1. 中国目前在大数据行业的发展情况如何
我国大数据产业开始已进入深化阶段
中国大数据产业从萌芽到如今渐成体系,已走过将近10个年头。“十四五”开局之年,大数据产业也进入了集成创新、深度应用的新阶段。大数据在医疗、工业、交通等领域的融合应用技术加快创新突破,大数据融合应用重点从虚拟经济转变为实体经济;大数据底层技术方面,信息安全、模式识别、语言工程、计算机辅助设计、高性能计算等加快突破,大数据技术领域逐渐补齐短板,并进一步强化长板。
—— 更多本行业研究分析详见前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》
2. 大数据可以应用在哪些方面
可以应用在云计算方面。
大数据具体的应用:
1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
3、统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
4、麻省理工学院利用手机定位数据和交通数据建立城市规划。
5、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
6、医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。
7、及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。
8、为成千上万的快递车辆规划实时交通路线,躲避拥堵。
9、分析所有SKU,以利润最大化为目标来定价和清理库存。
10、根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。
大数据的用处:
1、与云计算的深度结合。大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。
自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。
2、科学理论的突破。随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。
网络--大数据
3. 如何利用大数据做行业趋势分析
从数据源、分复析维度制和展示结果来分析如何利用大数据做行业趋势分析:
数据源:大数据采集电商平台线上销售数据和消费者的文本数据;
分析维度:通过大数据整合和语义分析等,分析行业销售趋势、品牌占比趋势、产品潮流趋势、消费者偏好趋势等维度;
展示结果:通过在线平台展示,持续监控数据的变化。
4. 大数据技术就业前景如何
近几年来,互联来网行业发源展风起云涌,而移动互联网、电子商务、物联网以及社交媒体的快速发展更促使我们快速进入了大数据时代。截止到目前,人们日常生活中的数据量已经从TB(1024GB=1TB)级别一跃升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别,数据将逐渐成为重要的生产因素,人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。大数据时代,专业的大数据人才必将成为人才市场上的香饽饽。
因此,当下大数据从业人员的两个主要趋势是:大数据领域从业人员的薪资将继续增长;大数据人才供不应求。
另外,大数据专业毕业生就业岗位非常多,比如:Java大数据分布式程序开发、大数据集成平台的应用与开发、大数据平台运维、Java海量数据分布式编程、大数据架构设计、大数据分析、Java大数据分布式开发、基于大数据平台的程序开发、数据可视化、大数据挖掘、Java海量数据分布式编程、大数据架构设计等。就业前景虽好,但自学较困难。有机会最好还是选择尚硅谷大数据培训,进行系统化学习。
5. 大数据未来的发展前景怎么样呢
从我国数据产量和存量来看,广东、北京、浙江、江苏、上海、等地区数据资源较为丰富,东部地区数据产量和存量均高于西部地区。从省际数据流量来看,东部地区月均互联网省际出口总流量占全国比重超过一半。
在以北上广为代表的东部地区数据资源丰富的背景下,其大数据产业发展水平快于其他地区省份。其中,北上广大数据企业数量占全国比重近70%,广东和北京大数据发展水平较高。
东部地区数据产量整体高于西部,省际数据流量远高于其他地区
2019年,我国数据产量总规模为3.9ZB。从数据产量的地区分布看,2019年全国数据产量排名前十位的省份为广东、北京、浙江、江苏、上海、山东、四川、河南、河北和湖南。
