导航:首页 > 网络数据 > 大数据攻击

大数据攻击

发布时间:2023-01-13 03:41:00

⑴ 如何利用大数据来处理网络安全攻击

“大数据”已经成为时下最火热的IT行业词汇,各行各业的大数据解决方案层出不穷。究竟什么是大数据、大数据给信息安全带来哪些挑战和机遇、为什么网络安全需要大数据,以及怎样把大数据思想应用于网络安全技术,本文给出解答。
一切都源于APT
APT(Advanced Persistent Threat)攻击是一类特定的攻击,为了获取某个组织甚至是国家的重要信息,有针对性的进行的一系列攻击行为的整个过程。APT攻击利用了多种攻击手段,包括各种最先进的手段和社会工程学方法,一步一步的获取进入组织内部的权限。APT往往利用组织内部的人员作为攻击跳板。有时候,攻击者会针对被攻击对象编写专门的攻击程序,而非使用一些通用的攻击代码。此外,APT攻击具有持续性,甚至长达数年。这种持续体现在攻击者不断尝试各种攻击手段,以及在渗透到网络内部后长期蛰伏,不断收集各种信息,直到收集到重要情报。更加危险的是,这些新型的攻击和威胁主要就针对国家重要的基础设施和单位进行,包括能源、电力、金融、国防等关系到国计民生,或者是国家核心利益的网络基础设施。
现有技术为什么失灵
先看两个典型APT攻击案例,分析一下盲点在哪里:
1、 RSA SecureID窃取攻击
1) 攻击者给RSA的母公司EMC的4名员工发送了两组恶意邮件。邮件标题为“2011 Recruitment Plan”,寄件人是[email protected],正文很简单,写着“I forward this file to you for review. Please open and view it.”;里面有个EXCEL附件名为“2011 Recruitment plan.xls”;
2) 很不幸,其中一位员工对此邮件感到兴趣,并将其从垃圾邮件中取出来阅读,殊不知此电子表格其实含有当时最新的Adobe Flash的0day漏洞(CVE-2011-0609)。这个Excel打开后啥也没有,除了在一个表单的第一个格子里面有个“X”(叉)。而这个叉实际上就是内嵌的一个Flash;
3) 该主机被植入臭名昭著的Poison Ivy远端控制工具,并开始自BotNet的C&C服务器(位于 good.mincesur.com)下载指令进行任务;
4) 首批受害的使用者并非“位高权重”人物,紧接着相关联的人士包括IT与非IT等服务器管理员相继被黑;
5) RSA发现开发用服务器(Staging server)遭入侵,攻击方随即进行撤离,加密并压缩所有资料(都是rar格式),并以FTP传送至远端主机,又迅速再次搬离该主机,清除任何踪迹;
6) 在拿到了SecurID的信息后,攻击者就开始对使用SecurID的公司(例如上述防务公司等)进行攻击了。
2、 震网攻击
遭遇超级工厂病毒攻击的核电站计算机系统实际上是与外界物理隔离的,理论上不会遭遇外界攻击。坚固的堡垒只有从内部才能被攻破,超级工厂病毒也正充分的利用了这一点。超级工厂病毒的攻击者并没有广泛的去传播病毒,而是针对核电站相关工作人员的家用电脑、个人电脑等能够接触到互联网的计算机发起感染攻击,以此 为第一道攻击跳板,进一步感染相关人员的U盘,病毒以U盘为桥梁进入“堡垒”内部,随即潜伏下来。病毒很有耐心的逐步扩散,利用多种漏洞,包括当时的一个 0day漏洞,一点一点的进行破坏。这是一次十分成功的APT攻击,而其最为恐怖的地方就在于极为巧妙的控制了攻击范围,攻击十分精准。
以上两个典型的APT攻击案例中可以看出,对于APT攻击,现代安全防御手段有三个主要盲点:

1、0day漏洞与远程加密通信
支撑现代网络安全技术的理论基础最重要的就是特征匹配,广泛应用于各类主流网络安全产品,如杀毒、入侵检测/防御、漏洞扫描、深度包检测。Oday漏洞和远程加密通信都意味着没有特征,或者说还没来得及积累特征,这是基于特征匹配的边界防护技术难以应对的。
2、长期持续性的攻击
现代网络安全产品把实时性作为衡量系统能力的一项重要指标,追求的目标就是精准的识别威胁,并实时的阻断。而对于APT这种Salami式的攻击,则是基于实时时间点的检测技术难以应对的。
3、内网攻击
任何防御体系都会做安全域划分,内网通常被划成信任域,信任域内部的通信不被监控,成为了盲点。需要做接入侧的安全方案加固,但不在本文讨论范围。

大数据怎么解决问题
大数据可总结为基于分布式计算的数据挖掘,可以跟传统数据处理模式对比去理解大数据:
1、数据采样——>全集原始数据(Raw Data)
2、小数据+大算法——>大数据+小算法+上下文关联+知识积累
3、基于模型的算法——>机械穷举(不带假设条件)
4、精确性+实时性——>过程中的预测
使用大数据思想,可对现代网络安全技术做如下改进:
1、特定协议报文分析——>全流量原始数据抓取(Raw Data)
2、实时数据+复杂模型算法——>长期全流量数据+多种简单挖掘算法+上下文关联+知识积累
3、实时性+自动化——>过程中的预警+人工调查
通过传统安全防御措施很难检测高级持续性攻击,企业必须先确定日常网络中各用户、业务系统的正常行为模型是什么,才能尽早确定企业的网络和数据是否受到了攻击。而安全厂商可利用大数据技术对事件的模式、攻击的模式、时间、空间、行为上的特征进行处理,总结抽象出来一些模型,变成大数据安全工具。为了精准地描述威胁特征,建模的过程可能耗费几个月甚至几年时间,企业需要耗费大量人力、物力、财力成本,才能达到目的。但可以通过整合大数据处理资源,协调大数据处理和分析机制,共享数据库之间的关键模型数据,加快对高级可持续攻击的建模进程,消除和控制高级可持续攻击的危害。

⑵ 大数据存在的安全问题有哪些

【导读】互联网时代,数据已成为公司的重要资产,许多公司会使用大数据等现代技术来收集和处理数据。大数据的应用,有助于公司改善业务运营并预测行业趋势。那么,大数据存在的安全问题有哪些呢?今天就跟随小编一起来了解下吧!

一、分布式系统

大数据解决方案将数据和操作分布在许多系统中,以实现更快的处理和分析。这种分布式系统可以平衡负载,避免单点故障。但是这样的系统容易受到安全威胁,黑客只要攻击一个点就可以渗透整个网络。

二.数据存取

大数据系统需要访问控制来限制对敏感数据的访问,否则,任何用户都可以访问机密数据,有些用户可能会出于恶意使用。此外,网络犯罪分子可以入侵与大数据系统相连的系统,窃取敏感数据。因此,使用大数据的公司需要检查和验证每个用户的身份。

三.数据不正确

网络犯罪分子可以通过操纵存储的数据来影响大数据系统的准确性。因此,网络犯罪分子可以创建虚假数据,并将这些数据提供给大数据系统。比如医疗机构可以利用大数据系统研究患者的病历,而黑客可以修改这些数据,产生不正确的诊断结果。

四.侵犯隐私

大数据系统通常包含机密数据,这是很多人非常关心的问题。这样的大数据隐私威胁已经被全世界的专家讨论过了。此外,网络犯罪分子经常攻击大数据系统以破坏敏感数据。这种数据泄露已经成为头条新闻,导致数百万人的敏感数据被盗。

五、云安全性不足

大数据系统收集的数据通常存储在云中,这可能是一个潜在的安全威胁。网络犯罪分子破坏了许多知名公司的云数据。如果存储的数据没有加密,并且没有适当的数据安全性,就会出现这些问题。

以上就是小编今天给大家整理分享关于“大数据存在的安全问题有哪些?”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。

⑶ 大数据安全的六大挑战

大数据安全的六大挑战_数据分析师考试

大数据的价值为大家公认。业界通常以4个“V”来概括大数据的基本特征——Volume(数据体量巨大)、Variety(数据类型繁多)、Value(价值密度低)、Velocity(处理速度快)。当你准备对大数据所带来的各种光鲜机遇大加利用的同时,请别忘记大数据也会引入新的安全威胁,存在于大数据时代“潘多拉魔盒”中的魔鬼可能会随时出现。

