导航:首页 > 网络数据 > 金融大数据来源

金融大数据来源

发布时间:2023-01-08 14:02:15

『壹』 大数据怎样影响着金融业

正在来临的大数据时代,金融机构之间的竞争将在网络信息平台上全面展开,说到底就是“数据为王”。谁掌握了数据,谁就拥有风险定价能力,谁就可以获得高额的风险收益,最终赢得竞争优势。
中国金融业正在步入大数据时代的初级阶段。经过多年的发展与积累,目前国内金融机构的数据量已经达到100TB以上级别,并且非结构化数据量正在以更快的速度增长。金融机构行在大数据应用方面具有天然优势:一方面,金融企业在业务开展过程中积累了包括客户身份、资产负债情况、资金收付交易等大量高价值密度的数据,这些数据在运用专业技术挖掘和分析之后,将产生巨大的商业价值;另一方面,金融机构具有较为充足的预算,可以吸引到实施大数据的高端人才,也有能力采用大数据的最新技术。
总体看,正在兴起的大数据技术将与金融业务呈现快速融合的趋势,给未来金融业的发展带来重要机遇。
首先,大数据推动金融机构的战略转型。在宏观经济结构调整和利率逐步市场化的大环境下,国内金融机构受金融脱媒影响日趋明显,表现为核心负债流失、盈利空间收窄、业务定位亟待调整。业务转型的关键在于创新,但现阶段国内金融机构的创新往往沦为监管套利,没有能够基于挖掘客户内在需求,提供更有价值的服务。而大数据技术正是金融机构深入挖掘既有数据,找准市场定位,明确资源配置方向,推动业务创新的重要工具
其次,大数据技术能够降低金融机构的管理和运行成本。通过大数据应用和分析,金融机构能够准确地定位内部管理缺陷,制订有针对性的改进措施,实行符合自身特点的管理模式,进而降低管理运营成本。此外,大数据还提供了全新的沟通渠道和营销手段,可以更好的了解客户的消费习惯和行为特征,及时、准确地把握市场营销效果。
第三,大数据技术有助于降低信息不对称程度,增强风险控制能力。金融机构可以摈弃原来过度依靠客户提供财务报表获取信息的业务方式,转而对其资产价格、账务流水、相关业务活动等流动性数据进行动态和全程的监控分析,从而有效提升客户信息透明度。目前,花旗、富国、UBS等先进银行已经能够基于大数据,整合客户的资产负债、交易支付、流动性状况、纳税和信用记录等,对客户行为进行360度评价,计算动态违约概率和损失率,提高贷款决策的可靠性。

『贰』 大数据金融-第一章 大数据金融概论

1.大数据与小数据

2.大数据的内涵
(1) 数据类型方面

(2) 技术方法方面

(3) 分析应用方面

3.大数据的特征

多样性:随着互联网的发展和传感器种类的增多,诸如网页、图片、音频、视频、微博类的未加工的半结构化和非结构化数据越来越多,以数量激增、类型繁多的非结构化数据为主。非结构化数据相对于结构化数据而言更加复杂,数据存储和处理的难度增大。

时效性:大数据的时效性是指在数据量特别大的情况下,能够在一定的时间和范围内得到及时处理,这是大数据区别于传统数据挖掘最显著的特征。只有对大数据做到实时创建、实时存储、实时处理和实时分析,才能及时有效的获得高价值的信息。

价值型:包含很多深度的价值,大数据分析挖掘和利用将带来巨大的商业价值。

4.大数据与传统数据的区别

5.大数据的产生背景

1.按照大数据结构分类

2. 按照大数据获取处理方式分类

3.按照其他方式分类

1.销售机会增多

0. 商业大数据的来源

1. 客户

2. 市场

3. 商品

4. 供应链

0. 数据来源

2. 市场与精准营销

3. 客户关系管理

4. 企业运营管理

5. 数据商业化

0. 数据来源

2. 付款定价

3. 研发

4. 新的商业模式

5. 公共健康

1. 营销

2. 服务

3. 运营

4. 风控

大数据金融是指运用 大数据技术和大数据平台 开展 金融活动和金融服务 ,对金融行业 积累的大数据以及外部数据 进行云计算等信息化处理,结合传统金融,开展资金融通、创新金融服务。

