导航:首页 > 网络数据 > 大数据分布式存储技术

大数据分布式存储技术

发布时间:2023-01-09 18:58:37

大数据存储管理系统主要包括

分布式文件存储,NoSQL数据库,NewSQL数据库。
分布式文件存储是一种数据存储技术,通过网络使用企业中的每台机器上的磁盘空间,并将这些分散的存储资源构成一个虚拟的存储设备,数据分散存储在企业的各个角落。分布式文件存储采用可扩展的系统结构,利用多台存储服务器分担存储负荷,利用位置服务器定位存储信息,它不但提高了系统的可靠性、可用性和存取效率,还易于扩展。
NoSQL泛指非关系型的数据库,NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题。关系型数据库已经无法满足Web2.0的需求,主要表现为:无法满足海量数据的管理需求、无法满足数据高并发的需求、高可扩展性和高可用性的功能太低。
NewSQL是各种新的可扩展/高性能数据库的简称,这类数据库不仅具有NoSQL对海量数据的存储管理能力,还保持了传统数据库支持ACID和SQL等特性。

❷ 大规模分布式存储系统的内容介绍

《大规模分布式存储系统:原理解析与架构实战》是分布式系统领域的经典著作,由阿里巴巴高级技术专家“阿里日照”(OceanBase核心开发人员)撰写,阳振坤、章文嵩、杨卫华、汪源、余锋(褚霸)、赖春波等来自阿里、新浪、网易和网络的资深技术专家联袂推荐。理论方面,不仅讲解了大规模分布式存储系统的核心技术和基本原理,而且对谷歌、亚马逊、微软和阿里巴巴等国际型大互联网公司的大规模分布式存储系统进行了分析;实战方面,首先通过对阿里巴巴的分布式数据库OceanBase的实现细节的深入剖析完整地展示了大规模分布式存储系统的架构与设计过程,然后讲解了大规模分布式存储技术在云计算和大数据领域的实践与应用。
《大规模分布式存储系统:原理解析与架构实战》内容分为四个部分:基础篇——分布式存储系统的基础知识,包含单机存储系统的知识,如数据模型、事务与并发控制、故障恢复、存储引擎、压缩/解压缩等;分布式系统的数据分布、复制、一致性、容错、可扩展性等。范型篇——介绍谷歌、亚马逊、微软、阿里巴巴等著名互联网公司的大规模分布式存储系统架构,涉及分布式文件系统、分布式键值系统、分布式表格系统以及分布式数据库技术等。实践篇——以阿里巴巴的分布式数据库OceanBase为例,详细介绍分布式数据库内部实现,以及实践过程中的经验。专题篇——介绍分布式系统的主要应用:云存储和大数据,这些是近年来的热门领域,本书介绍了云存储平台、技术与安全,以及大数据的概念、流式计算、实时分析等。

❸ 大数据爆发性增长 存储技术面临难题

大数据爆发性增长 存储技术面临难题

随着大数据应用的爆发性增长,大数据已经衍生出了自己独特的架构,而且也直接推动了存储、网络以及计算技术的发展。毕竟处理大数据这种特殊的需求是一个新的挑战。硬件的发展最终还是由软件需求推动的。大数据本身意味着非常多需要使用标准存储技术来处理的数据。大数据可能由TB级(或者甚至PB级)信息组成,既包括结构化数据(数据库、日志、SQL等)以及非结构化数据(社交媒体帖子、传感器、多媒体数据)。此外,大部分这些数据缺乏索引或者其他组织结构,可能由很多不同文件类型组成。从目前技术发展的情况来看,大数据存储技术的发展正面临着以下几个难题:

1、容量问题

这里所说的“大容量”通常可达到PB级的数据规模,因此,海量数据存储系统也一定要有相应等级的扩展能力。与此同时,存储系统的扩展一定要简便,可以通过增加模块或磁盘柜来增加容量,甚至不需要停机。

“大数据”应用除了数据规模巨大之外,还意味着拥有庞大的文件数量。因此如何管理文件系统层累积的元数据是一个难题,处理不当的话会影响到系统的扩展能力和性能,而传统的NAS系统就存在这一瓶颈。所幸的是,基于对象的存储架构就不存在这个问题,它可以在一个系统中管理十亿级别的文件数量,而且还不会像传统存储一样遭遇元数据管理的困扰。基于对象的存储系统还具有广域扩展能力,可以在多个不同的地点部署并组成一个跨区域的大型存储基础架构。