从人均数据产量来看,2019年人均数据产量排名前十位的省份分别是北京、上海、浙江、天津、广东、内蒙古、西藏、海南、江苏和辽宁。整体来看,东部地区数据产量和人均数据产量均高于西部地区。
—— 更多数据来请参考前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》
6. 大数据应用的第一、二、三产业价值
大数据应用的第一、二、三产业价值
大数据应用在目前已经得到了部分推广,其在IT、金融、交通、制造等多个方面已经开始提现价值。大数据应用的整体范围是从服务业开始,向第二、第一产业推广的,今后其在工农业领域也将发挥不亚于第三产业中的价值。
大数据应用的第三产业价值
大数据应用在理论上是可以让所有产业都从中获益的。而根据1985年我国统计局的产业划分来看,农、林、渔、牧被定为第一产业;工业和建筑业被定为第二产业;其他均为第三产业。而由于数据缺乏及从业人员等原因,第一、二产业的发展速度相对第三产业会有所迟缓。
第三产业一般被认为是服务业,其一般可分为流通部门和服务部门两种。而第三产业中汇聚了大量的数据以及大批科研中坚,因此大数据行业在第三产业中最先开展,效果也最为突出。
医疗健康方面,一些贴身设备可以收集用户的健康数据,从而建立一个专属的健康档案,通过运动、呼吸、心率、睡眠等多个角度来确定用户的需求,通过大数据分析为用户建立专属的解决方案。也可以在医院等场所收集患者信息,进行疫情的预测。
第三产业的数据产生量和处理能力都更高
交通方面,通过车辆位置、时间等信息确定路况,为驾驶员提供最快捷的路径选择, 避免堵车。在普通用户方面,利用手机收集地理位置等数据,结合地铁、公交等多种手段帮助用户找到最佳出行方式,同时利用这些数据进行数据库的更新,保障数据的完整无误。
金融方面, 利用机器学习及大数据对每一个信贷申请人进行全方位分析,对借款人过去的信用资料与数据库中的全体借款人的信用习惯相比较,检查借款人的发展趋势跟经常违约、随意透支的用户进行比较,减少欺诈损失、管理信贷风险以及不良信贷的问题。
电信方面,通过集成数据对客户流失的原因进行综合分,利用分析结果对于网络布局进行优化,为用户提供更好的服务;同时,对用户行为进行分析,及时推出符合用户兴趣的业务解决潜在流失用户问题。企业方面,发挥自身优势帮助企业收集、管理和评估大数据集,然后以可视化的方式将这些数据呈现给企业,帮助企业改进决策。
大数据应用的第二产业价值
大数据应用在第二产业之中与物联网有着密不可分的联系。物联网的发展,需要以RFID、工业大数据、传感器及其网络的应用为切入点,最终实现经济效益提升、安全生产和节能减排的目的。
钢筋水泥的大数据驱动
大数据一般具有种类多、数量大和实时性高的特点,而工业中的数据尽管多,可是普遍是以数据表格以及纸质数据为主的,这种数据管理方式存在诸多问题,也不利于数据分析。而随着工业化和信息化的结合,工业大数据得到了发展,但是数据依然是以非结构化数据为主。而大数据的发展并没有让工业数据采集变得容易,因此工业方面急需工业互联网的建设。
此外,工业数据如压力、温度等数据需要在语境中才能得到理解。如燃气轮机排气装置上的温度读数与机车的内部温度是完全不同,而如果采用传统方式分析可能需要的时间需要接近一个月,而在工业大数据应用后,这一周期得到了大幅缩短。
大数据应用的第一产业价值
在第一产业方面,种植业等一般需要大量经验的积累才能准确的掌握最大收益率。而借助大数据的力量则可以解决这一传统问题。
利用数据采集和数据分析,进行大量的采集点获取天气数据,结合天气模拟、土质分析、作物分析等做出综合判断,向农民推荐相关农作物进行种植,从而获得最大化收益。此外,可以在农田中布置传感器收集农田数据,将数据上传并进行分析后确定施肥、杀虫、灌溉以及防灾等时间,保障农作物的正常发展。
大数据种地是一种潮流趋势
渔业中可以利用探测器进行水质监测,分析确定含氧量等确定水质健康程度,帮助渔民及时了解养殖情况。林业和牧业也可以利用类似的方式获得相关帮助。
从第三产业的应用到第一、二产业推广,大数据应用的范围在不断推广。在未来,大数据还可能会向更多的领域拓展。
7. 大数据技术处理的数据类型繁多,大约
目前,不少人都会对大数据分析有着浓厚的兴趣,那么什么是大数据分析?大数据分析是指对海量的数据进行分析。大数据有4个显著的特点, 海量数据、急速、种类繁多、数据真实。大数据被称为当今最有潜质的IT词汇,接踵而来的的数据挖掘、数据安全、数据分析、数据存储等等围绕大数据的商业价值的利用逐渐成为行业人士争相追捧的利润焦点。
大数据分析类型有哪些?