1. 呈现方式网络化
大量的金融产品和服务通过网络呈现。

2. 风险管理有所调整
风险管理理念 ——财务分析(第一还款来源)、可抵押财产或其他保证(第二还款来源)重要性将有所降低。
风险定价方式 ——更注重将交易行为的真实性、信用的可信度通过数据来呈现。
对客户的评价 ——全方位、立体的/活生生的。
风险管理的主要手段 ——基于数据挖掘对客户进行识别和分类。

3. 信息不对称降低
4. 金融业务效率提高
在合适的时间、合适的地点,把合适的产品以合适的方式提供给合适的消费者。

5. 金融企业服务边界扩大
由于效率提升,其经营成本必然随之下降,最适合扩大经营规模。
金融从业人员个体服务对象会更多。

6. 产品是可控的、可受的
通过网络化呈现的金融产品,对消费者而言,其收益或成本、产品的流动性是可以接受的,其风险是可控的。

7. 普惠金融
大数据金融的高效率性及扩展的服务边界,使金融服务的对象和范围也大大扩展,金融服务也更接地气。

1. 放贷快捷,精准营销个性化服务
立足长期大量的信用及资金流的大数据基础之上,在任何时点都可以通过计算得出信用评分,并采用网上支付方式,实时根据贷款需要及其信用评分等数据进行放贷。

2. 客户群体大,运营成本低
大数据金融是以大数据云计算为基础,以大数据自动计算为主,不需要大量人工,成本较低,整合了碎片化的需求和供给,服务领域拓展至更多的中小企业和中小客户。

3. 科学决策,有效风控
根据交易借贷行为的违约率等相关指标估计信用评分,运用分布式计算做出风险评估模型,解决信用分配、风险评估、授权实施以及欺诈识别等问题,有效地降低了不良贷款率。

基于 电商平台基础 上形成的网上交易信息与网上支付形成的金融大数据,利用云计算等先进技术对数据进行处理分析而形成的信用或订单融资模式。
典型代表有 阿里小贷 ,基于对电商平台的 交易数据、社交网络的用户交易与交互信息和购物行为习惯 等的大数据通过 云计算 来实时计算得分和分析处理,形成网络商户在电商平台中的累积信用数据,通过电商所构建的网络信用评级体系和金融风险计算模型及风险控制体系,来实时向网络商户发放订单贷款或者信用贷款,例如,阿里小贷可实现数分钟之内发放贷款。

企业利用自身所处的 产业链上下游 (原料商、制造商、分销商、零售商),充分整合供应链资源和客户资源,提供金融服务而形成的金融模式。

京东商城、苏宁易购是供应链金融的典型代表。

在供应链金融模式当中, 电商平台只是作为信息中介提供大数据金融 ,并不承担融资风险及防范风险等。—— 渠道商为核心企业。

『叁』 大数据的主要数据来源包括

大数据的来源包括交易数据、人工数据、机器和传感器数据。 交易数据包括POS机数据、信用卡数据等。人为数据,包括通过微信、博客、推文等产生的邮件、文档、图片、数据流等。;以及机器传感器数据,例如传感器、仪表和其他设施。 大数据,或称巨量数据,是指庞大到无法通过主流软件工具在合理的时间内检索、管理、处理和排序的信息,以帮助企业做出更主动的商业决策。大数据需要特殊的技术来有效处理大量可以容忍时间流逝的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展存储系统。

『肆』 金融大数据是什么

金融大数据是指收集海量非结构化数据,分析挖掘客户的交易和消费信息,掌握客户的消费习惯,准确预测客户的行为,提高金融机构的服务、营销和风控能力。
1、大数据金融主要体现在三个方面:一是数据客观准确匹配;二是交易成本低,客户群大;最后,数据及时有效,有助于控制风险。
2、大数据金融通过大数据技术收集客户交易信息、在线社区交流行为、资金流动趋势等数据。大数据金融了解客户的消费习惯,针对不同的客户推出不同的营销和广告,或分析客户的信用状况。
拓展资料:
1)因为大数据金融数据是根据客户自己的行为收集的大数据金融是客观真实的。因此,大数据金融为客户制定的回售方案和偏好推荐也能精准大数据金融匹配度高。大数据金融基于云计算技术 云计算是一种超大规模分布式计算技术,通过预设程序,大数据金融云计算可以搜索、计算和分析各类客户数据,无需人工参与。
2)大数据金融云计算技术降低了收集和分析数据的成本,不仅整合了碎片化的需求和供应,而且大大降低了大数据金融交易的成本,实现了跨区域的信息流动和交换,客户群也随之增长。在大数据金融模型中,互联网公司设置了各种风险指标,如违约率、延迟交货率、售后投诉率等,大数据金融收集的客户数据是实时的,因为其信用评价也是实时的。时间,有利于数据需求方及时分析对方的信用状况,控制和防范交易风险。
3)大数据,或称海量数据,是指所涉及的海量数据,无法通过主流软件工具进行检索、管理、处理和整理成信息,帮助企业在合理的时间内做出更积极的业务决策。 “大数据”研究院Gartner给出了这样的定义。 “大数据”需要一种新的处理模式,具有更强的决策力、洞察力和发现力和流程优化能力,以适应海量、高增长率和多样化的信息资产。

