㈠ 生活中的大数据有哪些例子
一、在金融行业的应用
金融行业应该是运用大数据技术最频繁的一个行业,证券和银行经常会运用大数据技术进行数据分析,通过对数据的监控和分析,有效规避风险。
金融行业面临的行业挑战有很多,证券欺诈预警,超高金融分析,信用卡欺诈和企业信用风险等一系列数据数据风险挑战,行业内面临的种种问题,都需要大数据发挥其预测的核心功能,有效规避风险。
二、在娱乐媒体的运用
大数据行业在各个行业都有涉足,举一个简单的例子,通过社交媒体明星粉丝数量分析和行业内新闻动态,可以预测影视视频的播放量和受喜爱程度;通过智能产品的点击数量和浏览量,可以推测用户的个性偏好,并且推荐其喜爱的产品。
前段时间大火的美剧《纸牌屋》,通过大数据分析,选取适合网友的视频偏好和明星选择,造成轰动的播放量。大数据在社交媒体和娱乐行业的大数据分析,一部分也在引导观众和粉丝,让其为娱乐产业消费。
三、在医疗行业的运用
iPhone用户手机上都有这个功能,通过健康APP里的健康步数统计和锻炼情况,为你记录你的健康状况,并且预测可能发生的疾病,这就是在运用大数据技术,通过一系列的记录分析,预测可能要发生的事情并且及时解决。
医疗行业可以通过用户的身体情况和大量病例数据,分析提高医疗行业的监控力度,并且进行有效检测,降低用户的患病率。
四、提高体育成绩
现在很多运动员在训练的时候应用大数据技术来分析。很多精英运动队还追踪比赛环境外运动员的活动-通过使用智能技术来追踪其营养状况以及睡眠,以及社交对话来监控其情感状况。
五、医疗保健
大数据可以更好的去理解和预测疾病。人们戴上智能手表等可以产生的数据一样,大数据同样可以帮助病人对于病情进行更好的治疗。大数据可以帮助我们实现流行病预测、智慧医疗、健康管理,同时还可以帮助我们解读DNA,了解更多的生命奥秘。
大数据技术目前已经在医院应用监视早产婴儿和患病婴儿的情况,通过记录和分析婴儿的心跳,医生针对婴儿的身体可能会出现不适症状做出预测。
㈡ 医疗行业大数据应用的三个案例
医疗行业大数据应用的三个案例
文章从华大基因推出肿瘤基因检测服务、大数据预测早产儿病情、广东省人民医院利用大数据调配床位3个医疗行业大数据应用案例中,以应用背景、数据源、图说场景、实现途径、应用效果5个视角去看待大数据在医疗的应用状况。
案例一:华大基因推出肿瘤基因检测服务
应用背景:
伴随着生物技术、大数据技术的发展,个体基因检测治疗疾病已经成为现实。其中,最广为人知的是美国好莱坞女星安吉丽娜?朱莉,在 2013 年经过检测她发现自身携带致癌基因——BRCA1 基因,为防止罹患卵巢癌,于 2015 年切除了卵巢和输卵管。目前,国内外已经有多家基因检测机构,如我国的华大基因、贝瑞和康、 美国的 23andMe、 Illumina 公司等。华大基因一直致力于肿瘤基因组学研究,已经研究 20 多类癌症。近日,华大基因推出了自主研究的肿瘤基因检测服务,采用了高通量测序手段对来自肿瘤病人的癌组织进行相关基因分析,对肺癌、乳腺癌、胃癌等多种常见高发癌症进行早期、无创伤检测。
数据源:
检测数据:患者血清、口腔黏膜数据、基因测序等。
其它数据:体检数据、电子病历、遗传记录、患者调查、地理区域以及生活条件等。
图说场景:
实现路径:
首先采取患者样本,通过测序得到基因序列,接着采用大数据技术与原始基因比对,锁定突变基因,通过分析做出正确的诊断,进而全面、系统、准确地解读肿瘤药物与突变基因的关系,同时根据患者的个体差异性,辅助医生选择合适的治疗药物,制定个体化的治疗方案,实现“ 同病异治” 或“ 异病同治” ,从而延长患者的生存时间。
应用效果:
癌症诊断和预测。肿瘤医院的病人中有 60%至 80%刚到医院时就已经进入中晚期,癌症早期的筛查可以帮助患者有针对性的改善生活习惯或者采取个体化的辅助治疗,有益于身体健康;同时将癌症扼杀在摇篮里,从而降低日后巨大的医药开支和生活困扰。助力个性化医疗。结合生物大数据,挖掘疾病分子机制最终可以做到更好的筛查,更好的临床指导以及更好用药的过程。
案例二:大数据预测早产儿病情
应用背景:
安大略理工大学的卡罗琳·麦格雷戈( Carolyn McGregor)博士和一支研究队伍与 IBM 一起和很多医院合作,用一个软件来监测处理即时的病人信息,然后把它用于早产儿的病情诊断。
数据源:
个人体征数据:心率、呼吸、体温、血压和血氧含量。
其它数据:孕妇产检数据、电子病历、遗传数据等。
实现路径:
系统会监控 16 个不同地方的数据,比如心率、呼吸、体温、血压和血氧含量,这些数据可以达到每秒钟 1260 个数据点之多。在明显感染症状出现的 24 小时之前,系统就能监测到早产儿细微的身体变化发出的感染信号,及早预测控制早产儿的病情,从而提高新生儿的出生率。