2、延迟问题

“大数据”应用还存在实时性的问题。有很多“大数据”应用环境需要较高的IOPS性能,比如HPC高性能计算。此外,服务器虚拟化的普及也导致了对高IOPS的需求,正如它改变了传统IT环境一样。为了迎接这些挑战,各种模式的固态存储设备应运而生,小到简单的在服务器内部做高速缓存,大到全固态介质的可扩展存储系统等等都在蓬勃发展。

3、并发访问

一旦企业认识到大数据分析应用的潜在价值,他们就会将更多的数据集纳入系统进行比较,同时让更多的人分享并使用这些数据。为了创造更多的商业价值,企业往往会综合分析那些来自不同平台下的多种数据对象。包括全局文件系统在内的存储基础设施就能够帮助用户解决数据访问的问题,全局文件系统允许多个主机上的多个用户并发访问文件数据,而这些数据则可能存储在多个地点的多种不同类型的存储设备上。

4、安全问题

某些特殊行业的应用,比如金融数据、医疗信息以及政府情报等都有自己的安全标准和保密性需求。虽然对于IT管理者来说这些并没有什么不同,而且都是必须遵从的,但是,大数据分析往往需要多类数据相互参考,而在过去并不会有这种数据混合访问的情况,因此大数据应用也催生出一些新的、需要考虑的安全性问题。

5、成本问题

成本问题“大”,也可能意味着代价不菲。而对于那些正在使用大数据环境的企业来说,成本控制是关键的问题。想控制成本,就意味着我们要让每一台设备都实现更高的“效率”,同时还要减少那些昂贵的部件。

对成本控制影响最大的因素是那些商业化的硬件设备。因此,很多初次进入这一领域的用户以及那些应用规模最大的用户都会定制他们自己的“硬件平台”而不是用现成的商业产品,这一举措可以用来平衡他们在业务扩展过程中的成本控制战略。为了适应这一需求,现在越来越多的存储产品都提供纯软件的形式,可以直接安装在用户已有的、通用的或者现成的硬件设备上。此外,很多存储软件公司还在销售以软件产品为核心的软硬一体化装置,或者与硬件厂商结盟,推出合作型产品。

6、数据的积累

许多大数据应用都会涉及到法规遵从问题,这些法规通常要求数据要保存几年或者几十年。比如医疗信息通常是为了保证患者的生命安全,而财务信息通常要保存7年。而有些使用大数据存储的用户却希望数据能够保存更长的时间,因为任何数据都是历史记录的一部分,而且数据的分析大都是基于时间段进行的。要实现长期的数据保存,就要求存储厂商开发出能够持续进行数据一致性检测的功能以及其他保证长期高可用的特性。同时还要实现数据直接在原位更新的功能需求。

7、数据的灵活性

大数据存储系统的基础设施规模通常都很大,因此必须经过仔细设计,才能保证存储系统的灵活性,使其能够随着应用分析软件一起扩容及扩展。在大数据存储环境中,已经没有必要再做数据迁移了,因为数据会同时保存在多个部署站点。一个大型的数据存储基础设施一旦开始投入使用,就很难再调整了,因此它必须能够适应各种不同的应用类型和数据场景。

存储介质正在改变,云计算倍受青睐

存储之于安防的地位,其已经不仅是一个设备而已,而是已经升华到了一个解决方案平台的地步。作为图像数据和报警事件记录的载体,存储的重要性是不言而喻的。

安防监控应用对存储的需求是什么?首先,海量存储的需求。其次,性能的要求。第三,价格的敏感度。第四,集中管理的要求。第五,网络化要求。安防监控技术发展到今天经历了三个阶段,即:模拟化、数字化、网络化。与之相适应,监控数据存储也经历了多个阶段,即:VCR模拟数据存储、DVR数字数据存储,到现在的集中网络存储,以及发展到云存储阶段,正是在一步步迎合这种市场需求。在未来,安防监控随着高清化,网络化,智能化的不断发展,将对现有存储方案带来不断挑战,包括容量、带宽的扩展问题和管理问题。那么,基于大数据战略的海量存储系统--云存储就倍受青睐了。

基于大数据战略的安防存储优势明显

当前社会对于数据的依赖是前所未有的,数据已变成与硬资产和人同等重要的重要资料。如何存好、保护好、使用好这些海量的大数据,是安防行业面临的重要问题之一。那么基于大数据战略的安防存储其优势何在?