1.交易数据(TRANSACTION DATA)
大数据平台能够获取时间跨度更大、更海量的结构化交易数据,这样就可以对更广泛的交易数据类型进行分析,不仅仅包括POS或电子商务购物数据,还包括行为交易数据,例如Web服务器记录的互联网点击流数据日志。
2.人为数据(HUMAN-GENERATED DATA)
非结构数据广泛存在于电子邮件、文档、图片、音频、视频,以及通过博客、维基,尤其是社交媒体产生的数据流。这些数据为使用文本分析功能进行分析提供了丰富的数据源泉。
3.移动数据(MOBILE DATA)
能够上网的智能手机和平板越来越普遍。这些移动设备上的App都能够追踪和沟通无数事件,从App内的交易数据(如搜索产品的记录事件)到个人信息资料或状态报告事件(如地点变更即报告一个新的地理编码)。
4.机器和传感器数据(MACHINE AND SENSOR DATA)
这包括功能设备创建或生成的数据,例如智能电表、智能温度控制器、工厂机器和连接互联网的家用电器。这些设备可以配置为与互联网络中的其他节点通信,还可以自动向中央服务器传输数据,这样就可以对数据进行分析。机器和传感器数据是来自新兴的物联网(IoT)所产生的主要例子。来自物联网的数据可以用于构建分析模型,连续监测预测性行为(如当传感器值表示有问题时进行识别),提供规定的指令(如警示技术人员在真正出问题之前检查设备)。
大数据分析是成功开展业务的重要组成部分。有效地使用数据,可以更好地理解企业的先前绩效,使用像Smartbi这样的商业智能软件,可以协助业务人员管理者为未来的活动做出更好的决策。在公司运营的各个级别,可以采用多种方式利用数据。所有行业都使用四种类型的大数据分析。虽然Smartbi将这些类别分为几类,但它们都链接在一起并相互构建。从最简单的分析类型转变为更复杂的分析方法,难度和所需资源也随之增加。同时,增加的洞察力和价值水平也在增加。
阅读原文
www.smartbi.com.cn
有用
|
分享
OPPO Reno9系列现已开售,至高享24期分期免息!
值得一看的手机相关信息推荐
OPPO Reno9系列,自研影像专用芯片,拍人自然有质感;16GB+512GB超速大内存,流畅加倍;高通8+旗舰芯片,畅快高能;官方商城以旧换新至高补贴3990元,立即购买!
OPPO广告
四轮电动车报价2023款上汽大众ID.4 X 焕新上市
值得一看的四轮电动车相关信息推荐
焕新品质,MEB平台倾心打造。综合补贴后售价189,288元起!即刻订购!
上海上汽大众汽车销售广告
天翼云电脑-灵活扩展\按需付费\云端存储\安全可靠!
租远程电脑-天翼云电脑-基础版,2核4G80G硬盘50M带宽,满足简单办公,客户服务等场景。天翼云电脑可通过手机外接扩展坞\显示器和键鼠等外设,还原完整桌面pc体验!
天翼云科技有限公司广告
大家还在搜
大数据常见的四种数据类型
大数据的三个类型
大数据分析的数据类型
大数据有哪三种数据类型
大数据的三种数据类型
大数据分析分为三种
c语言的四大数据类型是什么?
PHP中文网
2020-05-16
银承是什么意思是什么
财梯网
11-10
Notime 美容仪面部仪器 家用射频美容仪提拉紧致美容仪脸部美容器超声波美容仪 超声紧肤美容仪粉色
¥1099 元¥1200 元
购买
京东广告
word打字会覆盖后面的字怎么办
PHP中文网
04-01
13点赞
银行下一步工作措施范文
8. 大数据存在的安全问题有哪些
【导读】互联网时代,数据已成为公司的重要资产,许多公司会使用大数据等现代技术来收集和处理数据。大数据的应用,有助于公司改善业务运营并预测行业趋势。那么,大数据存在的安全问题有哪些呢?今天就跟随小编一起来了解下吧!
