案完全满足农行对海量数据进行分布式处理的要求。

3. 什么是大数据,它对新闻业有什么影响

什么是大数据,它对新闻业有什么影响?

答:(1)大数据及其特点

“大数据”(Big Data,Massive Datasets)是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

大数据具有4V特征,即海量的数据规模(volume)、快速的数据流转(velocity)、多样的数据类型(variety)和价值密度低(value)四大特征。

在互联网行业中,大数据是指互联网公司在日常运营中生成、累积的用户网络行为数据。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。目前,大数据技术已广泛应用于电子商务、O2O、物流配送等领域,对新闻生产也产生了一定的影响。

(2)大数据对新闻报道的帮助

①提升新闻报道的质量。由于大数据能够精准地检测出确切的数据信息,不仅检测范围广大,而且能够呈现整体的事实并预测事件的发展趋势。因此利用大数据技术,可以有效地检测出媒体的报道方式和报道成果是否有缺陷。另外,新闻工作者可以借助计算机网络技术,利用新闻媒体以及合作机构数据库来挖掘大量的数据信息,进行深层次的数据挖掘,有了这样的技术,媒体的新闻报道水准将得到有效的提升。

②准确预测新闻报道走向。未来新闻业务层面的一个发展方向是趋势预测性新闻,以往新闻报道的选题更多来源于正在发生或已经发生的事实,如果媒体能够广泛借助大数据技术来进行重大趋势的预测与分析,那么,它对 社会 的影响力就能得到提升。

③减轻新闻报道工作人员的工作量。大数据技术的灵活运用,催生了数据新闻和机器人写作。数据新闻是将数据转化为信息的一种新闻生产形式,表现形式以数据和图表为主,这不仅大大增强了新闻报道的真实性、准确性和可说服性,还缓解了新闻报道人员的工作压力。机器人写作则是通过计算机对数据进行分析,按照新闻结构来对数据进行整理和自动撰写,平均每分钟就能够生产出两条新闻报道,这也为新闻报道撰稿人员分担了不少的工作量。

④使新闻报道更能满足受众需求。一方面,新闻生产者和发布者通过对受众的新闻阅读行为进行大数据分析,可以找出影响受众的各方面因素,使新闻报道的受众定位更加准确;另一方面,大数据技术不仅对受众的行为进行普遍化分析,而且还强调受众的个性化特征,从而促使媒体机构为受众提供更加个性化的新闻报道和服务。

4. 新媒体遇上大数据 隐私保护仍是“痛点”

新媒体遇上大数据隐私保护仍是“痛点”_数据分析师考试

大数据并不是简单地买几台服务器把数据存下来,而是要将大数据与实际接轨,突出工具化、服务化和实用化,让大数据能解决具体问题。

新媒体在运用大数据过程中,一个非常关键的问题是隐私保护。在使用大数据过程中保护个人隐私,需要司法机关发布有效的法律判例,对侵犯隐私行为形成舆论压力;同时要加强大数据隐私保护研究

7月9日,金砖国家领导人第七次会晤在俄罗斯乌法举行。

当天,人民日报全媒体平台“烹”出一张图解:《金砖国家大数据》。

这并非新媒体与大数据的第一次结合。

前不久由中国社会科学院发布的《中国新媒体发展报告(2015)》称,中国新媒体已超越“跨行业”,初步呈现“全产业”发展新趋势。移动化、大数据化和智能化的新媒体已成为具备高强渗透度的产业基因,可深度融合于经济产业各领域之中。

专注研究新媒体与数据新闻的清华大学新闻与传播学院教授沈阳认为,当前,大数据在新媒体中应用广泛,贯穿于新媒体发展的各个方面。

大数据运用广泛

人民日报全媒体平台发布的《金砖国家大数据》,只是近期新媒体运用大数据的一个例子。

早在大数据这一概念进入公众视野不久,便有媒体将大数据运用于新闻报道之中。

2014年春运期间,互联网上就出现了一张可以呈现国内春节人口迁徙实况的地图,这张尽显中国春运迁徙实景的图片更是登上央视《新闻联播》进行权威盘点。自从春运开始,这张地图多次被电视、报纸等媒体引用,成为用数据解读春运状况的一个样本。据称,这是国内首个运用大数据播报国内春节人口迁徙实况的地图。

相较于电视、报纸等传统媒体,新媒体对大数据的运用更加频繁,作为新媒体代表之一的“澎湃新闻”便是如此:今年2月,“澎湃新闻”出品了《大数据告诉你,梅西的右脚现在有多恐怖》;3月,《落马老虎大数据:除“军虎”外,69人共花两千多年入省部级》“走”下生产线。

在沈阳看来,将大数据应用于报道内容,只是新媒体运用大数据的一个方面。

在与《法制日报》记者交谈过程中,沈阳列出了新媒体“遇上”大数据的多个“场景”:在做新媒体功能研发时,哪些要素需要增强、哪些需要减弱,可以运用大数据分析进行修正;在策划选题时,可以通过大数据分析筛选出哪些话题关注度高、最热门;在内容推送过程中,可以利用大数据对用户兴趣进行分析并梳理出来;新闻发出后,受众有哪些评论、转发多少、分享情况,这些都可以通过大数据获得结果;即便是在广告投放环节,也可以通过大数据分析、预判广告与用户是否匹配、广告对新媒体品牌价值是否会有影响。

“大数据贯穿于新媒体的各个方面。”沈阳说。

“完美”并非绝对

尽管大数据很重要、很管用,但沈阳很早就发现,“大数据,没有看起来那么美”。

“数据真实性是一个不可回避的问题。目前,水军、僵尸粉、刷阅读量等情况都有存在,这在一定程度上给数据提供了虚假成分。”沈阳说,不过,从宏观上讲,可以控制这些虚假成分。