目前的存储市场上,原有的视频监控方案容量、带宽难以扩展。客户往往需要采购更多更高端的设备来扩充容量,提高性能,随之带来的是成本的急剧增长以及系统复杂性的激增。同时,传统的存储模式很难在完全没有业务停顿的情况下进行升级,扩容会对业务带来巨大影响。其次,传统的视频监控方案难于管理。由于视频监控系统一般规模较大,分布特征明显,大多独立管理,这样就把整个系统分割成了多个管理孤岛,相互之间通信困难,难以协调工作,以提高整体性能。除此之外,绿色、安全等也是传统视频监控方案所面临的突出问题。

基于大数据战略的云存储技术与生俱来的高扩展、易管理、高安全等特性为传统存储面临的问题带来了解决的契机。利用云存储,用户可以方便的进行容量、带宽扩展,而不必停止业务,或改变系统架构。同时,云存储还具有高安全、低成本、绿色节能等特点。基于云存储的视频监控解决方案是客户应对挑战很好的选择。王宇说,进入二十一世纪,云存储作为一种新的存储架构,已逐步走入应用阶段,云存储不仅轻松突破了SAN的性能瓶颈,而且可以实现性能与容量的线性扩展,这对于拥有大量数据的安防监控用户来说是一个新选择。

以英特尔推出的Hadoop分布式文件系统(HDFS)为例,其提供了一个高度容错性和高吞吐量的海量数据存储解决方案。目前已经在各种大型在线服务和大型存储系统中得到广泛应用,已经成为海量数据存储的事实标准。

随着信息系统的快速发展,海量的信息需要可靠存储的同时,还能被大量的使用者快速地访问。传统的存储方案已经从构架上越来越难以适应近几年来的信息系统业务的飞速发展,成为了业务发展的瓶颈和障碍。HDFS通过一个高效的分布式算法,将数据的访问和存储分布在大量服务器之中,在可靠地多备份存储的同时还能将访问分布在集群中的各个服务器之上,是传统存储构架的一个颠覆性的发展。最重要的是,其可以满足以下特性:可自我修复的分布式文件存储系统,高可扩展性,无需停机动态扩容,高可靠性,数据自动检测和复制,高吞吐量访问,消除访问瓶颈,使用低成本存储和服务器构建。

以上是小编为大家分享的关于大数据爆发性增长 存储技术面临难题的相关内容,更多信息可以关注环球青藤分享更多干货

❹ 分布式存储技术有哪些

中央存储技术现已发展非常成熟。但是同时,新的问题也出现了,中心化的网络很容易拥挤,数据很容易被滥用。传统的数据传输方式是由客户端向云服务器传输,由服务器向客户端下载。而分布式存储系统QKFile是从客户端传送到 N个节点,然后从这些节点就近下载到客户端内部,因此传输速度非常快。对比中心协议的特点是上传、下载速度快,能够有效地聚集空闲存储资源,并能大大降低存储成本。

在节点数量不断增加的情况下,QKFile市场趋势开始突出,未来用户数量将呈指数增长。分布式存储在未来会有很多应用场景,如数据存储,文件传输,网络视频,社会媒体和去中心化交易等。因特网的控制权越来越集中在少数几个大型技术公司的手中,它的网络被去中心化,就像分布式存储一样,总是以社区为中心,面向用户,而分布式存储就是实现信息技术和未来因特网功能的远景。有了分布式存储,我们可以创造出更加自由、创新和民主的网络体验。是时候把因特网推向新阶段了。

作为今年非常受欢迎的明星项目,关于QKFile的未来发展会推动互联网的进步,给整个市场带来巨大好处。分布式存储是基于因特网的基础结构产生的,区块链分布式存储与人工智能、大数据等有叠加作用。对今天的中心存储是一个巨大的补充,分布式时代的到来并不是要取代现在的中心互联网,而是要使未来的数据存储发展得更好,给整个市场生态带来不可想象的活力。先看共识,后看应用,QKFile创建了一个基础设施平台,就像阿里云,阿里云上面是做游戏的做电商的视频网站,这就叫应用层,现阶段,在性能上,坦白说,与传统的云存储相比,没有什么竞争力。不过另一方面来说,一个新型的去中心化存储的信任环境式非常重要的,在此环境下,自然可以衍生出许多相关应用,市场潜力非常大。

虽然QKFile离真正的商用还有很大的距离,首先QKFile的经济模型还没有定论,其次QKFile需要集中精力发展分布式存储、商业逻辑和 web3.0,只有打通分布式存储赛道,才有实力引领整个行业发展,人们认识到了中心化存储的弊端,还有许多企业开始接受分布式存储模式,即分布式存储 DAPP应用触达用户。所以QKFile将来肯定会有更多的商业应用。创建超本地高效存储方式的能力。当用户希望将数据存储在QKFile网络上时,他们就可以摆脱巨大的集中存储和地理位置的限制,用户可以看到在线存储的矿工及其市场价格,矿工之间相互竞争以赢得存储合约。使用者挑选有竞争力的矿工,交易完成,用户发送数据,然后矿工存储数据,矿工必须证明数据的正确存储才能得到QKFile奖励。在网络中,通过密码证明来验证数据的存储安全性。采矿者通过新区块链向网络提交其储存证明。通过网络发布的新区块链验证,只有正确的区块链才能被接受,经过一段时间,矿工们就可以获得交易存储费用,并有机会得到区块链奖励。数据就在更需要它的地方传播了,旋转数据就在地球范围内流动了,数据的获取就不断优化了,从小的矿机到大的数据中心,所有人都可以通过共同努力,为人类信息社会的建设奠定新的基础,并从中获益。