一、分布式系统
大数据解决方案将数据和操作分布在许多系统中,以实现更快的处理和分析。这种分布式系统可以平衡负载,避免单点故障。但是这样的系统容易受到安全威胁,黑客只要攻击一个点就可以渗透整个网络。
二.数据存取
大数据系统需要访问控制来限制对敏感数据的访问,否则,任何用户都可以访问机密数据,有些用户可能会出于恶意使用。此外,网络犯罪分子可以入侵与大数据系统相连的系统,窃取敏感数据。因此,使用大数据的公司需要检查和验证每个用户的身份。
三.数据不正确
网络犯罪分子可以通过操纵存储的数据来影响大数据系统的准确性。因此,网络犯罪分子可以创建虚假数据,并将这些数据提供给大数据系统。比如医疗机构可以利用大数据系统研究患者的病历,而黑客可以修改这些数据,产生不正确的诊断结果。
四.侵犯隐私
大数据系统通常包含机密数据,这是很多人非常关心的问题。这样的大数据隐私威胁已经被全世界的专家讨论过了。此外,网络犯罪分子经常攻击大数据系统以破坏敏感数据。这种数据泄露已经成为头条新闻,导致数百万人的敏感数据被盗。
五、云安全性不足
大数据系统收集的数据通常存储在云中,这可能是一个潜在的安全威胁。网络犯罪分子破坏了许多知名公司的云数据。如果存储的数据没有加密,并且没有适当的数据安全性,就会出现这些问题。
以上就是小编今天给大家整理分享关于“大数据存在的安全问题有哪些?”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。
9. 央行紧急排查银行与大数据公司合作,涉及10家平台
昨日(10月24日)下午,有消息称,央行紧急调研要求银行填写是否与第三方数据公司开展合作。
排查内容涉及数据采集、信用欺诈、信用评分、风控建模方面,央行要求上报第三方数据公司的名字、股东背景、是否涉及爬虫。
有银行人士向消金时代证实了此消息,并称:“我们没有收到直接文件,虽然通知是人行发的,但是银监局直接电话通知我们的,时间是本周二。”
网络上流传的一份截图(上图)显示,各企业 征信 机构还被要求梳理是否与:同盾科技、魔蝎科技、新颜科技、集奥聚合、公信宝、白骑士、天机数据、立木征信、聚信立、51信用卡等10家公司有业务或股权投资关联。
各机构排查自身业务中是否存在违规爬虫行为,如存在上述情况,请立即上报,对于存在违规爬虫业务的要立即整改,不存在上述两种情况的,请出具加盖公章的书面承诺,并于10月24日前送至征信管理处。
不过,另有截图(下图)显示监管部门要求填表了解是否与上述除同盾科技以外9家公司有业务或股权投资关联。
河北地区银行人士向我们表示:“要求我们交的仅是文字说明,未涉及表格。”
根据了解,被点名的平台或许是各地方监管的附加要求。据消金时代核实,某中部地区银行收到的通知内包含同盾科技,某北方地区银行收到的通知则不包含同盾科技。
而上述10家平台,最近都不算太平。
9月6日,魔蝎科技被警方控制,高管被带走,服务瘫痪,新颜科技CEO黄向前被带走,聚信立被曝有警方进驻调查。
9月11日,公信宝被警方查封。
9月12日,集奥聚合深圳分公司有10多人被带走。财新等媒体报道称,集奥聚合北京办公室也被深圳警方带走多人,包括爬虫数据接入负责人和合同负责人。
中秋节期间,同盾科技子公司信川科技法人代表、总经理徐斐和旗下数聚魔盒总经理童保华被警方带走协助调查。财新等媒体报道称,10月3日,黑龙江警方从同盾科技北京办公室带走多位从事爬虫业务的子公司员工。
10月9日,有媒体曝出立木征信于7月18日被查,法人刘勤枫及大部分员工被警方带走。
白骑士、天机数据此前也均是市场上较为活跃的有爬虫服务的平台,此前已暂停爬虫服务。
而据财新报道,除配合调查外,包括新颜CEO黄向前、同盾科技的两位相关业务负责人徐斐和童保华已被检方批捕。
已进行多轮自查
一张统计表截图(下图)显示,合作情况排查仅上报金融机构与数据公司在个人信息方面的合作情况,不包括企业信息合作。从此条来看,排查意在个人信息保护。