应用效果:
预测病情。早产儿的稳定不是病情好转的标志,只有通过海量的数据并且找出隐含的相关性才能发现提早知道病情,医生就能够提早治疗,也能更早地知道某种疗法是否有效,这一切都有利于病人的康复。
案例三:广东省人民医院利用大数据调配床位
应用背景:
起因于国外医院的经验以及广东省人民医院各专业科室差异很大的病床使用率。长期以来,优势专业病源充足,病人候床情况严重,排队入院,相反有些专业空床情况明显,病床使用率仅 65%左右。为此管理层打出了模糊临床二级分科、跨科收治病人、集中床位调配权的一套“ 组合拳” 。
数据源:
患者数据:挂号数据、电子病历、患者基本数据等。
医院数据:各科室床位使用情况、诊疗活动、平均住院费用、平均住院周期等。
实现路径:
对跨科收治病人之后的科与科之间的工作量、收入、支出、分摊成本等指标进行合理的划分,强化了入院处的集中床位调配权,解决病人入院排队情况,使医院更好地履行了社会责任,同时也给增加了医院的效益。
应用效果:
提高病床使用率。病床使用率由 87%提高到 92%,优势专业候床排队现象明显减少。
支持决策判断。优势专科与弱势专科的病人在地域构成比、平均住院费用等标上存在显著差异,支持决策判断。
㈢ 大数据可以应用在哪些方面
可以应用在云计算方面。
大数据具体的应用:
1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
3、统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
4、麻省理工学院利用手机定位数据和交通数据建立城市规划。
5、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
6、医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。
7、及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。
8、为成千上万的快递车辆规划实时交通路线,躲避拥堵。
9、分析所有SKU,以利润最大化为目标来定价和清理库存。
10、根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。
大数据的用处:
1、与云计算的深度结合。大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。
自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。
2、科学理论的突破。随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。
网络--大数据
㈣ 大数据医疗行业的5大应用
一、电子病历
到目前为止,大数据最强大的应用就是电子医疗记录的收集。每一个病人都有自己的电子记录,包括个人病史、家族病史、过敏症以及所有医疗检测结果等。
这些记录通过安全的信息系统(究竟是否安全值得商榷)在不同的医疗机构之间共享。每一个医生都能够在系统中添加或变更记录,而无需再通过耗时的纸质工作来完成。这些记录同时也能帮助病人掌握自己的用药情况,同时也是医学研究的重要数据参考。
二、健康监控
医疗业的另一个创新是“可穿戴设备”的应用,这些设备能够实时汇报病人的健康状况。
和医院内部分析医疗数据的软件类似,这些新的分析设备具备同样的功能,但能在医疗机构之外的场所使用,降低了医疗成本,病人在家就能获知自己的健康状况,同时还获得智能设备所提供的治疗建议。这些可穿戴设备持续不断地收集健康数据并存储在云端。
三、医护资源配置
这个看似不可能完成的任务,已经在大数据的帮助帮助下在一些“试点”单位实现。在法国巴黎,有四家医院通过多个来源的数据预测每家医院每天和每小时的患者数量。
他们采用一种被称为“时间序列分析”的技术,分析过去10年的患者入院记录。这项研究能够帮助研究人员发现患者入院的规律并利用机器学习,找到能够预测未来入院规律的算法。
四、大数据与人工智能
人工智能技术通过算法和软件,分析复杂的医疗数据,达到近似人类认知的目的。因此AI使得计算机算法能够在没有直接人为输入的情况下预估结论成为可能。由AI支持的脑机接口可以帮助恢复基本的人类体验,例如因神经系统疾病和神经系统创伤而丧失的说话和沟通功能。
五、医学影像