挑战一:大数据的巨大体量使得信息管理成本显著增加

4个“V”中的第一个“V”(Volume),描述了大数据之大,这些巨大、海量数据的管理问题是对每一个大数据运营者的最大挑战。在网络空间,大数据是更容易被“发现”的显著目标,大数据成为网络攻击的第一演兵场所。一方面,大量数据的集中存储增加了泄露风险,黑客的一次成功攻击能获得比以往更多的数据量,无形中降低了黑客的进攻成本,增加了“攻击收益”;另一方面,大数据意味着海量数据的汇集,这里面蕴藏着更复杂、更敏感、价值巨大的数据,这些数据会引来更多的潜在攻击者。

在大数据的消费者方面,公司在未来几年将处理更多的内部生成的数据。然而在许多组织中,不同的部门像财务、工程、生产、市场、IT等之间的信息仍然是孤立的,各部门之间相互设防,造成信息无法共享。那些能够在不破坏壁垒和部门现实优势的前提下更透明地沟通的公司将更具竞争优势。

【解决方案】 首先要找到有安全管理经验并受过大数据管理所需要技能培训的人员,尤其是在今天人力成本和培训成本不断上升的节奏中,这一定足以让许多CEO肝颤,但这些针对大数据管理人员的巨额教育和培训成本,是一种非常必要的开销。

与此同时,在流程的设计上,一定要将数据分散存储,任何一个存储单元被“黑客”攻破,都不可能拿到全集,同时对于不同安全域要进行准确的评估,像关键信息索引的保护一定要加强,“好钢用在刀刃上”,作为数据保全,能够应对部分设施的灾难性损毁。

挑战二:大数据的繁多类型使得信息有效性验证工作大大增加

4个“V”中的第二个“V”(Variety),描述了数据类型之多,大数据时代,由于不再拘泥于特定的数据收集模式,使得数据来自于多维空间,各种非结构化的数据与结构化的数据混杂在一起。

未来面临的挑战将会是从数据中提取需要的数据,很多组织将不得不接受的现实是,太多无用的信息造成的信息不足或信息不匹配。我们可以考虑这样的逻辑:依托于大数据进行算法处理得出预测,但是如果这些收集上来的数据本身有问题又该如何呢?也许大数据的数据规模可以使得我们无视一些偶然非人为的错误,但是如果有个敌手故意放出干扰数据呢?现在非常需要研究相关的算法来确保数据来源的有效性,尤其是比较强调数据有效性的大数据领域。

正是因为这个原因,对于正在收集和储存大量客户数据的公司来说,最显而易见的威胁就是在过去的几年里,存放于企业数据库中数以TB计,不断增加的客户数据是否真实可靠,依然有效。

众所周知,海量数据本身就蕴藏着价值,但是如何将有用的数据与没有价值的数据进行区分看起来是一个棘手的问题,甚至引发越来越多的安全问题。

【解决方案】 尝试尽可能使数据类型具体化,增加对数据更细粒度的了解,使数据本身更加细化,缩小数据的聚焦范围,定义数据的相关参数,数据的筛选要做得更加精致。与此同时,进一步健全特征库,加强数据的交叉验证,通过逻辑冲突去伪存真。

挑战三:大数据的低密度价值分布使得安全防御边界有所扩展

4个“V”中的第三个“V”(Value),描述了大数据单位数据的低价值。这种广种薄收似的价值量度,使得信息效能被摊薄了,大数据的安全预防与攻击事件的分析过程更加复杂,相当于安全管理范围被放大了。

大数据时代的安全与传统信息安全相比,变得更加复杂,具体体现在三个方面:一方面,大量的数据汇集,包括大量的企业运营数据、客户信息、个人的隐私和各种行为的细节记录,这些数据的集中存储增加了数据泄露风险;另一方面,因为一些敏感数据的所有权和使用权并没有被明确界定,很多基于大数据的分析都未考虑到其中涉及的个体隐私问题;再一方面,大数据对数据完整性、可用性和秘密性带来挑战,在防止数据丢失、被盗取、被滥用和被破坏上存在一定的技术难度,传统的安全工具不再像以前那么有用。