❺ 区块链分布式存储:生态大数据的存储新模式

区块链,当之无愧的2019最靓的词,在 科技 领域闪闪发亮,在实体行业星光熠熠。

2019年的1024讲话,让区块链这个词焕然一新,以前它总是和传销和诈骗联系在一起,“区块链”这个词总是蒙上一层灰色。但是如今,区块链则是和实体经济融合紧密相连,成为国家的战略技术, 这个词瞬间闪耀着热情的红色和生意盎然的绿色

“产业区块链”在这个时代背景下应运而生, 是继“互联网”后的又一大热门词汇,核心就是区块链必须和实体产业融合,脱虚向实,让区块链技术找到更多业务场景才是正道。

区块链的本质就是一个数据库,而且是采用的分布式存储的方式。作为一名区块链从业者,今天就来讲讲 区块链的分布式存储和生态大数据 结合后,碰撞产生的火花。

当前的存储大多为中心化存储,存储在传统的中心化服务器。如果服务器出现宕机或者故障,或者服务器停止运营,则很多数据就会丢失。

比如我们在微信朋友圈发的图片,在抖音上传的视频等等,都是中心化存储。很多朋友会把东西存储在网上,但是某天打开后,网页呈现404,则表示存储的东西已经不见了。

区块链,作为一个分布式的数据库,则能很好解决这方面的问题。这是由区块链的技术特征决定了的。 区块链上的数字记录,不可篡改、不可伪造,智能合约让大家更高效地协同起来,从而建立可信的数字经济秩序,能够提高数据流转效率,打破数据孤岛,打造全新的存储模式。

生态大数据,其实和我们每天的生活息息相关,比如每天的天气预报,所吃的农产品的溯源数据等等,都是生态大数据的一部分。要来谈这个结合,首先咱们来看看生态大数据存储的特点。

伴随着互联网的发展,当前,生态大数据在存储方面有具有如下特点:

从数据规模来看,生态数据体量很大,数据已经从TB级跃升到了PB级别。

随着各类传感器技术、卫星遥感、雷达和视频感知等技术的发展,数据不仅来源于传统人工监测数据,还包括航空、航天和地面数据,他们一起产生了海量生态环境数据。近10年以来,生态数据以每年数百个TB的数据在增长。

生态环境大数据需要动态新数据和 历史 数据相结合来处理,实时连续观测尤为重要。只有实时处理分析这些动态新数据,并与已有 历史 数据结合起来分析,才能挖掘出有用信息,为解决有关生态环境问题提供科学决策。

比如在当前城市建设中,提倡的生态环境修复、生态模型建设中,需要大量调用生态大数据进行分析、建模和制定方案。但是目前很多 历史 数据因为存储不当而消失,造成了数据的价值的流失。

既然生态大数据有这些特点,那么它有哪些存储需求呢?

当前,生态大数据面临严重安全隐患,强安全的存储对于生态大数据而言势在必行。

大数据的安全主要包括大数据自身安全和大数据技术安全,比如在大数据的数据存储中,由于黑客外部网络攻击和人为操作不当造成数据信息泄露。外部攻击包括对静态数据和动态数据的数据传输攻击、数据内容攻击、数据管理和网络物理攻击等。

例如,很多野外生态环境监测的海量数据需要网络传输,这就加大了网络攻击的风险。如果涉及到军用的一些生态环境数据,如果被黑客获得这些数据,就可能推测到我国军方的一些信息,或者获取敏感的生态环境数据,后果不堪设想。

生态大数据的商业化应用需要整合集成政府、企业、科研院所等 社会 多来源的数据。只有不同类型的生态环境大数据相互连接、碰撞和共享,才能释放生态环境大数据的价值。

以当前的智慧城市建设为例,很多城市都在全方位、多维度建立知识产权、种质资源、农资、农产品、病虫害疫情等农业信息大数据中心,为农业产供销提供全程信息服务。建设此类大数据中心,离不开各部门生态大数据的共享。

