『壹』 社区便利店如何实现“千店千面”
“千店千面”就是打破格式化零售,从店铺规划、商品组合、零售促销、门店运营等各个方面,实现真正的个性化零售、差异化经营,满足消费者的个性化消费需求,进一步增强零售店的吸客能力和经营活力。
实现“千店千面”,需基于对消费者需求的准确把握,和对商品市场的全面掌控,通过相关大数据支持,模拟搭建不同的消费场景,通过不同的门店消费场景商品表现,实现全面、精准的商品推送,以此挖掘顾客潜力消费,提升经营空间。
实现“千店千面”需要依靠大数据、软件技术的支持,特别是在顾客数据、顾客信息、消费数据等方面,需一些社会化数据的助力。在国内,部分智能数据服务商已经开始在行动,通过一整套系统方案来帮助零售商智能升级,实现“千店千面”,像云媒旗下的讯猫智能商业平台,已经通过智能供应链系统实现了行业大数据的共享,为社区便利店实现“千店千面”提供了精准分析工具。
『贰』 便利店行业如何通过线下大数据实现快速精准拓店
烧烤摊、麻辣烫、大排档被定义为中国版的深夜食堂,然而随着写字楼的灯火蔓延,便利店也成为了年轻人的深夜栖息地。有别于传统杂货铺,90年代传入中国的现代便利店呈现规模化和统一管理,行业规模发展迅猛,2019年中国便利店行业实现销售额2556亿元。
随着行业规模的高速发展,一线城市消费市场开始饱和,外资连锁便利店也开始走向下沉市场,二三线城市的便利店竞争将会日渐激烈。大数据时代如何利用数据及人工智能赋能于线下品牌连锁将是实体零售从业者面临的难题之一,本文将从便利店现状及大数据如何赋能的角度,为从业者们提供思考方向。
便利店诞生于美国,因其小型化、高毛利、便利性、精简SKU等特性,逐渐成为一种新的零售业态。90年代中期,便利店概念开始进入中国。2019年中国便利店门店总数达到13.2万家,较上年增加了1万余家。
从单个便利店企业扩张表现来看,石油系便利店(易捷、昆仑好客)在门店扩张上表现抢眼,其次是本土品牌美宜佳和天福,外资便利店则主要分布与一二线城市。
但观察近年来外资便利店在中国的城市版图布局:从去年底开始,7-ELEVEn先后在福州、长沙、西安、合肥开设首店,另一家日资便利店罗森行动更为迅速,已于去年在长沙、沈阳、泰州等城市先后开出首店。
对于全国商业格局而言,此次外资便利店的布局,被认为是近年来“市场下沉”的又一个印证,同时也意味着下沉市场连锁便利店的竞争更加激烈。
随着 科技 和城市的发展,一线城市的消费市场逐渐饱和,而在二三线城市,连锁品牌便利店存在着拓店难、无法融入当地市场的问题。
传统夫妻店投入资本小、受地理位置限制小,经营的可控性比较强,且选址往往在居住地附近。而对于连锁便利店来说,店铺选址除了需要考虑周边的消费市场,更要考虑采购与进货问题(小街小巷无法统一配货,增大成本)、客群画像等。
这时候,传统的选址方法是通过人工到线下多个目标位置点进行观察测算,人力和时间成本非常高,且客群画像无法精准。试想一下如何能够短时间内通过一个人的外表确定其消费能力呢?
但在大数据时代,这些信息都可以高速便捷获取。
数位是国内最早一批涉足线下大数据智能应用的大数据 科技 公司,深耕线下人场大数据5年,能够实时洞察人和场的智能动态数据,高效为企业提供用户分析、客群画像和周边客流。数位对线下零售(如连锁便利店)有三大价值:
1 快速拓店选址: 数位拥有全维度动态的人场大数据,自有海量数据标签,覆盖200+城市,8000万POI库,能够为企业提供批量化的线下人场数据,利于连锁品牌的规模化拓展。
当品牌进入一个新城市,能够快速判断城市不同区域位置信息,帮助品牌根据自己的定位(如社区型/商圈型等)快速有效占领消费市场,并运用人工智能算法对周边客群、人流方向进行洞察分析,从而利于品牌在商品定位上更趋近于消费者心理。
2 老店数据实时监控: 对于品牌连锁店来说,许多经营多年的老店面临着周围市政或消费环境的变动,如新商场建立、老建筑拆迁等。
当老店营业额产生波动时,传统检验方式是线下踩点考证,但客流的变动易观察,客群画像的变动却无法短时间进行判别。数位大数据则能够第一时间反馈老店周边市场与客群画像的变动,及时做出经营方向和商品选择上的调整。
3 竞对商铺比较: 入驻前,同一片区域内原有的竞对商铺的数量及客流画像能够给品牌带来极高参考价值;开店后,区域内出现新的竞对商铺也是影响店铺营业额的重要原因。数位线下大数据能够帮助品牌实时观察周边竞对环境,分析优劣势,及时做出经营上的调整;
4 经营模型沉淀: 为什么同样开在市中心的两家店营业额却大相径庭?开在医院对面与开在学校对面哪一家营业额更佳?如何根据人群移动规律调整商品陈列?这些传统人力难以系统统计的数据,利用大数据可以快速帮助门店沉淀一套方法论,形成品牌自有的经营模型,对品牌进一步布局和拓店有重大参考价值,有效节省新店拓店成本。
品牌便利店"下沉"二三线城市,是城市发展的必然,也极有可能是一次再定义当地消费趋势的机会。在这样的前提下,品牌占领市场的时间显得尤为宝贵。
零售行业已从“货——场——人”转变为大数据时代的“人——货——场”,提前洞察客流及客群信息,加上当地场景数据,最后再结合品牌本身特性才能够快速打入当地消费市场,抢占消费份额。
连锁品牌入驻新城市时投入成本高,传统的选址方式已不足以支撑品牌的快速拓展,批量化的人场大数据才是现代品牌快速拓展版图的“秘密武器”。数位基于5年高精度技术的沉淀,拥有全国最大的识别数据库,在品牌选址、客群洞察及市场营销中,都能够为连锁品牌带来强有力的决策支持。