【解决方案】 确立有限管理边界,依据保护要求,加强重点保护,构建一体化的数据安全管理体系,遵循网络防护和数据自主预防并重的原则,并不是实施了全面的网络安全护理就能彻底解决大数据的安全问题,数据不丢失只是传统的边界网络安全的一个必要补充,我们还需要对大数据安全管理的盲区进行监控,只有将二者结合在一起,才是一个全面的一体化安全管理的解决方案

挑战四:大数据的快速处理要求使得独立决策的比例显著降低

“4个“V”中最后一个“V”(Velocity),决定了利用海量数据快速得出有用信息的属性。

大数据时代,对事物因果关系的关注,转变为对事物相关关系的关注。如果大数据系统只是一种辅助决策系统,这还不是最可怕的。事实上,今天大数据分析日益成为一项重要的业务决策流程,越来越多的决策结果来自于大数据的分析建议,对于领导者最艰难的事情之一,是让我的逻辑思考来做决定,还是由机器的数据分析做决定,可怕的是,今天看来,机器往往是正确的,这不得不让我们产生依赖。试想一下,如果收集的数据已经被修正过,或是系统逻辑已经被控制了呢!但是面对海量的数据收集、存储、管理、分析和共享,传统意义上的对错分析和奇偶较验已失去作用。

【解决方案】 在依靠大数据进行分析、决策的同时,还应辅助其他的传统决策支持系统,尽可能明智地使用数据所告诉我们的结果,让大数据为我们所用。但绝对不要片面地依赖于大数据系统。

挑战五:大数据独特的导入方式使得攻防双方地位的不对等性大大降低

在大数据时代,数据加工和存储链条上的时空先后顺序已被模糊,可扩展的数据联系使得隐私的保护更加困难。过去传统的安全防护工作,是先扎好篱笆、筑好墙,等待“黑客”的攻击,我们虽然不知道下一个“黑客”是谁,但我们一定知道,它是通过寻求新的漏洞,从前面逐层进入。守方在明处,但相比攻方有明显的压倒性优势。而在大数据时代,任何人都可以是信息的提供者和维护者,这种由先天的结构性导入设计所带来的变化,你很难知道“它”从哪里进来,“哪里”才是前沿。这种变化,使得攻、防双方的力量对比的不对等性大大下降。

同时,由于这种不对等性的降低,在我们用数据挖掘和数据分析等大数据技术获取有价值信息的同时,“黑客”也可以利用这些大数据技术发起新的攻击。“黑客”会最大限度地收集更多有用信息,比如社交网络、邮件、微博、电子商务、电话和家庭住址等信息,大数据分析使“黑客”的攻击更加精准。此外,“黑客”可能会同时控制上百万台傀儡机,利用大数据发起僵尸网络攻击。

【解决方案】 面对大数据所带来新的安全问题,有针对性地更新安全防护手段,增加新型防护手段,混合生产数据和经营数据,多种业务流并行,增加特征标识建设内容,增强对数据资源的管理和控制。

挑战六:大数据网络的相对开放性使得安全加固策略的复杂性有所降低

在大数据环境下,数据的使用者同时也是数据的创造者和供给者,数据间的联系是可持续扩展的,数据集是可以无限延伸的,上述原因就决定了关于大数据的应用策略要有新的变化,并要求大数据网络更加开放。大数据要对复杂多样的数据存储内容做出快速处理,这就要求很多时候,安全管理的敏感度和复杂度不能定得太高。此外,大数据强调广泛的参与性,这将倒逼系统管理者调低许多策略的安全级别。

当然,大数据的大小也影响到安全控制措施能否正确地执行,升级速度无法跟上数据量非线性增长的步伐,就会暴露大数据安全防护的漏洞。

【解决方案】 使用更加开放的分布式部署方式,采用更加灵活、更易于扩充的信息基础设施,基于威胁特征建立实时匹配检测,基于统一的时间源消除高级可持续攻击(APT)的可能性,精确控制大数据设计规模,削弱“黑客”可以利用的空间。

大数据时代已经到来,大数据已经产生出巨大影响力,并对我们的社会经济活动带来深刻影响。充分利用大数据技术来挖掘信息的巨大价值,从而实现并形成强有力的竞争优势,必将是一种趋势。面对大数据时代的六种安全挑战,如果我们能够予以足够重视,采取相应措施,将可以起到未雨绸缪的作用。