由于大数据行业动荡,对风险向来敏感的金融行业,早已开始多轮自查。9月,中国互联网金融协会发出窗口指导,提示行业内机构应清查使用数据的来源是否合规。
城商行、农商行、消金公司等多家机构也暂停大数据风控合作业务。一家数据商人士表示,各机构要求数据商出具文件对是否涉及爬虫业务进行说明。
上周,北京银监局下发文件,规范金融机构和金融科技公司合作,严禁金融机构与以“大数据”为名窃取、滥用、非法买卖或泄露客户信息的企业开展合作。
10月22日,北京金融局窗口指导摸排区内所有大数据企业是否存在违规爬虫业务。
近期,央行也下发了《个人金融信息(数据)保护试行办法》(以下简称:《办法》)的征求意见稿。据媒体披露,《办法》中最严苛的一点是,除了依法设立的征信机构之外,未经人民银行批准,任何单位和个人不得从事个人金融信息的收集处理工作,以及对外提供 个人征信 业务。
《办法》规定,金融机构也可以通过外包服务开展业务,只是对外包服务的要求更高,金融机构要进行充分调研审查,评估外包服务公司的能力。
从前述排查来看,有业内人士认为,监管强调的是客户信息来源是否合规,而非否定金融机构与数据机构合作形式。也有人认为,在《办法》正式下达前,中小银行应该不敢再合作。
打击套路贷,影响自下而上
前年开始,全国开始对套路贷和扫黑除恶进行打击。今年4月,最高人民法院、最高人民检察院发布《关于办理实施“软暴力”的刑事案件若干问题的意见》,打击范围升级。
10月11日至12日,“全国扫黑除恶专项斗争第二次推进会”在陕西西安召开,对网贷涉黑严打的监管风暴持续强化。10月21日,两高两部正式发布 《放贷意见》 ,界定无牌发放年化36%以上 贷款 达一定条件的非法放贷以非法经营罪处罚。
对套路贷、非法放贷的监管日益趋严。而很多大数据风控公司与“714高炮”等现金贷平台合作密切,甚至有公司亲自下场放贷,据财新报道,被查大数据公司均由于714高炮涉及的 催收 引发命案有关,公安对大数据公司是有针对性的介入。
网络现金贷暴力催收,引发数据行业动荡,有持牌机构人士称:“最近的数据公司被抓,导致贷款业务风控模型可控程度急速下降。”风波影响可谓“自下而上”。
除了涉及现金贷问题,不少使用爬虫技术的大数据风控公司本身就有致命缺陷。
对大数据风控服务商的强监管风暴,让“爬虫”一词常登热点,爬虫技术中立也被业内反复强调。
一般来说,大数据风控行业的数据来源分几种,数据源接入、机构 共享 及爬虫。其中,爬虫来的数据更为客观和数量庞大,在数据积累初期作用很大,但也常常采用笼统授权的方式爬取用户的非公开个人信息。
有业内人士向消金时代表示:“爬虫干的是脏活累活,市场过度竞争导致无利可图,性价比低,所以企业只能把盈利点放在爬虫以外的地方。聚信立、公信宝、魔蝎科技等数据公司都在做的事情就是把爬虫数据入库,如果仅输出评分倒也不至于引发强烈后果,但很多都把通话记录卖给催收,个人基本信息卖给营销公司等,涉嫌贩卖个人数据等问题。”
根据2017年6月施行的《最高人民法院、最高人民检察院关于办理侵犯公民个人信息刑事案件适用法律若干问题的解释》,(一)出售或者提供行踪轨迹信息,被他人用于犯罪的;(二)知道或者应当知道他人利用公民个人信息实施犯罪,向其出售或者提供的;(三)非法获取、出售或者提供行踪轨迹信息、通信内容、征信信息、财产信息五十条以上的;(四)非法获取、出售或者提供住宿信息、通信记录、健康生理信息、交易信息等其他可能影响人身、财产安全的公民个人信息五百条以上的;(五)非法获取、出售或者提供第三项、第四项规定以外的公民个人信息五千条以上的;(六)数量未达到第三项至第五项规定标准,但是按相应比例合计达到有关数量标准的等条件达到任一条,应当认定为刑法第二百五十三条之一规定的“情节严重”。
但是同时,上周北京银监局下发的文件也肯定了大数据技术的价值,“充分运用大数据技术,加大风险监测和预警力度”。
在数据治理体系逐渐完善的背景下,大数据在金融行业的应用仍有无限前景。