但是,生态大数据共享面临着巨大挑战。首先,我国生态环境大数据包括气象、水利、生态、国土、农业、林业、交通、 社会 经济等其他部门的大数据,涉及多领域多部门和多源数据。虽然目前这些部门已经建立了自己的数据平台,但这些平台之间互不连通,只是一个个的数据孤岛。

其次,相关部门因为无法追踪数据的轨迹,担心数据的利益归属问题,便无法实现数据的共享。因此,要想挖掘隐藏在生态大数据背后的潜在价值,实现安全的数据共享是关键,也是生态大数据产生价值的前提和基础。

生态大数据来之不易,是研究院所、企业、个人等 社会 来源的集体智慧。

其中,很多生态大数据涉及到了知识产权的保护。但是目前的中心化存储无法保证知识产权的保护,无法对数据的使用进行溯源管理,容易造成知识产权的侵犯和隐私数据的泄露。

这些就是生态大数据在存储方面的需求。在当前产业区块链快速发展的今天,区块链的分布式存储是可以为生态大数据存储提供全新的存储方式的。 这个核心前提就是区块链的分布式存储、不可篡改和数据追踪特性

把区块链作为底层技术,搭建此类平台,专门存储生态大数据,可以设置节点管理、存储管理、用户管理、许可管理、业务通道管理等。针对上层业务应用提供高可用和动态扩展的区块链网络底层服务的实现。在这个平台的应用层,可以搭建API接口,让整个平台的使用灵活可扩展。区块链分布式存储有如下特点:

利用区块链的分布式存储,能够实现真正的生态大数据安全存储。

首先,数据永不丢失。这点对于生态大数据的 历史 数据特别友好,方便新老数据的调用和对比。

其次,数据不易被泄露或者攻击。因为数据采取的是分布式存储,如果遭遇攻击,也只能得到存储在部分节点里的数据碎片,无法完全获得完整的数据信息或者数据段。

区块链能够实现生态数据的存储即确权,这样就能够避免知识产权被侵害,实现安全共享。毕竟生态大数据的获取,是需要生态工作者常年在野外驻守,提取数据的。

生态大数据来之不易,是很多生态工作者的工作心血和结晶,需要得到产权的保护,让数据体现出应用价值和商业价值,保护生态工作者的工作动力,让他们能够深入一线,采集出更多优质的大数据。

同时,利用区块链的数据安全共享机制,也能够打破气象、林业、湿地等部门的数据壁垒,构建安全可靠的数据共享机制,让数据流转更具价值。

现在有部分生态工作者,为了牟取私利,会将生态数据篡改。如果利用区块链技术,则没有那么容易了。

利用加密技术,把存储的数据放在分布式存储平台进行加密处理。如果生态大数据发生变更,平台就可以记录其不同版本,便于事后追溯和核查。

这个保护机制主要是利用了数据的不可篡改,满足在使用生态大数据的各类业务过程中对数据的安全性的要求。

区块链能够对数据提供安全监控,记录应用系统的操作日志、数据库的操作日志数据,并加密存储在系统上,提供日志预警功能,对于异常情况通过区块链浏览器展示出来,便于及时发现违规的操作和提供证据。

以上就是区块链的分布式存储能够在生态大数据方面所起的作用。未来,肯定会出现很多针对生态大数据存储的平台诞生。

生态大数据是智慧城市建设的重要基础资料 ,引用区块链技术,打造相关的生态大数据存储和管理平台,能够保证生态大数据的安全存储和有效共享,为智慧城市建设添砖加瓦,推动产业区块链的发展。

作者:Justina,微信公众号:妙译生花,从事于区块链运营,擅长内容运营、海外媒体运营。

题图来自Unsplash, 基于CC0协议。

❻ 什么是分布式数据存储

关于分布式存储实际上并没有一个明确的定义,甚至名称上也没回有一个统一的说法答,大多数情况下称作 Distributed Data Store 或者 Distributed Storage System。
其中维基网络中给 Distributed data store 的定义是:分布式存储是一种计算机网络,它通常以数据复制的方式将信息存储在多个节点中。
在网络中给出的定义是:分布式存储系统,是将数据分散存储在多台独立的设备上。分布式网络存储系统采用可扩展的系统结构,利用多台存储服务器分担存储负荷,利用位置服务器定位存储信息,它不但提高了系统的可靠性、可用性和存取效率,还易于扩展。
尽管各方对分布式存储的定义并不完全相同,但有一点是统一的,就是分布式存储将数据分散放置在多个节点中,节点通过网络互连提供存储服务。这一点与传统集中式存储将数据集中放置的方式有着明显的区分。