以上是小编为大家分享的关于大数据安全的六大挑战的相关内容,更多信息可以关注环球青藤分享更多干货

⑷ 什么是大数据信息安全的威胁

在携程信用卡信息泄露、小米社区用户信息泄露、OpenSSL“心脏出血”漏洞等事件中,大量用户信息数据被盗,导致用户网络银行账户发生入侵事件等情况。这些事情发生在个人用户身上。如果类似事件发生在国家财政、政务等相关部门的数据平台系统上,其后果将是不可想象的,对国家网络安全造成的损失将是前所未有的。大数据时代,我国网络安全面临多重安全威胁。


1、大数据信息安全的威胁——网络基础设施和基本的硬件和软件系统由其他人控制


大数据平台依托互联网,为政府、企业、公众提供服务。然而,从基础设施的角度来看,中国互联网已经存在一些不可控的因素。例如,域名解析系统(DNS)是Internet的基础设施之一,使访问Internet变得很容易,而不必记住复杂的IP地址字符串。今年1月,由于DNS根服务器受到攻击,数千万人在数小时内无法访问该网站。根服务器是全球DNS的基础,但全世界有13个根服务器,都是国外的,由美国控制。此外,中国还没有完全实现对大数据平台基础软硬件系统的自主控制。在能源、金融、电信等重要信息系统的核心软硬件实施中,服务器、数据库等相关产品占据主导地位。因此,目前中国的信息流是通过对国外企业产品的计算、传输和存储来实现的。相关设备设置更多“后门”,国内数据安全生命线几乎全部掌握在外国公司手中。2013年棱镜事件的曝光,突显了硬件和软件基础设施对中国数据安全乃至国家安全的重要性。


2、大数据信息安全的威胁——网站和应用程序充斥着漏洞和后门


近年来,由于网站和应用系统的漏洞,由后门引起的重大安全事件频繁发生,以上三起事件都属于这一类。据中国安全公司的网站安全检测服务统计,多达60%的中国网站存在安全漏洞和后门。可以说,网站和应用系统的漏洞是大数据平台面临的最大威胁之一。然而,各种第三方数据库和中间件在中国的各种大数据行业应用中得到了广泛的应用。然而,此类系统的安全状况并不乐观,存在广泛的漏洞。更令人担忧的是,网站的错误修复都不令人满意。


3、大数据信息安全的威胁——除了系统问题之外,网络攻击的手段更加丰富


其中,终端恶意软件和恶意代码是黑客或敌对势力攻击大数据平台、窃取数据的主要手段之一。目前,越来越多的网络攻击来自终端。终端渗透攻击也成为国与国之间网络战的主要手段。例如,著名的针对伊朗核设施的stuxnet病毒,利用Windows操作系统的弱点,渗透到特定终端,渗透到伊朗核工厂的内部网络,摧毁伊朗核设施。此外,针对大数据平台的高级持续威胁(Advanced Persistent Threat, APT)攻击十分常见,可以绕过各种传统的安全检测和保护措施,窃取网络信息系统的核心数据和各种智能。例如,极光袭击谷歌和其他30多家高科技公司就是一个例子。APT攻击结合了社会工程、吊马、脆弱性、深度渗透、潜伏期长、隐蔽性等特点,具有极强的破坏性。它不仅是未来网络战的主要手段,也是对我国网络空间安全危害最大的攻击手段之一。近年来,具有国家和组织背景的APT攻击不断增多,大数据平台无疑将成为APT攻击的主要目标。


大数据信息安全的威胁有哪些?这才是大数据工程师头疼的问题,在携程信用卡信息泄露、小米社区用户信息泄露、OpenSSL“心脏出血”漏洞等事件中,大量用户信息数据被盗,你能处理好吗?如果您还担心自己入门不顺利,可以点击本站的其他文章进行学习。

