导航:首页 > 网络数据 > 大数据和云计算方面有哪些岗位

大数据和云计算方面有哪些岗位

发布时间:2023-01-13 06:10:20

㈠ 云计算可以从事的行业有哪些

下一波的IT浪潮就是云计算、物联网、人工智能、生物技术。
他们的根本基础还是计算机科学与技术,包括网络、硬件、软件等,
只是硬件或平台会比较侧重虚拟机、网格计算、分布式计算等方面的技术,
而应用会比较在意用户体验、大众互联方面,应用主要技术还是软件开放技术,
目前云计算是新新事物,教学资源紧张是正常的,新新事物风险和机遇并存。
1、云系统管理员:配置和维护的系统,包括基本的云平台,解决出现的问题,并计划未来云的能力要求。
2、云计算工程师:负责云计算和数据中心项目交付计划和技术方案的制定,负责云基础架构、上云数据迁移、云容灾备份以及云可靠性、安全性等的规划设计及实施工作。
3、云计算开发工程师:负责设计和开发面向云服务的分布式软件。
4、云计算架构师:领导云计算项目的开发和部署,确保系统的可扩展性、可靠性、安全性、可维护性,并在预算内达到业务和IT业绩表现要求。
5、运维工程师:负责云计算项目实施和运维,做好网络存储、数据库、备份、恢复、同步等相关工作。

大数据都有哪些就业方向

大数据就业方向一、数据存储和管理

大数据都是从数据存储开始。这意味着从大数据框架Hadoop开始。它是由Apache Foundation开发的开源软件框架,用在计算机集群上分布式存储非常大的数据集。

显然,存储对于大数据所需的大量信息至关重要。但更重要的是,需要有一种方式来将所有这些数据集中到某种形成/管理结构中,以产生洞察力。因此,大数据存储和管理是真正的基础,而没有这样的分析平台是行不通的。在某些情况下,这些解决方案包括员工培训。

大数据就业方向二、数据清理

在企业真正处理大量数据以获取洞察信息之前,先需要对其进行清理、转换并将其转变为可远程检索的内容。大数据往往是非结构化和无组织的,因此需要进行某种清理或转换。

在这个时代,数据的清理变得更加必要,因为数据可以来自任何地方:移动网络、物联网、社交媒体。并不是所有这些数据都容易被“清理”,以产生其见解,因此一个良好的数据清理工具可以改变所有的差异。事实上,在未来的几年中,将有效清理的数据视为是一种可接受的大数据系统与真正出色的数据系统之间的竞争优势。

大数据就业方向三、数据挖掘

一旦数据被清理并准备好进行检查,就可以通过数据挖掘开始搜索过程。这就是企业进行实际发现、决策和预测的过程。

数据挖掘在很多方面都是大数据流程的真正核心。数据挖掘解决方案通常非常复杂,但力求提供一个令人关注和用户友好的用户界面,这说起来容易做起来难。数据挖掘工具面临的另一个挑战是:它们的确需要工作人员开发查询,所以数据挖掘工具的能力并不比使用它的专业人员强。

㈢ 大数据的就业方向

总的来说大数据领域有几大细分 1 数据清洗、收集、爬虫 //偏脚本、爬虫能力 2 数据回分析 //偏业务答,偏SQL,偏分析能力 3 数据开发 //偏平台,偏工程化、后端开发能力 4 数据挖掘 //偏算法,偏挖掘能力 一般来说,数据分析的门槛最低,其次数据开发和爬虫类,门槛最高的是挖掘,当然薪酬也是相对较高的。 从应用开发入手,你可以往两个方向房展: 1 进一步熟悉架构,提升开发能力,往数据架构师转; 2 从应用工程化往挖掘工程师转,需要自己多学算法相关的知识;

㈣ 大数据行业就业方向有哪些大数据技术就业岗位有哪些

方向:大数据开发方向,数据挖掘、数据分析和机器学习方向,大数据运维和云计算方向

就业岗位:

1、大数据工程师

大数据工程师的话其实包涵了很多,比如大数据开发,测试,运维,挖据等等,各个岗位不同薪资水平也不大相同。总的来说的话它共有6093个岗位在智联招聘上招聘,平均工资也在11643元。

2、Hadoop开发工程师

职位描述:参与优化改进新浪集团数据平台基础服务,参与日传输量超过百TB的数据传输体系优化,日处理量超过PB级别的数据处理平台改进,多维实时查询分析系统的构建优化。

3、大数据研发工程师

职位描述:

构建分布式大数据服务平台,参与和构建公司包括海量数据存储、离线/实时计算、实时查询,大数据系统运维等系统;服务各种业务需求,服务日益增长的业务和数据量。

4、大数据架构师

大数据架构师的招聘岗位有1446个,从招聘的薪资来看,大数据架构师基本薪资都是15K~60K,大数据架构师的薪资可以说是相当可观的,在大数据行业里,大数据架构师的酬劳可以说是领先与其他的,所以大数据架构师对于人才的要求也是比较严格的。