❼ 如何实现企业数据 大数据平台 分布式存放

Hadoop在可伸缩性、健壮性、计算性能和成本上具有无可替代的优势,事实上已成为当前互联网企业主流的大数据分析平台。本文主要介绍一种基于Hadoop平台的多维分析和数据挖掘平台架构。作为一家互联网数据分析公司,我们在海量数据的分析领域那真是被“逼上梁山”。多年来在严苛的业务需求和数据压力下,我们几乎尝试了所有可能的大数据分析方法,最终落地于Hadoop平台之上。
1. 大数据分析大分类
Hadoop平台对业务的针对性较强,为了让你明确它是否符合你的业务,现粗略地从几个角度将大数据分析的业务需求分类,针对不同的具体需求,应采用不同的数据分析架构。
按照数据分析的实时性,分为实时数据分析和离线数据分析两种。
实时数据分析一般用于金融、移动和互联网B2C等产品,往往要求在数秒内返回上亿行数据的分析,从而达到不影响用户体验的目的。要满足这样的需求,可以采用精心设计的传统关系型数据库组成并行处理集群,或者采用一些内存计算平台,或者采用HDD的架构,这些无疑都需要比较高的软硬件成本。目前比较新的海量数据实时分析工具有EMC的Greenplum、SAP的HANA等。
对于大多数反馈时间要求不是那么严苛的应用,比如离线统计分析、机器学习、搜索引擎的反向索引计算、推荐引擎的计算等,应采用离线分析的方式,通过数据采集工具将日志数据导入专用的分析平台。但面对海量数据,传统的ETL工具往往彻底失效,主要原因是数据格式转换的开销太大,在性能上无法满足海量数据的采集需求。互联网企业的海量数据采集工具,有Facebook开源的Scribe、LinkedIn开源的Kafka、淘宝开源的Timetunnel、Hadoop的Chukwa等,均可以满足每秒数百MB的日志数据采集和传输需求,并将这些数据上载到Hadoop中央系统上。
按照大数据的数据量,分为内存级别、BI级别、海量级别三种。
这里的内存级别指的是数据量不超过集群的内存最大值。不要小看今天内存的容量,Facebook缓存在内存的Memcached中的数据高达320TB,而目前的PC服务器,内存也可以超过百GB。因此可以采用一些内存数据库,将热点数据常驻内存之中,从而取得非常快速的分析能力,非常适合实时分析业务。图1是一种实际可行的MongoDB分析架构。

图1 用于实时分析的MongoDB架构
MongoDB大集群目前存在一些稳定性问题,会发生周期性的写堵塞和主从同步失效,但仍不失为一种潜力十足的可以用于高速数据分析的NoSQL。
此外,目前大多数服务厂商都已经推出了带4GB以上SSD的解决方案,利用内存+SSD,也可以轻易达到内存分析的性能。随着SSD的发展,内存数据分析必然能得到更加广泛的应用。
BI级别指的是那些对于内存来说太大的数据量,但一般可以将其放入传统的BI产品和专门设计的BI数据库之中进行分析。目前主流的BI产品都有支持TB级以上的数据分析方案。种类繁多,就不具体列举了。
海量级别指的是对于数据库和BI产品已经完全失效或者成本过高的数据量。海量数据级别的优秀企业级产品也有很多,但基于软硬件的成本原因,目前大多数互联网企业采用Hadoop的HDFS分布式文件系统来存储数据,并使用MapRece进行分析。本文稍后将主要介绍Hadoop上基于MapRece的一个多维数据分析平台。
数据分析的算法复杂度
根据不同的业务需求,数据分析的算法也差异巨大,而数据分析的算法复杂度和架构是紧密关联的。举个例子,Redis是一个性能非常高的内存Key-Value NoSQL,它支持List和Set、SortedSet等简单集合,如果你的数据分析需求简单地通过排序,链表就可以解决,同时总的数据量不大于内存(准确地说是内存加上虚拟内存再除以2),那么无疑使用Redis会达到非常惊人的分析性能。
还有很多易并行问题(Embarrassingly Parallel),计算可以分解成完全独立的部分,或者很简单地就能改造出分布式算法,比如大规模脸部识别、图形渲染等,这样的问题自然是使用并行处理集群比较适合。
而大多数统计分析,机器学习问题可以用MapRece算法改写。MapRece目前最擅长的计算领域有流量统计、推荐引擎、趋势分析、用户行为分析、数据挖掘分类器、分布式索引等。
2. 面对大数据OLAP大一些问题

OLAP分析需要进行大量的数据分组和表间关联,而这些显然不是NoSQL和传统数据库的强项,往往必须使用特定的针对BI优化的数据库。比如绝大多数针对BI优化的数据库采用了列存储或混合存储、压缩、延迟加载、对存储数据块的预统计、分片索引等技术。