如何控制“水分”?沈阳举例说,在统计微博粉丝时,可以将范围缩小至带V的粉丝,因为带V粉丝造假成本高;如果要更精准的数据,可以进一步缩小范围,如近期活跃的带V粉丝。“当然,这样筛选数据会面临高成本的问题”。

沈阳在早期的研究中还关注到大数据的另外两个问题:样本代表性和相关性误差。

沈阳认为,我们不可能搜集到全数据,而与大数据相关的形容词往往是大规模、精准、细化,在调用如此“完美”的数据时,如何注意情景和样本的适用性是一个问题。正如网络民意与现实民意的讨论,微博不代表网络,网络不代表社会,朋友圈也是小圈子,跳出圈子看世界不容易,切勿陷入相同的悖论。在选样、测量、误差校正不尽如人意时,好数据将劣化,大数据将虚化。

相关性误差,则更偏向于技术。沈阳认为,在要素构成简单的情景中,可以利用大数据,基于一定算法和模型对变量元素进行相关性分析。然而,在复杂系统中,仅有相关性解释还不够,易走偏。比如一个明显不对的结论:一个城市的网页数越高,其网络形象就越好。虽然数据统计证实了网页数和网络形象存在一般的正相关,但忽略了负面事件带来的网页量爆发等,因此结论也是不科学的。相关性要真正体现在数据之间、数据与真实事件影射的现象之间、真实事件的客观联系上。

“大数据并不是简单地买几台服务器把数据存下来,而是要将大数据与实际接轨,突出工具化、服务化和实用化,让大数据能解决具体问题。”沈阳说。

隐私保护日益突出

基于多年研究大数据的心得,沈阳认为,新媒体在运用大数据过程中,一个非常关键的问题是,隐私保护。“目前,隐私保护问题越来越突出”。

此前,《法制日报》记者在参加一次论坛时,工信部相关部门一名负责人曾表达这样的观点:大数据时代到来后,随着互联网技术及其应用的发展,大数据、云计算技术方式的使用,个人信息的价值不断被挖掘、被使用,但是安全保护是一个很大的问题。

工信部相关部门这名负责人认为,大数据时代的个人信息安全面临三大问题。

“一个问题是数据未经授权被搜集,这种情况发生得比较多。”工信部相关部门这名负责人说,第二个问题是超出范围使用。所谓超范围使用,是指企业通过一定的所谓合法的形式拿到个人信息,但是拿到以后使用信息的目的、用途以及范围,并非信息权利主体所熟知。这种情况包括,当互联网对一些数据信息进行更进一步或者深层挖掘时,这种挖掘在一定程度上有可能侵犯了权利主体的权益。因为互联网企业之前可能告诉权利主体,获取信息是基于特定的目的或者在特定范围内使用,但是进一步挖掘就有可能触犯了约定。第三个问题是数据保存。曾有网络社区存储的几千万用户信息被黑客拿到后转卖给第三家,最后造成信息滥用。

在新媒体广泛使用、深度挖掘大数据的时代,如何保护公民隐私?

工信部相关部门这名负责人提出了一个观点:信息保护人人有责。

“在信息安全保护方面,很重要的一点在于,权利人自身要加强保护意识。”工信部相关部门这名负责人说,现在,不管是要求政府部门监管,还是要求司法机关动起来,一个重要前提是人人保护信息,这样才可能使信息保护问题得到根本解决,否则只靠公权力机关单方面去做是没有用的。当然,在提倡人人保护信息的同时,执法保护也是一个很重要的方面。

在沈阳看来,在使用大数据过程中保护个人隐私,一方面需要司法机关发布有效的法律判例,对侵犯隐私行为形成舆论压力;另一方面要加强大数据隐私保护研究。

以上是小编为大家分享的关于新媒体遇上大数据隐私保护仍是“痛点”的相关内容,更多信息可以关注环球青藤分享更多干货

5. 大数据的价值在于开放和跨界深度挖掘

大数据的价值在于开放和跨界深度挖掘

在专家们看来,数据的开放和跨界融合,是大数据产业得以发展壮大的关键。发展大数据产业,也是推动互联网+的必然需求。

大数据并不遥远

收集美国气象局、中国气象局、欧洲天气预报中心的公开数据,加上对各大河流的地貌数据,东方科技董事长李胜利用自己的独特算法,就可以提前预测全球任何一个水电站是否会遭遇大洪水……这就是“东方祥云”项目的魅力所在,也让大众真实感受到大数据的魔力。

在大数据商业模式大赛的决赛中,“东方祥云”项目最终获得一等奖,从惠及民生的角度来说,这一奖项实至名归。

中国是一个水资源匮乏但水害多发的国家,仅2013年全国因洪涝灾害死亡的人数就达1148人。2007年7月,贵州平塘发生特大洪水,造成5.7亿元直接经济损失。2012年7月,该县再次遭遇特大洪水,不但无一人伤亡,直接经济损失也降到6000万元。

“原因在于,2010年受灾后,平塘县安装了我们的山洪灾害预警监测平台,得到洪水预报,及时采取措施。”李胜告诉记者,全国约有15万座水电站、水库,如果使用东方祥云的大数据技术进行来水预报服务,并合理调度用水,可为水库、水电站节省90%的运维成本。

在这次比赛中,这样的项目并不少见。比如,大赛获奖项目“蜂能”,通过智能用电终端和强大的数据运算系统,采集设备用电数据,对其分析并进行节电和需求优化管理,可实现节约用电10%~20%。

“在一些具体的产业,大数据已经应用得非常广。实际上,大数据挖掘是推动互联网 的有效方式。”清华大学教授韩亦舜对记者表示,本次大赛的众多获奖项目,就体现出“大数据时代已经到来”。

开放才有价值

在专家们看来,大数据只有开放才有价值,封闭、不流通的数据无法形成产业。

“如果没有美国气象局等机构在网络公开的气象数据,我们即便有最精确的算法,也无法做到水库水位的提前预报。气象数据和地貌、水文数据的跨界与沟通,才能让我们的计算更加准确。”李胜坦言。