⑸ 大数据时代给信息安全带来的挑战

大数据时代给信息安全带来的挑战
在大数据时代,商业生态环境在不经意间发生了巨大变化:无处不在的智能终端、随时在线的网络传输、互动频繁的社交网络,让以往只是网页浏览者的网民的面孔从模糊变得清晰,企业也有机会进行大规模的精准化的消费者行为研究。大数据蓝海将成为未来竞争的制高点。
大数据在成为竞争新焦点的同时,不仅带来了更多安全风险,同时也带来了新机遇。
一、大数据成为网络攻击的显著目标。
在网络空间,大数据是更容易被“发现”的大目标。一方面,大数据意味着海量的数据,也意味着更复杂、更敏感的数据,这些数据会吸引更多的潜在攻击者。另一方面,数据的大量汇集,使得黑客成功攻击一次就能获得更多数据,无形中降低了黑客的进攻成本,增加了“收益率”。
二、大数据加大隐私泄露风险。
大量数据的汇集不可避免地加大了用户隐私泄露的风险。一方面,数据集中存储增加了泄露风险,而这些数据不被滥用,也成为人身安全的一部分。另一方面,一些敏感数据的所有权和使用权并没有明确界定,很多基于大数据的分析都未考虑到其中涉及的个体隐私问题。
三、大数据威胁现有的存储和安防措施。
大数据存储带来新的安全问题。数据大集中的后果是复杂多样的数据存储在一起,很可能会出现将某些生产数据放在经营数据存储位置的情况,致使企业安全管理不合规。大数据的大小也影响到安全控制措施能否正确运行。安全防护手段的更新升级速度无法跟上数据量非线性增长的步伐,就会暴露大数据安全防护的漏洞。
四、大数据技术成为黑客的攻击手段。
在企业用数据挖掘和数据分析等大数据技术获取商业价值的同时,黑客也在利用这些大数据技术向企业发起攻击。黑客会最大限度地收集更多有用信息,比如社交网络、邮件、微博、电子商务、电话和家庭住址等信息,大数据分析使黑客的攻击更加精准。此外,大数据也为黑客发起攻击提供了更多机会。黑客利用大数据发起僵尸网络攻击,可能会同时控制上百万台傀儡机并发起攻击。
五、大数据成为高级可持续攻击的载体。
传统的检测是基于单个时间点进行的基于威胁特征的实时匹配检测,而高级可持续攻击(APT)是一个实施过程,无法被实时检测。此外,由于大数据的价值低密度特性,使得安全分析工具很难聚焦在价值点上,黑客可以将攻击隐藏在大数据中,给安全服务提供商的分析制造很大困难。黑客设置的任何一个会误导安全厂商目标信息提取和检索的攻击,都会导致安全监测偏离应有方向。
六、大数据技术为信息安全提供新支撑。
当然,大数据也为信息安全的发展提供了新机遇。大数据正在为安全分析提供新的可能性,对于海量数据的分析有助于信息安全服务提供商更好地刻画网络异常行为,从而找出数据中的风险点。对实时安全和商务数据结合在一起的数据进行预防性分析,可识别钓鱼攻击,防止诈骗和阻止黑客入侵。网络攻击行为总会留下蛛丝马迹,这些痕迹都以数据的形式隐藏在大数据中,利用大数据技术整合计算和处理资源有助于更有针对性地应对信息安全威胁,有助于找到攻击的源头。

⑹ 大数据安全问题有哪些类型

1、散布式体系


大数据解决方案将数据和操作散布在许多体系上,以便更快地进行处理和分析。这种散布式体系能够平衡负载,并避免发生单点故障。然而,这样的体系很简单遭到安全要挟,黑客只需攻击一个点就能够渗透到整个网络。因而,网络犯罪分子能够很简单地获取敏感数据并损坏连网体系。


2、数据拜访


大数据体系需求拜访控制来约束对敏感数据的拜访,否则,任何用户都能够拜访机密数据,有些用户可能将其用于歹意目的。此外,网络犯罪分子能够侵入与大数据体系相连的体系,以盗取敏感数据。因而,运用大数据的公司需求查看并验证每个用户的身份。


3、不正确的数据


网络犯罪分子能够经过操纵存储的数据来影响大数据体系的精确性。为此,网络罪犯分子能够创立虚伪数据,并将这些数据提供给大数据体系,例如,医疗机构能够运用大数据体系来研究患者的病历,而黑客能够修正此数据以生成不正确的诊断成果。这种有缺陷的成果不简单被发现,公司可能会持续运用不精确的数据。此类网络攻击会严重影响数据完整性和大数据体系的性能。