5、大数据分析师

工作职责:根据公司产品和业务需求,利用数据挖掘等工具对多种数据源进行诊断分析,建设征信分析模型并优化,为公司征信运营决策、产品设计等方面提供数据支持;负责项目的需求调研、数据分析、商业分析和数据挖掘模型等,通过对运行数据进行分析挖掘背后隐含的规律及对未来的预测。

㈤ 大数据专业就业方向有哪些

大数据开发方向所涉及的职业岗位为:大数据工程师、大数据维护工程师、大数据研发工程师、大数据架构师等。

数据挖掘、数据分析和机器学习方向; 所涉及的职业岗位为:大数据分析师、大数据高级工程师、大数据分析师专家、大数据挖掘师、大数据算法师等。

大数据运维和云计算方向;对应岗位:大数据运维工程师。

这三个方向精通任何方向之一者,均会前(钱)途无量。

就目前来看一般都是大企业对大数据挖掘分析的需求更多,所以学习大数据专业也是进大公司的捷径!

㈥ 大数据专业毕业生出来可以做什么工作

1、大数据开发工程师

负责公司大数据平台的开发和维护,负责大数据平台持续集成相关工具平台的架构设计与产品开发等。

2、数据分析师

进行数据搜集、整理、分析,针对数据分析结论给管理销售运营提供指导意义的分析意见。

3、数据挖掘工程师

商业智能,用户体验分析,预测流失用户等;需要过硬的数学和统计学功底以外,对算法的代码实现也有很高的要求。

4、数据库开发

设计,开发和实施基于客户需求的数据库系统,通过理想接口连接数据库和数据库工具,优化数据库系统的性能效率等。

最后,不论是从事大数据开发岗位,还是大数据运维和大数据分析岗位,这些岗位对于从业者的要求也都比较高,尤其要注重动手实践能力的培养,所以大数据专业的学生一方面要尽量丰富自身的知识结构,另一方面还需要注重动手实践能力的培养。

㈦ 大数据云计算学习完可以从事什么工作

随着云时代的发展,大数据也吸引了越来越多的目光。云计算和大数据早已成为不可分割的一体,掌握了云计算和大数据也就掌握了大数据常见的实时以及离线开发框架,具备架构设计以及开发能力,能够胜任 hadoop开发工程师,spark开发工程师,flink开发工程师等岗位。
下面是各个阶段适应的岗位:

阶段一:
基础知识(linux操作基础、shell编程、hadoop集群环境准备、zookeeper集群、网络编程)、JVM优化(JVM运行参数、JVM内存模型、jmap命令的使用、jstack命令的使用、VisualVM工具的使用、JVM垃圾回收算法、JVM垃圾收集器、Tomcat8优化、JVM字节码、代码优化)。完成以上初级阶段的学习,大家就能够完成中小型企业常见的自动化脚本。
阶段二 :
hadoop环境搭建2.0(hadoop源生集群搭建、CDH版本集群搭建)、hdfs(hdfs入门、hdfs深入)、maprece(maprece入门、maprece深入学习、maprece高级)、yarn、hive(hive安装、hive基本操作、hive高级用法、hive调优)、辅助系统工具(flume、azkaban调度、sqoop0)、IMPALA、HUE、OOZIE。学到这个阶段大家基本能够胜任离线相关工作,包括ETL工程师、hadoop开发工程师、hadoop运维工程师、Hive工程师、数据仓库工程师等岗位。
阶段三 :
kafka消息队列、storm编程(storm编程、strom实时看板案例、storm高级应用)。完成第三阶段的学习,大家能够胜任Storm实时计算相关工作,包括ETL工程师、大数据开发工程师、Storm流式计算工程师等岗位。
阶段四 :
项目开发(strom日志告警、strom路由器项目开发)。了解了strom项目开发,大家能够胜任流计算开发工作,流式计算工程师、大数据开发工程师等相关工作岗位。
阶段五 :
Scala编程(Scala基础语法、Scala中面向对象编程、Scala中的模式匹配、Scala中的actor介绍、Actor实战、Scala中的高阶函数、隐式转换和隐式参数、Akka编程实战)、Spark(Spark概述、Spark集群安装、Spark HA高可用部署、Spark程序、RDD概述 、创建RDD 、RDD常用的算子操作 、RDD的依赖关系、RDD的缓存机制 、DAG的生成 、spark检查点、Spark SQL概述 、DataFrame介绍以及与RDD对比 、DataFrame常用操作 、DataSet的介绍、以编程方式执行Spark SQL查询、Spark on Yarn介绍、sparkStreaming概述、Spark Streaming原理 、DStream相关操作、Dstream操作实战、sparkStreaming整合flume实战、sparkStreaming整合kafka实战)、Hbase(hbase简介、hbase部署、hbase基本操作、hbase的过滤器、hbase原理、hbase高阶)。完成第五阶段的学习,大家能够胜任Spark相关工作,包括ETL工程师、Spark工程师、Hbase工程师等等。
阶段六 :
用户画像(用户画像概述、用户画像建模、用户画像环境、用户画像开发、hive整合hbase、hbase集成phoenix、项目可视化)。完成大数据Spark项目实战能够胜任Spark相关工作,包括ETL工程师、Spark工程师、Hbase工程师、用户画像系统工程师、数据分析师。
阶段七 :
Flink(Flink入门、Flink进阶、Flink电商项目)。完成Flink实时计算系统的学习,大家能够胜任Flink相关工作,包括ETL工程师、Flink工程师、大数据实时开发工程师等岗位。
阶段八 :