韩亦舜指出,包含丰富的数据源是大数据产业发展的前提。但是,我国政府、企业和行业信息化系统建设往往缺少统一规划和科学论证,系统之间缺乏统一的标准,形成了众多“信息孤岛”,而且受行政垄断和商业利益所限,数据开放程度较低,这给数据利用造成极大障碍,亟须改变。“云上贵州”提出逐步开放数据,无疑具有重大的意义。

贵州省经济和信息化委员会主任李保芳也向记者表示,政府数据资源应当在安全前提下逐步有序适当开放。“事实上,政府通过数据开放,改进公众服务和社会管理,营造创新环境和释放商业机会,市民、企业和政府都将是开放数据的受益者。”

仍待深度挖掘

贵州省经信委提供的相关报告显示,2014年贵州大数据信息产业实现规模总量1460亿元,电子信息产业单月规模达到130亿元。

韩亦舜认为,未来,人类一切生产、生活包括民生、环保、公共安全、城市服务、工商业活动都将囊括在智慧体系的理想服务之下,而智慧的来源便是大数据。

“大数据作为一种资源,其独特性在于可重复利用,而且可以在不断的挖掘中继续产生新的价值。”阿里巴巴集团副总裁、大数据专家涂子沛指出,从目前来看,亟须对数据进行深度挖掘。

“目前,在大数据产业领域,我国与各工业强国基本上处于同一起跑线。只要充分利用大数据产生的力量,未来可以帮助中国产业实现弯道超车。

以上是小编为大家分享的关于大数据的价值在于开放和跨界深度挖掘的相关内容,更多信息可以关注环球青藤分享更多干货

6. 九派新闻是什么样的平台

九派新闻属于省级的新闻媒体。

2015年9月23日,由湖北省打造的“九派新闻”终端上线。九派新闻定位为全国性舆论平台,以“资讯奔流,激越中国”为口号,将运用大数据技术构建新媒体产业融合平台。

九派新媒体平台坚持“大数据新闻”的明确定位,数据新闻、深度报道、民生服务、智库风格成为其鲜明特色,依靠国内独创的大数据采集挖掘技术驱动,探索构建战略性的传媒生态系统。

九派号:

九派号将为入驻成员提供三大服务:开放基于移动互联网内容创作场景的内容管理系统,用户可根据创作需求自主发布文章、图集、视频等。

开放的新媒体终端,一键发布,及时互动实现优质原创内容在全国范围内的传播。

开放数据统计系统,为成员单位提供实时动态的内容分析、订阅用户、用户分析、阅读量、关注量和收藏量等数据追踪。

7. 大数据挖掘主要涉及哪些技术

1、数据科学与大数据技术
本科专业,简称数据科学或大数据。
2、大数据技术与应用回
高职院校专业。
相关专业名答称:大数据管理与应用、大数据采集与应用等。
大数据专业强调交叉学科特点,以大数据分析为核心,以统计学、计算机科学和数学为三大基础支撑性学科,培养面向多层次应用需求的复合型人才。

8. 大数据时代的数据怎么挖掘

3月13日下午,南京邮电大学计算机学院、软件学院院长、教授李涛在CIO时代微讲座栏目作了题为《大数据时代的数据挖掘》的主题分享,深度诠释了大数据及大数据时代下的数据挖掘。