医学影像包括X射线、核磁共振成像、超声波等,这些都是医疗过程中的关键环节。
放射科医生往往需要单独查看每一个检查结果,不但产生了巨大的工作量,同时也有可能耽误患者的最佳治疗时间。但是大数据却可以有效解决这一问题。
关于大数据医疗行业的5大应用的内容,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
㈤ 有哪些大数据分析案例
如下:
1. 大数据应用案例之:医疗行业
1)Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。
在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。
2)大数据配合乔布斯癌症治疗
乔布斯是世界上第一个对自身所有DNA和肿瘤DNA进行排序的人。为此,他支付了高达几十万美元的费用。他得到的不是样本,而是包括整个基因的数据文档。医生按照所有基因按需下药,最终这种方式帮助乔布斯延长了好几年的生命。
2. 大数据应用案例之:能源行业
1)智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。
通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。
因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。
2)丹麦的维斯塔斯风能系统(Vestas Wind Systems)运用大数据,系统依靠的是BigInsights软件和IBM超级计算机,分析出应该在哪里设置涡轮发电机,事实上这是风能领域的重大挑战。在一个风电场20多年的运营过程中,准确的定位能帮助工厂实现能源产出的最大化。
为了锁定最理想的位置,Vestas分析了来自各方面的信息:风力和天气数据、湍流度、地形图、公司遍及全球的2.5万多个受控涡轮机组发回的传感器数据。这样一套信息处理体系赋予了公司独特的竞争优势,帮助其客户实现投资回报的最大化。
3. 大数据应用案例之:通信行业—通过大数据分析挽回核心客户
法国电信-Orange集团旗下的波兰电信公司Telekomunikacja Polska是波兰最大的语音和宽带固网供应商,希望有效的途径来准确预测并解决客户流失问题。
他们决定进行客户细分,方法是构建一张“社交图谱”- 分析客户数百万个电话的数据记录,特别关注 “谁给谁打了电话”以及“打电话的频率”两个方面。“社交图谱”把公司用户分成几大类,如:“联网型”、“桥梁型”、“领导型”以及“跟随型”。
这样的关系数据有助电信服务供应商深入洞悉一系列问题,如:哪些人会对可能“弃用”公司服务的客户产生较大的影响?挽留最有价值客户的难度有多大?运用这一方法,公司客户流失预测模型的准确率提升了47%。
4、大数据应用案例之:零售业—大数据帮零售企业制定促销策略
北美零售商百思买在北美的销售活动非常活跃,产品总数达到3万多种,产品的价格也随地区和市场条件而异。由于产品种类繁多,成本变化比较频繁,一年之中,变化可达四次之多。
结果,每年的调价次数高达12万次。最让高管头疼的是定价促销策略。公司组成了一个11人的团队,希望透过分析消费者的购买记录和相关信息,提高定价的准确度和响应速度。
定价团队的分析围绕着三个关键维度:
1)数量:团队需要分析海量信息。他们收集了上千万的消费者的购买记录,从客户不同维度分析,了解客户对每种产品种类的最高接受能力,从而为产品定出最佳价位。
2)多样性:团队除了分析了购买记录这种结构化的数据外,他们也利用社交媒体发帖这种新型的非结构化数据。由于消费者需要在零售商专页上点赞或留言以获得优惠券,团队利用情感分析公式来分析专页上消费者的情绪,从而判断他们对于公司的促销活动是否满意,并微调促销策略。
3)速度:为了实现价值最大化,团队对数据进行实时或近似实时的处理。他们成功地根据一个消费者既往的麦片购买记录,为身处超市麦片专柜的他/她即时发送优惠券,为客户带来便利性和惊喜。
透过这一系列的活动,团队提高了定价的准确度和响应速度,为零售商新增销售额和利润数千万美元。
5、大数据应用案例之:网络营销行业(SEM)
很多企业在做SEM的过程中,都有这样的感触:每年都会花费大量的预算在SEM推广中,但是因为关键词投入产出无法可视化,常常花了很多钱却不见具体的回报。
在竞争如此激烈的SEM市场中,企业需要一个高效的数据分析工具来尽可能地帮企业优化SEM推广,例如BDP,来帮企业节省不必要的支出,提升整体的经营绩效。