4、侵略隐私权


大数据体系通常包括机密数据,这是许多人十分关怀的问题。这样的大数据隐私要挟现已被全球的专家们评论过了。此外,网络犯罪分子经常攻击大数据体系,以损坏敏感数据。


关于大数据安全问题有哪些类型,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

⑺ 大数据面临哪些安全与隐私问题

(一)大数据遭受异常流量攻击
大数据所存储的数据非常巨大,往往采用分布式的方式进行存储,而正是由于这种存储方式,存储的路径视图相对清晰,而数据量过大,导致数据保护,相对简单,黑客较为轻易利用相关漏洞,实施不法操作,造成安全问题。由于大数据环境下终端用户非常多,且受众类型较多,对客户身份的认证环节需要耗费大量处理能力。由于APT攻击具有很强的针对性,且攻击时间长,一旦攻击成功,大数据分析平台输出的最终数据均会被获取,容易造成的较大的信息安全隐患。
(二)大数据信息泄露风险
大数据平台的信息泄露风险在对大数据进行数据采集和信息挖掘的时候,要注重用户隐私数据的安全问题,在不泄露用户隐私数据的前提下进行数据挖掘。需要考虑的是在分布计算的信息传输和数据交换时保证各个存储点内的用户隐私数据不被非法泄露和使用是当前大数据背景下信息安全的主要问题。同时,当前的大数据数据量并不是固定的,而是在应用过程中动态增加的,但是,传统的数据隐私保护技术大多是针对静态数据的,所以,如何有效地应对大数据动态数据属性和表现形式的数据隐私保护也是要注重的安全问题。最后,大数据的数据远比传统数据复杂,现有的敏感数据的隐私保护是否能够满足大数据复杂的数据信息也是应该考虑的安全问题。
(三)大数据传输过程中的安全隐患
数据生命周期安全问题。伴随着大数据传输技术和应用的快速发展,在大数据传输生命周期的各个阶段、各个环节,越来越多的安全隐患逐渐暴露出来。比如,大数据传输环节,除了存在泄漏、篡改等风险外,还可能被数据流攻击者利用,数据在传播中可能出现逐步失真等。又如,大数据传输处理环节,除数据非授权使用和被破坏的风险外,由于大数据传输的异构、多源、关联等特点,即使多个数据集各自脱敏处理,数据集仍然存在因关联分析而造成个人信息泄漏的风险。
基础设施安全问题。作为大数据传输汇集的主要载体和基础设施,云计算为大数据传输提供了存储场所、访问通道、虚拟化的数据处理空间。因此,云平台中存储数据的安全问题也成为阻碍大数据传输发展的主要因素。
个人隐私安全问题。在现有隐私保护法规不健全、隐私保护技术不完善的条件下,互联网上的个人隐私泄露失去管控,微信、微博、QQ等社交软件掌握着用户的社会关系,监控系统记录着人们的聊天、上网、出行记录,网上支付、购物网站记录着人们的消费行为。但在大数据传输时代,人们面临的威胁不仅限于个人隐私泄露,还在于基于大数据传输对人的状态和行为的预测。近年来,国内多省社保系统个人信息泄露、12306账号信息泄露等大数据传输安全事件表明,大数据传输未被妥善处理会对用户隐私造成极大的侵害。因此,在大数据传输环境下,如何管理好数据,在保证数据使用效益的同时保护个人隐私,是大数据传输时代面临的巨大挑战之一。
(四)大数据的存储管理风险
大数据的数据类型和数据结构是传统数据不能比拟的,在大数据的存储平台上,数据量是非线性甚至是指数级的速度增长的,各种类型和各种结构的数据进行数据存储,势必会引发多种应用进程的并发且频繁无序的运行,极易造成数据存储错位和数据管理混乱,为大数据存储和后期的处理带来安全隐患。当前的数据存储管理系统,能否满足大数据背景下的海量数据的数据存储需求,还有待考验。不过,如果数据管理系统没有相应的安全机制升级,出现问题后则为时已晚。

⑻ 大数据安全问题有哪些类型

【导读】大数据运用有助于公司改善事务运营并猜测职业趋势。然而,这项技能可能会被歹意利用,如果没有适当的数据安全策略,黑客就有可能对用户隐私造成重大要挟。那么,大数据安全问题有哪些类型呢?