众所周知,大数据时代的大数据挖掘已成为各行各业的一大热点。
一、数据挖掘
在大数据时代,数据的产生和收集是基础,数据挖掘是关键,数据挖掘可以说是大数据最关键也是最基本的工作。通常而言,数据挖掘也称为DataMining,或知识发现Knowledge Discovery from Data,泛指从大量数据中挖掘出隐含的、先前未知但潜在的有用信息和模式的一个工程化和系统化的过程。
不同的学者对数据挖掘有着不同的理解,但个人认为,数据挖掘的特性主要有以下四个方面:
1.应用性(A Combination of Theory and Application):数据挖掘是理论算法和应用实践的完美结合。数据挖掘源于实际生产生活中应用的需求,挖掘的数据来自于具体应用,同时通过数据挖掘发现的知识又要运用到实践中去,辅助实际决策。所以,数据挖掘来自于应用实践,同时也服务于应用实践,数据是根本,数据挖掘应以数据为导向,其中涉及到算法的设计与开发都需考虑到实际应用的需求,对问题进行抽象和泛化,将好的算法应用于实际中,并在实际中得到检验。
2.工程性(An Engineering Process):数据挖掘是一个由多个步骤组成的工程化过程。数据挖掘的应用特性决定了数据挖掘不仅仅是算法分析和应用,而是一个包含数据准备和管理、数据预处理和转换、挖掘算法开发和应用、结果展示和验证以及知识积累和使用的完整过程。而且在实际应用中,典型的数据挖掘过程还是一个交互和循环的过程。
3.集合性(A Collection of Functionalities):数据挖掘是多种功能的集合。常用的数据挖掘功能包括数据探索分析、关联规则挖掘、时间序列模式挖掘、分类预测、聚类分析、异常检测、数据可视化和链接分析等。一个具体的应用案例往往涉及多个不同的功能。不同的功能通常有不同的理论和技术基础,而且每一个功能都有不同的算法支撑。
4.交叉性(An Interdisciplinary Field):数据挖掘是一门交叉学科,它利用了来自统计分析、模式识别、机器学习、人工智能、信息检索、数据库等诸多不同领域的研究成果和学术思想。同时一些其他领域如随机算法、信息论、可视化、分布式计算和最优化也对数据挖掘的发展起到重要的作用。数据挖掘与这些相关领域的区别可以由前面提到的数据挖掘的3个特性来总结,最重要的是它更侧重于应用。
综上所述,应用性是数据挖掘的一个重要特性,是其区别于其他学科的关键,同时,其应用特性与其他特性相辅相成,这些特性在一定程度上决定了数据挖掘的研究与发展,同时,也为如何学习和掌握数据挖掘提出了指导性意见。如从研究发展来看,实际应用的需求是数据挖掘领域很多方法提出和发展的根源。从最开始的顾客交易数据分析(market basket analysis)、多媒体数据挖掘(multimedia data mining)、隐私保护数据挖掘(privacy-preserving data mining)到文本数据挖掘(text mining)和Web挖掘(Web mining),再到社交媒体挖掘(social media mining)都是由应用推动的。工程性和集合性决定了数据挖掘研究内容和方向的广泛性。其中,工程性使得整个研究过程里的不同步骤都属于数据挖掘的研究范畴。而集合性使得数据挖掘有多种不同的功能,而如何将多种功能联系和结合起来,从一定程度上影响了数据挖掘研究方法的发展。比如,20世纪90年代中期,数据挖掘的研究主要集中在关联规则和时间序列模式的挖掘。到20世纪90年代末,研究人员开始研究基于关联规则和时间序列模式的分类算法(如classification based on association),将两种不同的数据挖掘功能有机地结合起来。21世纪初,一个研究的热点是半监督学习(semi-supervised learning)和半监督聚类(semi-supervised clustering),也是将分类和聚类这两种功能有机结合起来。近年来的一些其他研究方向如子空间聚类(subspace clustering)(特征抽取和聚类的结合)和图分类(graph classification)(图挖掘和分类的结合)也是将多种功能联系和结合在一起。最后,交叉性导致了研究思路和方法设计的多样化。
前面提到的是数据挖掘的特性对研究发展及研究方法的影响,另外,数据挖掘的这些特性对如何学习和掌握数据挖掘提出了指导性的意见,对培养研究生、本科生均有一些指导意见,如应用性在指导数据挖掘时,应熟悉应用的业务和需求,需求才是数据挖掘的目的,业务和算法、技术的紧密结合非常重要,了解业务、把握需求才能有针对性地对数据进行分析,挖掘其价值。因此,在实际应用中需要的是一种既懂业务,又懂数据挖掘算法的人才。工程性决定了要掌握数据挖掘需有一定的工程能力,一个好的数据额挖掘人员首先是一名工程师,有很强大的处理大规模数据和开发原型系统的能力,这相当于在培养数据挖掘工程师时,对数据的处理能力和编程能力很重要。集合性使得在具体应用数据挖掘时,要做好底层不同功能和多种算法积累。交叉性决定了在学习数据挖掘时要主动了解和学习相关领域的思想和技术。
因此,这些特性均是数据挖掘的特点,通过这四个特性可总结和学习数据挖掘。
二、大数据的特征
大数据(bigdata)一词经常被用以描述和指代信息爆炸时代产生的海量信息。研究大数据的意义在于发现和理解信息内容及信息与信息之间的联系。研究大数据首先要理清和了解大数据的特点及基本概念,进而理解和认识大数据。
研究大数据首先要理解大数据的特征和基本概念。业界普遍认为,大数据具有标准的“4V”特征:
1.Volume(大量):数据体量巨大,从TB级别跃升到PB级别。
2.Variety(多样):数据类型繁多,如网络日志、视频、图片、地理位置信息等。
3.Velocity(高速):处理速度快,实时分析,这也是和传统的数据挖掘技术有着本质的不同。
4.Value(价值):价值密度低,蕴含有效价值高,合理利用低密度价值的数据并对其进行正确、准确的分析,将会带来巨大的商业和社会价值。
上述“4V”特点描述了大数据与以往部分抽样的“小数据”的主要区别。然而,实践是大数据的最终价值体现的唯一途径。从实际应用和大数据处理的复杂性看,大数据还具有如下新的“4V”特点:
5.Variability(变化):在不同的场景、不同的研究目标下数据的结构和意义可能会发生变化,因此,在实际研究中要考虑具体的上下文场景(Context)。
6.Veracity(真实性):获取真实、可靠的数据是保证分析结果准确、有效的前提。只有真实而准确的数据才能获取真正有意义的结果。
7.Volatility(波动性)/Variance(差异):由于数据本身含有噪音及分析流程的不规范性,导致采用不同的算法或不同分析过程与手段会得到不稳定的分析结果。
8.Visualization(可视化):在大数据环境下,通过数据可视化可以更加直观地阐释数据的意义,帮助理解数据,解释结果。
综上所述,以上“8V”特征在大数据分析与数据挖掘中具有很强的指导意义。