『伍』 大数据的中的数据是从哪里来的

大数据应用中的关键点有三个,首要的就是大数据的数据来源,我们在分析大数据的时候需要重视大数据中的数据来源,只有这样我们才能够做好大数据的具体分析内容。那么大家知不知道大数据的数据来源都是通过什么渠道获得的?下面就由小编为大家解答一下这个问题。
对于数据的来源很多人认为是互联网和物联网产生的,其实这句话是对的,这是因为互联网公司是天生的大数据公司,在搜索、社交、媒体、交易等各自核心业务领域,积累并持续产生海量数据。而物联网设备每时每刻都在采集数据,设备数量和数据量都与日俱增。这两类数据资源作为大数据的数据来源,正在不断产生各类应用。国外关于大数据的成功经验介绍,大多是这类数据资源应用的经典案例。还有一些企业,在业务中也积累了许多数据,从严格意义上讲,这些数据资源还算不上大数据,但对商业应用而言,却是最易获得和比较容易加工处理的数据资源,是我们常用的数据来源。
而数据的来源是我们评价大数据应用的第一个关注点。首先需要我们看这个应用是否真有数据支撑,数据资源是否可持续,来源渠道是否可控,数据安全和隐私保护方面是否有隐患。二是要看这个应用的数据资源质量如何,是好数据还是坏数据,能否保障这个应用的实效。对于来自自身业务的数据资源,具有较好的可控性,数据质量一般也有保证,但数据覆盖范围可能有限,需要借助其他资源渠道。对于从互联网抓取的数据,技术能力是关键,既要有能力获得足够大的量,又要有能力筛选出有用的内容。对于从第三方获取的数据,需要特别关注数据交易的稳定性。数据从哪里来是分析大数据应用的起点,只有我们找到了好的数据来源,我们就能够做好大数据的工作。这句需要我们去寻找数据比较密集的领域。
一般来说,我们获取数据的时候需要数据密集的行业中挖掘数据,主要就是金融、电信、服务行业等等,而金融是一个特别重要的数据密集领域。金融行业既是产生数据尤其是有价值数据的基地,又是数据分析服务的需求方和应用地。更为重要的是,金融行业具备充足的支付能力,将是大数据产业竞争的重要战场。许多大数据是通过在金融领域的应用辐射到了各个行业。
我们在这篇文章中为大家介绍了大数据的数据来源以及数据密集的领域,希望这篇文章能够给大家带来帮助,最后感谢大家的阅读。

『陆』 大数据金融是什么

大数据金融是指集合海量非结构化数据,通过对其进行实时分析,可以为互联网金融机构提供客户全方位信息,通过分析和挖掘客户的交易和消费信息掌握客户的消费习惯,并准确预测客户行为,使金融机构和金融服务平台在营销和风控方面有的放矢。

大数据金融的内容:基于大数据的金融服务平台主要指拥有海量数据的电子商务企业开展的金融服务。大数据的关键是从大量数据中快速获取有用信息的能力,或者是从大数据资产中快速变现的能力,因此,大数据的信息处理往往以云计算为基础。

(6)金融大数据来源扩展阅读:

大数据金融的弊端:

1、大数据对个人信息的大量获取导致了隐私和安全问题。

随着个人所在或行经位置、购买偏好、健康和财务情况的海量数据被收集,再加上金融交易习惯、持有资产分布、以及信用状况以更细致的方式被储存和分析,机构投资者和金融消费者能获得更低的价格、更符合需要的金融服务,从而提高市场配置金融资源的能力。

但同时,金融市场乃至整个社会管理的信息基础设施将变得越来越一体化和外向型,对隐私、数据安全和知识产权构成更大风险。就个人隐私而言,大数据的隐私问题远远超出了常规的身份确认风险的范畴。