1、散布式体系

大数据解决方案将数据和操作散布在许多体系上,以便更快地进行处理和分析。这种散布式体系能够平衡负载,并避免发生单点故障。然而,这样的体系很简单遭到安全要挟,黑客只需攻击一个点就能够渗透到整个网络。因而,网络犯罪分子能够很简单地获取敏感数据并损坏连网体系。

2、数据拜访

大数据体系需求拜访控制来约束对敏感数据的拜访,否则,任何用户都能够拜访机密数据,有些用户可能将其用于歹意目的。此外,网络犯罪分子能够侵入与大数据体系相连的体系,以盗取敏感数据。因而,运用大数据的公司需求查看并验证每个用户的身份。

3、不正确的数据

网络犯罪分子能够经过操纵存储的数据来影响大数据体系的精确性。为此,网络罪犯分子能够创立虚伪数据,并将这些数据提供给大数据体系,例如,医疗机构能够运用大数据体系来研究患者的病历,而黑客能够修正此数据以生成不正确的诊断成果。这种有缺陷的成果不简单被发现,公司可能会持续运用不精确的数据。此类网络攻击会严重影响数据完整性和大数据体系的性能。

4、侵略隐私权

大数据体系通常包括机密数据,这是许多人十分关怀的问题。这样的大数据隐私要挟现已被全球的专家们评论过了。此外,网络犯罪分子经常攻击大数据体系,以损坏敏感数据。

以上就是小编今天给大家整理分享关于“大数据安全问题有哪些类型?”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。

⑼ 大数据存在的安全问题有哪些

一、分布式系统


大数据解决方案将数据和操作分布在许多系统中,以实现更快的处理和分析。这种分布式系统可以平衡负载,避免单点故障。但是这样的系统容易受到安全威胁,黑客只要攻击一个点就可以渗透整个网络。


二.数据存取


大数据系统需要访问控制来限制对敏感数据的访问,否则,任何用户都可以访问机密数据,有些用户可能会出于恶意使用。此外,网络犯罪分子可以入侵与大数据系统相连的系统,窃取敏感数据。因此,使用大数据的公司需要检查和验证每个用户的身份。


三.数据不正确


网络犯罪分子可以通过操纵存储的数据来影响大数据系统的准确性。因此,网络犯罪分子可以创建虚假数据,并将这些数据提供给大数据系统。比如医疗机构可以利用大数据系统研究患者的病历,而黑客可以修改这些数据,产生不正确的诊断结果。


四.侵犯隐私


大数据系统通常包含机密数据,这是很多人非常关心的问题。这样的大数据隐私威胁已经被全世界的专家讨论过了。此外,网络犯罪分子经常攻击大数据系统以破坏敏感数据。这种数据泄露已经成为头条新闻,导致数百万人的敏感数据被盗。


五、云安全性不足


大数据系统收集的数据通常存储在云中,这可能是一个潜在的安全威胁。网络犯罪分子破坏了许多知名公司的云数据。如果存储的数据没有加密,并且没有适当的数据安全性,就会出现这些问题。


关于大数据存在的安全问题有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

阅读全文

与大数据攻击相关的资料

热点内容
java将数字转换成字母 浏览:854
c盘中的哪些是系统文件夹 浏览:668
分布式服务如何跨库统计数据 浏览:829
力控转发数据客户端模式如何建立 浏览:200
怎么样让自己的网站不被别人看到 浏览:711
编程扩展效果如何 浏览:335
荣耀畅玩手环同步qq 浏览:475
怎么向sql中添加数据库 浏览:596
录歌失败重启app什么意思 浏览:522
压缩文件包怎么在微信发送 浏览:432
mysql数据库怎么插入时间值 浏览:191
微信视频不能转发朋友圈 浏览:596
影视后期的app有哪些 浏览:956
电子保单数据出错什么意思 浏览:368
如何以文件下载音乐 浏览:438
计算机网络章节练习 浏览:999
单片机的外部中断程序 浏览:48
表格批量更名找不到指定文件 浏览:869
js的elseif 浏览:584
3dmaxvray视频教程 浏览:905

友情链接