三、大数据时代下的数据挖掘
在大数据时代,数据挖掘需考虑以下四个问题:
大数据挖掘的核心和本质是应用、算法、数据和平台4个要素的有机结合。
因为数据挖掘是应用驱动的,来源于实践,海量数据产生于应用之中。需用具体的应用数据作为驱动,以算法、工具和平台作为支撑,最终将发现的知识和信息应用到实践中去,从而提供量化的、合理的、可行的、且能产生巨大价值的信息。
挖掘大数据中隐含的有用信息需设计和开发相应的数据挖掘和学习算法。算法的设计和开发需以具体的应用数据作为驱动,同时在实际问题中得到应用和验证,而算法的实现和应用需要高效的处理平台,这个处理平台可以解决波动性问题。高效的处理平台需要有效分析海量数据,及时对多元数据进行集成,同时有力支持数据化对算法及数据可视化的执行,并对数据分析的流程进行规范。
总之,应用、算法、数据、平台这四个方面相结合的思想,是对大数据时代的数据挖掘理解与认识的综合提炼,体现了大数据时代数据挖掘的本质与核心。这四个方面也是对相应研究方面的集成和架构,这四个架构具体从以下四个层面展开:
应用层(Application):关心的是数据的收集与算法验证,关键问题是理解与应用相关的语义和领域知识。
数据层(Data):数据的管理、存储、访问与安全,关心的是如何进行高效的数据使用。
算法层(Algorithm):主要是数据挖掘、机器学习、近似算法等算法的设计与实现。
平台层(Infrastructure):数据的访问和计算,计算平台处理分布式大规模的数据。
综上所述,数据挖掘的算法分为多个层次,在不同的层面有不同的研究内容,可以看到目前在做数据挖掘时的主要研究方向,如利用数据融合技术预处理稀疏、异构、不确定、不完整以及多来源数据;挖掘复杂动态变化的数据;测试通过局部学习和模型融合所得到的全局知识,并反馈相关信息给预处理阶段;对数据并行分布化,达到有效使用的目的。
四、大数据挖掘系统的开发
1.背景目标
大数据时代的来临使得数据的规模和复杂性都出现爆炸式的增长,促使不同应用领域的数据分析人员利用数据挖掘技术对数据进行分析。在应用领域中,如医疗保健、高端制造、金融等,一个典型的数据挖掘任务往往需要复杂的子任务配置,整合多种不同类型的挖掘算法以及在分布式计算环境中高效运行。因此,在大数据时代进行数据挖掘应用的一个当务之急是要开发和建立计算平台和工具,支持应用领域的数据分析人员能够有效地执行数据分析任务。
之前提到一个数据挖掘有多种任务、多种功能及不同的挖掘算法,同时,需要一个高效的平台。因此,大数据时代的数据挖掘和应用的当务之急,便是开发和建立计算平台和工具,支持应用领域的数据分析人员能够有效地执行数据分析任务。
2.相关产品
现有的数据挖掘工具
有Weka、SPSS和SQLServer,它们提供了友好的界面,方便用户进行分析,然而这些工具并不适合进行大规模的数据分析,同时,在使用这些工具时用户很难添加新的算法程序。
流行的数据挖掘算法库
如Mahout、MLC++和MILK,这些算法库提供了大量的数据挖掘算法。但这些算法库需要有高级编程技能才能进行任务配置和算法集成。
最近出现的一些集成的数据挖掘产品
如Radoop和BC-PDM,它们提供友好的用户界面来快速配置数据挖掘任务。但这些产品是基于Hadoop框架的,对非Hadoop算法程序的支持非常有限。没有明确地解决在多用户和多任务情况下的资源分配。
3.FIU-Miner
为解决现有工具和产品在大数据挖掘中的局限性,我们团队开发了一个新的平台——FIU-Miner,它代表了A Fast,Integrated,and User-Friendly System for Data Miningin Distributed Environment。它是一个用户友好并支持在分布式环境中进行高效率计算和快速集成的数据挖掘系统。与现有数据挖掘平台相比,FIU-Miner提供了一组新的功能,能够帮助数据分析人员方便并有效地开展各项复杂的数据挖掘任务。
与传统的数据挖掘平台相比,它提供了一些新的功能,主要有以下几个方面:
A.用户友好、人性化、快速的数据挖掘任务配置。基于“软件即服务”这一模式,FIU-Miner隐藏了与数据分析任务无关的低端细节。通过FIU-Miner提供的人性化用户界面,用户可以通过将现有算法直接组装成工作流,轻松完成一个复杂数据挖掘问题的任务配置,而不需要编写任何代码。
B.灵活的多语言程序集成。允许用户将目前最先进的数据挖掘算法直接导入系统算法库中,以此对分析工具集合进行扩充和管理。同时,由于FIU-Miner能够正确地将任务分配到有合适运行环境的计算节点上,所以对这些导入的算法没有实现语言的限制。
C.异构环境中有效的资源管理。FIU-Miner支持在异构的计算环境中(包括图形工作站、单个计算机、和服务器等)运行数据挖掘任务。FIU-Miner综合考虑各种因素(包括算法实现、服务器负载平衡和数据位置)来优化计算资源的利用率。
D.有效的程序调度和执行。
应用架构上包括用户界面层、任务和系统管理层、逻辑资源层、异构的物理资源层。这种分层架构充分考虑了海量数据的分布式存储、不同数据挖掘算法的集成、多重任务的配置及系统用户的交付功能。一个典型的数据挖掘任务在应用之中需要复杂的主任务配置,整合多种不同类型的挖掘算法。因此,开发和建立这样的计算平台和工具,支持应用领域的数据分析人员进行有效的分析是大数据挖掘中的一个重要任务。
FIU-Miner系统用在了不同方面:如高端制造业、仓库智能管理、空间数据处理等,TerraFly GeoCloud是建立在TerraFly系统之上的、支持多种在线空间数据分析的一个平台。提供了一种类SQL语句的空间数据查询与挖掘语言MapQL。它不但支持类SQL语句,更重要的是可根据用户的不同要求,进行空间数据挖掘,渲染和画图查询得到空间数据。通过构建空间数据分析的工作流来优化分析流程,提高分析效率。
制造业是指大规模地把原材料加工成成品的工业生产过程。高端制造业是指制造业中新出现的具有高技术含量、高附加值、强竞争力的产业。典型的高端制造业包括电子半导体生产、精密仪器制造、生物制药等。这些制造领域往往涉及严密的工程设计、复杂的装配生产线、大量的控制加工设备与工艺参数、精确的过程控制和材料的严格规范。产量和品质极大地依赖流程管控和优化决策。因此,制造企业不遗余力地采用各种措施优化生产流程、调优控制参数、提高产品品质和产量,从而提高企业的竞争力。
在空间数据处理方面,TerraFly GeoCloud对多种在线空间数据分析。对传统数据分析而言,其难点在于MapQL语句比较难写,任务之间的关系比较复杂,顺序执行之间空间数据分许效率较低。而FIU-Miner可有效解决以上三个难点。
总结而言,大数据的复杂特征对数据挖掘在理论和算法研究方面提出了新的要求和挑战。大数据是现象,核心是挖掘数据中蕴含的潜在信息,并使它们发挥价值。数据挖掘是理论技术和实际应用的完美结合。数据挖掘是理论和实践相结合的一个例子。