2、大数据技术不能代替人类价值判断和逻辑思考。

大数据是人类设计的产物,大数据的工具(如Hadoop软件)并不能使人们摆脱曲解、隔阂和成见,数据之间相关性也不等同于因果关系,大数据还存在选择性覆盖问题。

例如,社交媒体是大数据分析的重要信息源,但其中年轻人和城市人的比例偏多,还存在大量由程序控制的“机器人”账号或“半机器人”账号。波

士顿的 StreetBump应用程序为统计城市路面坑洼情况,从驾驶员的智能手机上收集数据,可能少计年老和贫困市民较多区域的情况;“谷歌流感趋势”曾高估了 2012年流感发病率。这说明依赖有缺陷的大数据可能给政府决策造成负面影响,还可能加剧社会不公。

3、基于大数据开发的金融产品和交易工具对金融监管提出挑战。

大数据的使用正在改变金融市场,也需要改变监管市场的方式,以保证市场参与者负责地使用大数据。

例如,2010年5月的“闪电暴跌”(flashcrash)令道琼斯工业平均指数 突然大跌,美国监管部门认为是高频交易造成了快速抛售引发的更多抛售。大数据中的一个数据点出错就能导致“无厘头暴跌”。

监管机构限制大数据技术的使用,或是对其使用进行直接干预,其潜在风险是巨大的,应鼓励业界对更复杂的技术乃至更大数据的利用。

『柒』 支撑着互联网金融的数据来源于哪里

数据来源为:“网络指数”,它统计网络上一个词的搜索频率,我们发现,“互联网金融”的搜索频率在2013年6月突然高企,和2013年6月份发生的一个事情高度吻合,那就是“钱荒”。这两者之间有这样一个高度的耦合并不是偶然的,“钱荒”抬高了市场的利率中枢,使得余额宝的收益率大大提高,短时间内实现了爆炸式增长,吸引了全社会的眼球。从那之后,互联网金融在中国社会就成为了一个高度关注的现象。
事件来源:互联网金融在中国的发展很大程度上是因为余额宝的触发。大家都很了解余额宝,它在短短几个月之内成为全球第四大货币市场基金,开户数超过了1亿,余额宝的出现使大家突然对互联网金融刮目相看,互联网金融这个词在中国社会也正式成为一个很时髦的词汇。

『捌』 什么是金融大数据分析

金融大数据分析是指使用大数据技术来收集、整理、分析金融数据的过程。这些数据可以来自各种来源,包括市场信息、交易记录、客户信息等。金融大数据分析的目的是帮助金融机构更好地理解市场趋势和客户需求,提升决策效率并降低风险。

『玖』 想要金融类数据,应该如何收集

金融大数据平台的搭建和应用是两个部分,对于金融大数据平台来说,这两个部分都很重要。


所以以下的部分我们从大数据平台和银行可以分析哪些指标这两个角度来阐述。


一、大数据平台


大数据平台的整体架构可以由以下几个部分组成:





1.一个客户


客户主题:客户属性(客户编号、客户类别)、指标(资产总额、持有产品、交易笔数、交易金额、RFM)、签约(渠道签约、业务签约)组成宽表


2.做了一笔交易


交易主题:交易金融属性、业务类别、支付通道组成宽表。


3.使用哪个账户


账户主题:账户属性(所属客户、开户日期、所属分行、产品、利率、成本)组成宽表


4.通过什么渠道


渠道主题:渠道属性、维度、限额组成宽表


5.涉及哪类业务&产品


产品主题:产品属性、维度、指标组成宽表

阅读全文

与金融大数据来源相关的资料

热点内容
诺基亚526能装win10 浏览:860
苹果6plus外屏玻璃更换 浏览:108
草图大师沙盒工具 浏览:258
压缩完的文件夹为什么显示0字节 浏览:34
解压码文件名什么意思 浏览:30
100apple与101apple 浏览:401
dnf86版本死灵对堆力量还是智力 浏览:955
微信在安卓手机的文件夹是哪个 浏览:500
qq号记录在手机哪个文件 浏览:652
扬州有哪些网络科技公司 浏览:372
上海哪个专科学校学编程好 浏览:549
一个压缩包如何有多个文件夹 浏览:909
思科最新配置文件 浏览:777
微信发送qq文件 浏览:428
手机种树app哪个好 浏览:787
文明6创意工坊在哪个文件 浏览:480
hit在编程中什么意思 浏览:379
win10怎么打开E盘 浏览:774
图表数据标记内置在哪里 浏览:939
红色文件夹 浏览:908

友情链接