企业可借助数据平台提供的网络营销整合解决方案,打通各个搜索引擎营销(SEM)、在线客服系统和CRM系统,营销竞价人员无需掌握复杂的编程技术,简单拖拽即可生成报表,观察每一个关键词的投入和产出,分析每一个页面的转化,有效降低投放成本。
通过BDP实况分析数据,可以快速洞悉对手关键词的投放时段、地域及排名,并对其进行可视化的分析,实时监控自己和竞争对手的投放情况,了解对手的投放策略,支持自定义设置数据更新的时间点、监控频次和时段,及时调整策略。知已知彼,才能百战不殆。
6、大数据应用案例之:电商行业
意料之外:胸部最大的是新疆妹子。曾经淘宝平台显示,中国女性购买最多的文胸尺码为B罩杯。B罩杯占比达41.45%,其中又以75B的销量最好,其次是A罩杯,购买占比达25.26%,C罩杯只有8.96%。
虽然淘宝数据平台不能代表一切,但是结合现实来看,这个也具有普遍的代表性,只能感慨中国女性普遍size。在文胸颜色中,黑色最为畅销,黑色绝对是百搭,每个女性必备。
从省市排名,胸部最大的是新疆妹子。这些数据都对于文胸店铺而言是很好的参考,为店铺的库存、定价、款式选择等策略都有奠定数据基础。
7、大数据应用案例之:娱乐行业
微软大数据成功预测奥斯卡21项大奖。2013年,微软纽约研究院的经济学家大卫•罗斯柴尔德(David Rothschild)利用大数据成功预测24个奥斯卡奖项中的19个,成为人们津津乐道的话题。
今年罗斯柴尔德再接再厉,成功预测第86届奥斯卡金像奖颁奖典礼24个奖项中的21个,继续向人们展示现代科技的神奇魔力。
总的来说,大数据的终极目标并不仅仅是改变竞争环境,而是彻底扭转整个竞争环境,带来新机遇,企业需要应势而变。企业只有认识到这一点,使用合适的数据分析产品、聪明地使用和管理数据,才能在长期竞争中成为终极赢家。
㈥ 大数据在医疗行业的应用有哪些
大数据专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。所以大数据在众多行业都有应用,下面说说其在医疗领域的应用。
随着互联网规模不断的扩大,大数据正在改变着这个时代的绝大一部分的行业或者企业,医疗行业也不例外,医疗健康正在成为人们关注的重点问题,以智能化、数字化为特征的医疗信息化正在蓬勃兴起,医疗行业的数据类型也在向海量、复杂、多样的类型方式转变。
1.就医数据进行电子化管理
对电子医疗记录的收集,包括个人病史、家族病史、过敏症以及所有医疗检测结果等。在信息系统中进行分享,每一个医生都能够在系统中添加或变更记录,而无需再通过耗时的纸质工作来完成。这些记录同时也能帮助病人掌握自己的用药情况,同时也是医学研究的重要数据参考。
2.健康预测
通过智能手表等可穿戴设备的数据,建立健康预测模型,通过这些可穿戴设备持续不断地收集健康数据并存储在云端,实时汇报病人的健康状况。应用于数百万人及其各种疾病的预测和分析,并且在未来的临床试验将不再局限于小样本,而是包括所有人。
3.医学影像以及临床诊断
通过让大数据机器人来识别记住各类海量的医学影像,例如X射线、核磁共振成像、超声波……等各种的图像。对大量病历进行深度挖掘与学习,训练其对影片的诊断,最终实现辅助医生进行临床决策,规范诊疗路径,提高医生的工作效率。
4.药品研发
利用大数据进行数据建模并进行分析,预测药物的临床结果,可以为临床阶段的实验结果提供参考,节省临床阶段的时间并优化临床实验结果。制药公司也可以通过数据建模进行分析,从而生产出治疗成功率更高的药品并极大地缩短药品从研发到投入市场的时间。
㈦ 关于大数据应用有什么例子
大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。以下是关于各行各业,不同的组织机构在大数据方面的应用的案例,在此申明,以下案例均来源于网络,本文仅作引用,并在此基础上作简单的梳理和分类。
大数据应用案例之:医疗行业
Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。
在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。
大数据应用案例之:能源行业
智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。
有了这个预测后,就可以向发电或者供电企业购买一定数量的电。因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。