9. 数据新闻的功能与优势

目前,在大数据新闻制作上已经积累了经验的国际媒体有《卫报》《纽约时报》《华盛顿邮报》等,但它们也处于探索阶段。通过对国内外代表性媒体的大数据新闻实践进行研究,可以总结出大数据新闻的四个功能,即描述、判断、预测、信息定制。
《卫报》网页2012年1月5日发布了一个有关“阿拉伯之春”的大数据新闻报道。报道利用动态图表,以时间轴为主线描述了自2010年12月一突尼斯男子自焚至2011年12月的一年间,17个阿拉伯国家发生的一场政治运动。网民可以通过这个四维动态的报道,清楚地从宏观到微观,全面了解阿拉伯之春在不同国家的不同表现形式。图表上方设置了时间的推拉按钮,网民推拉到自己想观看的时间点,可以清楚地看到相同时间点上不同国家发生的相关事件。画面的下方是各个国家的标签,网民也可以通过国家标记,来关注某个具体国家在纵向时间轴上的政治演变进程。不同的政治事件用不同颜色来标示:绿色为群众性抗议活动,浅蓝色为国际上的相关反应,黄色为政治事件,红色为政权更替。如果网民想了解某个事件的具体内容,点击不同颜色的标示,随即获取深度报道的链接。这种新闻报道方式,将涉及十几个国家、时间跨度长达一年的复杂的“阿拉伯之春”,以明晰的动态方式呈现出来,纯文字报道难以达到这样的传播效果。
大数据新闻还能够描述那些看不见的短期过程,比如流言如何在社交网络上传播。《卫报》通过追踪分析260万份推特内容,利用可视化动态图表描述了从流言开始传播到辟谣结束的整个过程。它也是以时间为轴,利用圆圈大小、颜色变化来描述整个过程,绿色的圈代表散布流言的推文,红色的圈代表更正这个流言的推文,灰色的是中立的评价推文,黄色的是对流言持怀疑态度的推文。圈的大小代表了推文的影响程度,圈越大影响程度越大。如果想了解具体的内容,点到哪个圈,屏幕旁边即刻呈现这个圈所代表的推文的发布者、发布日期、转推人数等等信息。通过这个动态的演进过程,人们可以清楚地看到,社交网络并不像一般想象的那样,是一味扩散虚假消息的场所。其实在假消息出现不久,社交网络上各种辟谣的消息就已经出现了。
从这两个例子可以看出,大数据新闻的报道方式能够在宏观上对某个事件看得更加清楚与全面,事件复杂的演进过程以及这个过程中的各个方面,都能描述得直观且有趣。 2011年8月,一个黑人穆斯林男子乘出租车在伦敦街头遭到警方拦截,双方发生枪战,该男子当街死亡。两天后,约300人聚集在伦敦市中心的警察局进行抗议,后来演变成持续多天的骚乱事件,抗议者引燃了汽车、商店和公交车。当天夜里,伦敦其他地区也发生了类似袭警、抢劫、纵火等事件。一些媒体评论指出,这与贫富差距有关。英国首相卡梅伦接受采访时,声称骚乱事件与贫富差距无关。
英国《卫报》记者利用大数据的分析结果,做了关于这一事件的系列报道,其中的一个报道主题,便是骚乱与贫困有没有关联。记者利用谷歌融合图表,在伦敦地区地图上标记出骚乱分子的居住地信息(黄色点)、实际发生骚乱的地点(灰色点),以及贫困地区分布(越偏红色表示越贫穷)。根据这张伦敦市中心的图,网民可以将图扩展到整个大伦敦地区来看,也可以聚焦到具体的街区放大来看,观察每个被标记的骚乱点的人流从哪里来,到哪儿去,从而清楚地看到贫苦与骚乱之间存在的某种关联。这种关系的表达,比起单纯的文字报道来,表现清晰,说服力强。 2013年“十一”长假期间,九寨沟发生游客大量滞留现象并引发群体性事件。如果新闻媒体或旅游当局能够在此前运用中国的局部大数据进行预测性报道,完全可以避免这样的群体性事件发生。因为传媒可以根据这方面的大数据,提前报道在哪个具体时间段内,有多少人从哪些地方前往九寨沟,其中男人、女人、老人、儿童各有多少等等。
这只是一个小例子,大数据能够预测社会和人们日常生活中的各个方面。通过挖掘大数据,传媒在技术上可以制作出可视化、交互式的图表,告知很多事项。微观的如流行疾病来袭、交通拥堵情况;宏观的如经济指数变动、某种社会危机的来临等等。网络开辟了“网络预测”网页,以“大数据,知天下”的口号推出,预测的产品有高考、世界杯、电影票房等等。它们后期准备上线的产品扩展到了更广的领域,比如金融预测、房地产预测等等。 利用大数据的分析结果,满足网民的信息个性化要求,是国外媒体的最新尝试。例如Five thirty eight数据博客,在2014年5月23日新辟读者来信专栏“亲爱的莫娜”。其第一期开篇语阐释的目的是:“我开这个专栏是为了帮助读者回答一些生活中重要的或者严肃的问题,比如我是不是很正常、我处在世界的哪个地位层面等等,目的不是为了给读者答疑解惑,不是告诉读者应该做什么和不应该做什么。恰恰相反,我提供数据来解释、描述你的经历。”
综观这个专栏,读者的提问五花八门,比较严肃的如:“美国有多少人从来没有喝过一滴酒?”“美国有多少男性空乘人员?”也有比较私人的如:“我该多久换一次袜子?”“婚前同居会不会导致离婚”等等。专栏作者利用美国范围内的大数据,即刻将分析结果告知当事人,但避免给出指导性意见,仅告知各种数据的分析结果,让网民自己依照分析结果来处理自己面临的问题。这个专栏与传统的纸媒读者来信专栏不同,不是通过星座、血型、生辰八字或伪装成阅历丰富的专家,来提供些心灵鸡汤式的回答,只用数据来说话。
这种尝试在媒体中并不少见。2011年,BBC广播公司曾根据2012年政府的财政预算联合毕马威会计师事务所做了一个预算计算器,用户只需要输入一些日常信息,例如买多少啤酒,用多少汽油等,就能够算出新的预算会让你付多少税,明年生活会不会更好。
根据用户需求提供个性化的大数据服务,是未来的发展趋势。这些报道有一个共性,媒体都致力于以用户的需求为中心,利用大数据诠释宏观社会现象对用户的影响,或者回答用户困惑的问题。媒体可以精准定位,经过后台计算,按照用户的接收习惯、工作习惯和生活习惯将服务推送到用户眼前。