机器学习入门(机器学习概念、机器学习数学基础)、机器学习语言基础(Python语言、Python数据分析库实战、用户画像标签预测实战)、集成学习算法、构建人才流失模型、数据挖掘项目、推荐系统、CTR点击率预估实战。完成最后的学习能够胜任机器学习、数据挖掘等相关工作,包括推荐算法工程师、数据挖掘工程师、机器学习工程师,填补人工智能领域人才急剧增长产生的缺口。

㈧ 大数据都有哪些就业方向

1. Hadoop大数据开发方向

市场需求旺盛,大数据培训的主体,目前IT培训机构的重点

对应岗位:大数据开发工程师、爬虫工程师、数据分析师 等

2. 数据挖掘、数据分析&机器学习方向

学习起点高、难度大,市面上只有很少的培训机构在做。

对应岗位:数据科学家、数据挖掘工程师、机器学习工程师等

3. 大数据运维&云计算方向

市场需求中等,更偏向于Linux、云计算学科

对应岗位:大数据运维工程师

当下,大数据的趋势已逐步从概念走向落地,而在IT人跟随大数据浪潮的转型中,各大企业对大数据高端人才的需求也越来越紧迫。这一趋势,也给想要从事大数据方面工作的人员提供了难得的职业机遇。

4.ETL研发


ETL研发,主要负责将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。

5.可视化(前段展现)工具开发

可视化开发就是在可视开发工具提供的图形用户界面上,通过操作界面元素,由可视开发工具自动生成应用软件。还可轻松跨越多个资源和层次连接您的所有数据,经过时间考验,完全可扩展的,功能丰富全面的可视化组件库为开发人员提供了功能完整并且简单易用的组件集合,以用来构建极其丰富的用户界面。

㈨ 云计算可以从事的行业有哪些

你好,很高兴为你解答:
第一:云计算运维岗位。云计算运维岗位是目前需求量相对比较大的岗位之一,随着大量的行业企业纷纷开始采用云计算平台,未来云计算运维的岗位需求量会进一步扩大。云计算运维岗位涉及到虚拟化技术、存储技术、监管和安全等技术,整体的知识面还是相对比较广泛的,而且对于从业者的动手实践能力有比较高的要求。

第二:云计算平台开发岗位。当前云计算平台正在从IaaS向PaaS和SaaS覆盖,这个过程会陆续释放出大量的岗位需求,目前有不少研究生会从事大数据平台开发岗位,而且薪资待遇也相对比较高。实际上,当前平台开发岗位的整体需求量都比较大,物联网平台开发、人工智能平台开发等领域也有较大的人才需求量。

第三:软件开发岗位。云计算专业的毕业生也可以选择从事传统的软件开发岗位,未来在软件开发领域有大量的开发任务都将基于云计算平台来完成(PaaS),产业互联网时代,云计算平台将不断拓展程序员的开发边界。另外,云计算平台与大数据平台、物联网平台和人工智能平台之间也存在非常紧密的联系,掌握云计算平台也很容易向其他几个平台发展。

阅读全文

与大数据和云计算方面有哪些岗位相关的资料

热点内容
win10360强力删除 浏览:740
微信小程序怎么添加 浏览:582
彩信在哪个文件夹里 浏览:502
win10台式网络无法连接无线网络 浏览:20
jsp导出document 浏览:846
win10kb3156421更新失败 浏览:697
一键影音win10 浏览:965
昭通饮品批发哪个网站比较实惠 浏览:434
怎么批量提取多个Excel文件 浏览:947
jsp判断是否为数字 浏览:56
杰伦的歌在哪个app上 浏览:89
qq头像心的 浏览:463
我国航天发射用的什么数据库 浏览:453
win10steam打字没字母 浏览:805
csgo启动文件是哪个文件夹 浏览:578
linux必会命令 浏览:940
哪个培训机构有编程 浏览:923
自动生成css代码 浏览:808
数据库与硬盘 浏览:202
网络名字叫什么好听 浏览:798

友情链接