Hadoop平台上的OLAP分析,同样存在这个问题,Facebook针对Hive开发的RCFile数据格式,就是采用了上述的一些优化技术,从而达到了较好的数据分析性能。如图2所示。
然而,对于Hadoop平台来说,单单通过使用Hive模仿出SQL,对于数据分析来说远远不够,首先Hive虽然将HiveQL翻译MapRece的时候进行了优化,但依然效率低下。多维分析时依然要做事实表和维度表的关联,维度一多性能必然大幅下降。其次,RCFile的行列混合存储模式,事实上限制死了数据格式,也就是说数据格式是针对特定分析预先设计好的,一旦分析的业务模型有所改动,海量数据转换格式的代价是极其巨大的。最后,HiveQL对OLAP业务分析人员依然是非常不友善的,维度和度量才是直接针对业务人员的分析语言。
而且目前OLAP存在的最大问题是:业务灵活多变,必然导致业务模型随之经常发生变化,而业务维度和度量一旦发生变化,技术人员需要把整个Cube(多维立方体)重新定义并重新生成,业务人员只能在此Cube上进行多维分析,这样就限制了业务人员快速改变问题分析的角度,从而使所谓的BI系统成为死板的日常报表系统。
使用Hadoop进行多维分析,首先能解决上述维度难以改变的问题,利用Hadoop中数据非结构化的特征,采集来的数据本身就是包含大量冗余信息的。同时也可以将大量冗余的维度信息整合到事实表中,这样可以在冗余维度下灵活地改变问题分析的角度。其次利用Hadoop MapRece强大的并行化处理能力,无论OLAP分析中的维度增加多少,开销并不显著增长。换言之,Hadoop可以支持一个巨大无比的Cube,包含了无数你想到或者想不到的维度,而且每次多维分析,都可以支持成千上百个维度,并不会显著影响分析的性能。


而且目前OLAP存在的最大问题是:业务灵活多变,必然导致业务模型随之经常发生变化,而业务维度和度量一旦发生变化,技术人员需要把整个Cube(多维立方体)重新定义并重新生成,业务人员只能在此Cube上进行多维分析,这样就限制了业务人员快速改变问题分析的角度,从而使所谓的BI系统成为死板的日常报表系统。
3. 一种Hadoop多维分析平台的架构
整个架构由四大部分组成:数据采集模块、数据冗余模块、维度定义模块、并行分 析模块。

数据采集模块采用了Cloudera的Flume,将海量的小日志文件进行高速传输和合并,并能够确保数据的传输安全性。单个collector宕机之后,数据也不会丢失,并能将agent数据自动转移到其他的colllecter处理,不会影响整个采集系统的运行。如图5所示。

数据冗余模块不是必须的,但如果日志数据中没有足够的维度信息,或者需要比较频繁地增加维度,则需要定义数据冗余模块。通过冗余维度定义器定义需要冗余的维度信息和来源(数据库、文件、内存等),并指定扩展方式,将信息写入数据日志中。在海量数据下,数据冗余模块往往成为整个系统的瓶颈,建议使用一些比较快的内存NoSQL来冗余原始数据,并采用尽可能多的节点进行并行冗余;或者也完全可以在Hadoop中执行批量Map,进行数据格式的转化。

维度定义模块是面向业务用户的前端模块,用户通过可视化的定义器从数据日志中定义维度和度量,并能自动生成一种多维分析语言,同时可以使用可视化的分析器通过GUI执行刚刚定义好的多维分析命令。
并行分析模块接受用户提交的多维分析命令,并将通过核心模块将该命令解析为Map-Rece,提交给Hadoop集群之后,生成报表供报表中心展示。
核心模块是将多维分析语言转化为MapRece的解析器,读取用户定义的维度和度量,将用户的多维分析命令翻译成MapRece程序。核心模块的具体逻辑如图6所示。

图6中根据JobConf参数进行Map和Rece类的拼装并不复杂,难点是很多实际问题很难通过一个MapRece Job解决,必须通过多个MapRece Job组成工作流(WorkFlow),这里是最需要根据业务进行定制的部分。图7是一个简单的MapRece工作流的例子。

MapRece的输出一般是统计分析的结果,数据量相较于输入的海量数据会小很多,这样就可以导入传统的数据报表产品中进行展现。

❽ 大数据的存储

⼤数据的存储⽅式是结构化、半结构化和⾮结构化海量数据的存储和管理,轻型数据库⽆法满⾜对其存储以及复杂的数据挖掘和分析操作,通常使⽤分布式⽂件系统、No SQL 数据库、云数据库等。