10. 怎么分析新闻报道情况

亲亲您好,一、研究背景

2010年,“互联网之父”蒂姆·伯纳斯—李说了这样一句话:“Date-driven journalism is the future”(数据驱动新闻代表未来)这句话在当时被广泛传播,使“数据新闻”开始进入公众的视野。关于数据新闻的定义,目前在新闻传播届采用最多的依然出自欧洲新闻中心和开放知识基金会共同编写的《数据新闻手册》中的表述:“与其他类型的新闻区别或许在于将传统的新闻敏感和使用数字信息讲述一则好故事的能力相结合而带来新的可能性,数据新闻能够帮助记者使用数据图表讲述一个错综复杂的故事。”[1]一些国内学者根据自己的理解,也对“数据新闻”下了定义:“数据新闻是以数据为中心,密切围绕数据来组织报道,同时与数据相关的各种技术在新闻生产中都被赋予了重要地位。”[2]结合上述两种对“数据新闻”的解释,我们认为:“数据新闻”就是在新闻报道中,以数据作为支撑整个新闻报道的核心论据,围绕数据进行信息的采集、整理、分析与呈现工作,最终形成的新闻报道。数据新闻的本质不仅是对数据的呈现,而更在于挖掘数据背后隐藏的意义与价值。

现代体育离不开数据,体育竞赛过程中会产生大量的数据,数据永远都是体育赛事的核心。不论是奥运会、世界杯或是各种职业联赛,其比赛的最终结果都可以通过数据表现出来,而运动员的表现同样可以通过数据得以呈现。因此,体育媒体行业的工作人员想要报道好体育新闻,必然需要和各种数据打交道,数据显然对于体育媒体人来说相较于其他行业更具重要性。如今在大数据时代下,体育新闻人同样可以凭借大数据技术,来挖掘体育赛事数据,形成生动、有深度的新闻报道,大数据技术为体育新闻生产注入新动力。

二、研究目的

(一)了解目前我国网络媒体对体育数据新闻的应用现状

相较于传统媒体,我国网络媒体较早开始了数据新闻实践,并表现出专门频道为主,专题报道为辅的运行模式。而传统媒体方面,虽然也在数据新闻方面有过一些尝试,但由于自身条件的限制,使得数据新闻在传统媒体上总是难以施展拳脚。比如,电视媒体在制作数据新闻时会受到播出时间的限制,纸媒则由于版面容量的问题限制数据新闻的刊载。而其在网络媒体上则不会受到版面和时间的限制,这就导致传统媒体的数据新闻在数量和质量上都无法与网络媒体相比。所以本文选取了两家网络媒体——《新浪体育》与《肆客足球》作为研究的主体,将这两家网媒在俄罗斯世界杯期间制作的数据新闻为研究样本,来探析目前我国网媒对体育数据新闻的应用现状。

(二)研究当下我国网媒在制作体育数据新闻时存在的问题并提出对策

本文通过对俄罗斯世界杯期间《新浪体育》与《肆客足球》制作的130篇体育数据新闻进行全样本内容分析,发现并分析当下网媒上的体育数据新闻在制作和传播应用中存在的问题,在借鉴西方主流媒体发展经验的基础上,结合我国的国情,为国内体育数据新闻的报道提供可借鉴策略。

三、研究结果以及问题分析

(一)新闻选题全面多样、特色鲜明,但预测类新闻相对较少

本文将选题角度划分为六种类型,分别是:预测、赛后、回顾、场外、专题以及人物。随后将全部130篇体育数据新闻按照这六个类目进行统计整理,在俄罗斯世界杯期间,《新浪体育》和《肆客足球》制作发表的体育数据新闻,在六个类型的选题方面都有涉及,其中专题类新闻最多共有34篇,占总体样本的26%左右;而预测类新闻最少,只有11篇,占总体样本的9%左右。通过以上数据我们发现,目前网媒制作的体育数据新闻选题覆盖比较全面,且结合自身特色的专题类报道成为了数据新闻的“主力军”,但同时又比较缺乏对预测类新闻的制作。

(二)体育数据新闻内容以文字叙述为主,可视化设计水平参差不齐

本文将选取的体育数据新闻内容划分为两种类型,即非可视化数据新闻和可视化数据新闻。再将非可视化数据新闻分为纯文字和图文两种,将可视化数据新闻分为图表、视频、H5三种。经过统计整理发现:在俄罗斯世界杯期间,《新浪体育》与《肆客足球》发表的体育数据新闻在内容上主要以文字叙述数据的方式为主,共有67篇;在可视化数据新闻作品中,主要以H5形式的作品为主,共有32篇,占可视化数据新闻的51%;而视频类数据新闻较少,只占可视化数据新闻的5%左右。经过分析,发现目前网媒对体育数据新闻的报道内容多以文字叙述为主,依然处于数据新闻制作的早期形态;在数据可视化制作方面,多爱采用H5的方式制作数据新闻,同时也存在一些以各类数据图表为内容的可视化作品。另外视频数据新闻制作水平较低,多为动图配字幕的形式,所以目前的体育数据新闻可视化水平有待进一步发展。