维斯塔斯风力系统,依靠的是BigInsights软件和IBM超级计算机,然后对气象数据进行分析,找出安装风力涡轮机和整个风电场最佳的地点。利用大数据,以往需要数周的分析工作,现在仅需要不足1小时便可完成。
㈧ 医疗大数据五大应用透视
医疗大数据五大应用透视
医疗行业是较早运用大数据分析的传统行业之一。其中,五大医疗服务领域包括临床业务、网络平台、公众健康管理、远程病人监控、新药开发等,对大数据运用的深度和广度都走在了前面。大数据分析大幅度提高了医疗效果和用户满意度。
临床记录和医保大数据
汇总患者的临床记录和医疗保险数据集并进行高级分析,将提高医疗支付方、医疗服务提供方和医药企业的决策能力。比如,对医药企业来说,他们不仅可以生产出具有更佳疗效的药品,而且能保证药品适销对路。临床记录和医疗保险数据集的市场刚刚开始发展,扩张的速度将取决于医疗保健行业完成EMR和循证医学发展的速度。
世界各地的很多医疗机构(如英国的NICE、德国IQWIG、加拿大普通药品检查机构等)已经开始了CER项目并取得了初步成功。2009年,美国通过的复苏与再投资法案,就是向这个方向迈出的第一步。在这一法案下,设立的比较效果研究联邦协调委员会协调整个联邦政府的比较效果的研究,并对4亿美元投入资金进行分配。这一投入想要获得成功,还有大量潜在问题需要解决。比如临床数据和保险数据的一致性问题,当前在缺少EHR(电子健康档案)标准和互操作性的前提下,大范围仓促部署EHR可能造成不同数据集难以整合。再如病人隐私问题,想在保护病人隐私的前提下提供足够详细的数据以保证分析结果的有效性不是一件容易的事。还有一些体制问题,比如目前美国法律禁止医疗保险机构和医疗补助服务中心(Centers for Medicare and Medicaid Services)(医疗服务支付方)使用成本/效益比例来制定报销决策,因此,即便他们通过大数据分析找到更好的方法也很难落实。
网络平台和社区
另一个潜在的大数据启动的商业模型是网络平台和大数据,这些平台已经产生了大量有价值的数据。比如PatientsLikeMe.com网站,病人可以在这个网站上分享治疗经验;Sermo.com网站,医生可以在这个网站上分享医疗见解;Participatorymedicine.org网站,这家非营利性组织运营的网站鼓励病人积极进行治疗。这些平台可以成为宝贵的数据来源。例如,Sermo.com向医药公司收费,允许他们访问会员信息和网上互动信息。
公众健康
大数据的使用可以改善公众健康监控。公共卫生部门可以通过覆盖全国的患者电子病历数据库,快速检测传染病,进行全面的疫情监测,并通过集成疾病监测和响应程序,快速进行响应。这将带来很多好处,包括医疗索赔支出减少、传染病感染率降低,卫生部门可以更快地检测出新的传染病和疫情。通过提供准确和及时的公众健康咨询可以大幅提高公众健康风险意识,降低传染病感染风险。所有这些都将帮助人们创造更好的生活。
远程病人监控
从对慢性病人的远程监控系统收集数据,并将分析结果反馈给监控设备(查看病人是否正在遵从医嘱),从而确定今后的用药和治疗方案。
2010年,美国有1.5亿慢性病如糖尿病、充血性心脏衰竭、高血压患者,他们的医疗费用占到了医疗卫生系统医疗成本的80%。远程病人监护系统对治疗慢性病患者是非常有用的。远程病人监护系统包括家用心脏监测设备、血糖仪乃至芯片药片。芯片药片被患者摄入后,实时传送数据到电子病历数据库。举个例子,远程监控可以提醒医生对充血性心脏衰竭病人采取及时治疗措施,防止紧急状况发生,因为充血性心脏衰竭的标志之一是由于保水产生的体重增加现象,这可以通过远程监控实现预防。更多的好处是,通过对远程监控系统产生的数据分析,可以减少病人住院时间,减少急诊量,实现提高家庭护理比例和门诊医生预约量的目标。
新药开发
医疗产品公司可以利用大数据提高研发效率。拿美国为例,这将创造每年超过1000亿美元的价值。
医药公司在新药物的研发阶段,可以通过数据建模和分析,确定最有效率的投入产出比,从而配备最佳资源组合。模型基于药物临床试验阶段之前的数据集及早期临床阶段的数据集,尽可能及时地预测临床结果。评价因素包括产品的安全性、有效性、潜在的副作用和整体的试验结果。通过预测建模可以降低医药产品公司的研发成本,在通过数据建模和分析预测药物临床结果后,可以暂缓研究次优的药物,或者停止在次优药物上的昂贵的临床试验。
除了研发成本,医药公司还可以更快地得到回报。通过数据建模和分析,医药公司可以将药物更快推向市场,生产更有针对性的药物,有更高潜在市场回报和治疗成功率的药物。原来一般新药从研发到推向市场的时间大约为13年,使用预测模型可以帮助医药企业提早3~5年将新药推向市场。