结构化、半结构化和⾮结构化海量数据的存储和管理,轻型数据库⽆法满⾜对其存储以及复杂的数据挖掘和分析操作,通常使⽤分布式⽂件系统、No SQL 数据库、云数据库等。

1 分布式系统:分布式系统包含多个⾃主的处理单元,通过计算机⽹络互连来协作完成分配的任务,其分⽽治之的策略能够更好的处理⼤规模数据分析问题。

主要包含以下两类:

1)分布式⽂件系统:存储管理需要多种技术的协同⼯作,其中⽂件系统为其提供最底层存储能⼒的⽀持。分布式⽂件系统 HDFS 是⼀个⾼度容错性系统,被设计成适⽤于批量处理,能够提供⾼吞吐量的的数据访问。

2)分布式键值系统:分布式键值系统⽤于存储关系简单的半结构化数据。典型的分布式键值系统有 Amazon Dynamo,以及获得⼴泛应⽤和关注的对象存储技术(Object Storage)也可以视为键值系统,其存储和管理的是对象⽽不是数据块。

2 Nosql 数据库:关系数据库已经⽆法满⾜ Web2.0 的需求。主要表现为:⽆法满⾜海量数据的管理需求、⽆法满⾜数据⾼并发的需求、⾼可扩展性和⾼可⽤性的功能太低。No SQL 数据库的优势:可以⽀持超⼤规模数据存储,灵活的数据模型可以很好地⽀持 Web2.0 应⽤,具有强⼤的横向扩展能⼒等,典型的 No SQL 数据库包含以下⼏种:

3 云数据库:云数据库是基于云计算技术发展的⼀种共享基础架构的⽅法,是部署和虚拟化在云计算环境中的数据库。

❾ 分布式存储和大数据有什么关系

当数据越来越大的时候,就设计到存储了。像hadoop就提供了分布式存储技术HDFS,还有Ceph。Ceph目前在国内刚兴起,前景很大,很多大公l司像阿里,元核云,腾讯都在做。

❿ 大数据存储技术都有哪些

1. 数据采集:在大数据的生命周期中,数据采集是第一个环节。按照MapRece应用系统的分类,大数据采集主要来自四个来源:管理信息系统、web信息系统、物理信息系统和科学实验系统。

2. 数据访问:大数据的存储和删除采用不同的技术路线,大致可分为三类。第一类主要面向大规模结构化数据。第二类主要面向半结构化和非结构化数据。第三类是面对结构化和非结构化的混合大数据,

3。基础设施:云存储、分布式文件存储等。数据处理:对于收集到的不同数据集,可能会有不同的结构和模式,如文件、XML树、关系表等,表现出数据的异构性。对于多个异构数据集,需要进行进一步的集成或集成处理。在对不同数据集的数据进行收集、排序、清理和转换后,生成一个新的数据集,为后续的查询和分析处理提供统一的数据视图。

5. 统计分析:假设检验、显著性检验、差异分析、相关分析、t检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测、残差分析,岭回归、logistic回归、曲线估计、因子分析、聚类分析、主成分分析等方法介绍了聚类分析、因子分析、快速聚类与聚类、判别分析、对应分析等方法,多元对应分析(最优尺度分析)、bootstrap技术等。

6. 数据挖掘:目前需要改进现有的数据挖掘和机器学习技术;开发数据网络挖掘、特殊群挖掘、图挖掘等新的数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破面向领域的大数据挖掘技术如用户兴趣分析、网络行为分析、情感语义分析等挖掘技术。

7. 模型预测:预测模型、机器学习、建模与仿真。

8. 结果:云计算、标签云、关系图等。

关于大数据存储技术都有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

阅读全文

与大数据分布式存储技术相关的资料

热点内容
诺基亚526能装win10 浏览:860
苹果6plus外屏玻璃更换 浏览:108
草图大师沙盒工具 浏览:258
压缩完的文件夹为什么显示0字节 浏览:34
解压码文件名什么意思 浏览:30
100apple与101apple 浏览:401
dnf86版本死灵对堆力量还是智力 浏览:955
微信在安卓手机的文件夹是哪个 浏览:500
qq号记录在手机哪个文件 浏览:652
扬州有哪些网络科技公司 浏览:372
上海哪个专科学校学编程好 浏览:549
一个压缩包如何有多个文件夹 浏览:909
思科最新配置文件 浏览:777
微信发送qq文件 浏览:428
手机种树app哪个好 浏览:787
文明6创意工坊在哪个文件 浏览:480
hit在编程中什么意思 浏览:379
win10怎么打开E盘 浏览:774
图表数据标记内置在哪里 浏览:939
红色文件夹 浏览:908

友情链接