(三)体育数据新闻的数据来源多样,但通过自己挖掘的数据较少

本文将选取的130篇数据新闻的数据来源进行统计,发现目前我国网媒在制作数据新闻时采集的数据主要来源于四个方面:一、自己挖掘;二、专业数据机构(主要为一些国外数据机构如:OPTA、Transfer Market、Squawka);三、官方网站(国际足联官网、机构官网、足协官网、维基网络);四、外媒。经过统计整理发现:《新浪体育》与《肆客足球》在制作数据新闻使所采用的数据来源具有多样化的特点。这其中共69篇新闻的数据来自官方网站,占总体样本的53%左右;而利用通过自己的工作人员挖掘整理的数据进行报道的新闻只有15篇,占总体样本的11%。经过分析发现,目前我国网媒获取数据的渠道较多,说明大数据时代数据的开放程度变得越来越高;另一方面,目前我国网媒的数据新闻制作者应提高大数据挖掘技术,进一步提升自主生产、挖掘数据新闻的水平。

四、研究结论及建议

数据新闻起于西方、兴于西方,《卫报》是最早践行数据新闻的西方主流媒体,其制作的数据新闻获得业界高度赞誉。根据本研究对我国网媒应用体育数据新闻的现状分析,同时借鉴英国《卫报》在体育数据新闻方面的成功案例,可以得出以下研究结论及建议

(一)提高预测类数据新闻比重,发挥数据新闻价值优势

通过对我国网媒体育数据新闻应用现状的分析,发现目前我国网媒制作的体育数据新闻虽然题材多样,生产效率较高,但仍然缺乏一些具有深度的新闻报道。作为一名数据新闻记者,一定要有高水准的数据素养,具备敏锐的数据感知和分析能力,要能够在大数据的海洋中捕捞出最具新闻价值的数据信息,深挖数据背后所隐藏的故事,最终拟成有价值的选题呈现给受众,这样才能够使复杂的数据发挥出最大的价值。

如要改变现状,一方面,新闻机构要对自己的数据新闻记者组织培训,邀请业界富有能力、经验的数据新闻记者来为自己的数据新闻团队授业解惑;另一方面,高校作为培养国家人才的大熔炉,也必须设立专门的数据新闻课程,来为社会培养具备高水准数据素养的新闻人才。虽然目前国内于2013年开始,也有几家高校开辟了数据新闻专业,毕竟还处于探索阶段,且培养出来的人才数量有限,还远远不能满足社会的需要。

(二)提高数据可视化制作水平

通过对我国网媒体育数据新闻应用现状的分析,发现目前我国网媒制作的体育数据新闻的可视化设计水平有待提高。“可视化”(visualization),来源于“visual”,原意是“视觉的”、“形象的”。事实上,将任何抽象的事物、过程变成图形、图像的表示都可以称为可视化[1]。

提高数据可视化呈现水平,首先,媒体需要在自己的数据新闻团队里组建一个得力的视觉团队。记者在将数据信息进行可视化处理时,需要兼备新闻、技术与艺术素养的专业人员来做视觉专业的工作。一个相对完整的视觉团队大致包括选题策划、文字摄影摄像记者、数据编辑、美术设计、电脑制图、版面编辑和网页设计等层面的人员。

其次,在设计环节要对数据可视化工作有高要求。《卫报》“数据博客”前主编西蒙·罗杰斯曾说:“对好图表的追求,就像是要更多的阳光和免费巧克力。”数据新闻的可视化绝不是随意的将数据以图表的形式展现,在数据可视化的制作中还需要将图表进行美化,使可视化效果尽可能的贴合视觉感受,只有经过这样严苛地工作过程,才能为受众带来更好的阅读体验,良好的阅读体验是数据新闻生存的根本。

(三)搭建属于自己的高水平数据库

经过分析发现,目前我国的网络媒体基本没有建立属于自己的数据库,在制作数据新闻时,主要依靠两种渠道:一种是通过记者在网上查找搜寻数据;一种是花钱从专业的数据公司购买数据。如此现状,可能导致媒体人在制作数据新闻时受到数据开放程度的限制,而无法制作优质的数据新闻作品。数据新闻又称“数据驱动新闻”,因此必须要有高水平的数据库做支撑,才能保障数据新闻的质量。建立数据库同样有两种途径:一种是采集公共数据,主要是来自社会权威渠道的一些公开数据源;另一种是媒体自身的数据资料库,是媒体在长期的新闻报道中积累起来的新闻素材和数据信息。基于这些渠道,我们便可以建立起一个高质量、结构化的专业数据库,为数据新闻报道打下良好的基础。

从整体来看,我国的体育数据新闻在俄罗斯世界杯报道中的应用尚处于探索发展阶段,存在不少问题。数据新闻作为时代的产物,必然具有先进性,这种新型的新闻报道模式在我国拥有广阔的应用前景,值得学者、媒体对其进行研究。在今后的发展中,我国的体育新闻媒体需要改进数据新闻制作模式与方法,以追求更高质量的数据新闻作品。另一方面,更应将数据人才培养放在首位。只有人才队伍的壮大,才能够最终使我国的体育数据新闻获得强大的生命力,实现永续发展,实现追赶超越。

阅读全文

与大数据新闻深度挖掘相关的资料

热点内容
怎样查微信群聊天文件 浏览:790
喜马拉雅听书安卓版 浏览:673
安装黑苹果过程中黑屏 浏览:798
公积金网络贷款是什么 浏览:38
u盘文件夹变成乱码文件夹 浏览:50
p2p平台是什么app 浏览:171
银行app用户量排名 浏览:80
微信扫码应用宝一直加载 浏览:901
迷你编程教培版怎么样 浏览:828
苹果程序网络设置在哪里设置 浏览:916
文件30kb等于多少m 浏览:631
远程接入网络书籍 浏览:120
安卓配置API 浏览:142
linuxc语言执行shell 浏览:977
windows文件夹大小 浏览:967
黑暗破坏神3装备升级 浏览:510
2021年底文件币能升值多少 浏览:941
温州文件柜一般多少钱 浏览:499
空白文件可以占多少g 浏览:611
腾讯文件云空间多少g 浏览:828

友情链接