10. 大数据发展的前景怎么样
大数据主要的三大就业方向:
大数据系统研发类人才;
大数据应用开发类人才;
大数据分析类人才。
大数据十大就业职位:
一、ETL研发
随着数据种类的不断增加,企业对数据整合专业人才的需求越来越旺盛。ETL开发者与不同的数据来源和组织打交道,从不同的源头抽取数据,转换并导入数据仓库以满足企业的需要。
ETL研发,主要负责将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
目前,ETL行业相对成熟,相关岗位的工作生命周期比较长,通常由内部员工和外包合同商之间通力完成。ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL。
二、Hadoop开发
Hadoop的核心是HDFS和MapRece.HDFS提供了海量数据的存储,MapRece提供了对数据的计算。随着数据集规模不断增大,而传统BI的数据处理成本过高,企业对Hadoop及相关的廉价数据处理技术如Hive、HBase、MapRece、Pig等的需求将持续增长。如今具备Hadoop框架经验的技术人员是最抢手的大数据人才。
三、可视化(前端展现)工具开发
海量数据的分析是个大挑战,而新型数据可视化工具如Spotifre,Qlikview和Tableau可以直观高效地展示数据。
可视化开发就是在可视开发工具提供的图形用户界面上,通过操作界面元素,由可视开发工具自动生成应用软件。还可轻松跨越多个资源和层次连接您的所有数 据,经过时间考验,完全可扩展的,功能丰富全面的可视化组件库为开发人员提供了功能完整并且简单易用的组件集合,以用来构建极其丰富的用户界面。
过去,数据可视化属于商业智能开发者类别,但是随着Hadoop的崛起,数据可视化已经成了一项独立的专业技能和岗位。
四、信息架构开发
大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。
五、数据仓库研究
数据仓库是为企业所有级别的决策制定过程提供支持的所有类型数据的战略集合。它是单个数据存储,出于分析性报告和决策支持的目的而创建。为企业提供需要业务智能来指导业务流程改进和监视时间、成本、质量和控制。
数据仓库的专家熟悉Teradata、Neteeza和Exadata等公司的大数据一体机。能够在这些一体机上完成数据集成、管理和性能优化等工作。
六、OLAP开发
随着数据库技术的发展和应用,数据库存储的数据量从20世纪80年代的兆(M)字节及千兆(G)字节过渡到现在的兆兆(T)字节和千兆兆(P)字节,同时,用户的查询需求也越来越复杂,涉及的已不仅是查询或操纵一张关系表中的一条或几条记录,而且要对多张表中千万条记录的数据进行数据分析和信息综合。联机分析处理(OLAP)系统就负责解决此类海量数据处理的问题。
OLAP在线联机分析开发者,负责将数据从关系型或非关系型数据源中抽取出来建立模型,然后创建数据访问的用户界面,提供高性能的预定义查询功能。
七、数据科学研究
这一职位过去也被称为数据架构研究,数据科学家是一个全新的工种,能够将企业的数据和技术转化为企业的商业价值。随着数据学的进展,越来越多的实际工作 将会直接针对数据进行,这将使人类认识数据,从而认识自然和行为。因此,数据科学家首先应当具备优秀的沟通技能,能够同时将数据分析结果解释给IT部门和业务部门领导。
总的来说,数据科学家是分析师、艺术家的合体,需要具备多种交叉科学和商业技能。
八、数据预测(数据挖掘)分析
营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。
九、企业数据管理
企业要提高数据质量必须考虑进行数据管理,并需要为此设立数据管家职位,这一职位的人员需要能够利用各种技术工具汇集企业周围的大量数据,并将数据清洗 和规范化,将数据导入数据仓库中,成为一个可用的版本。然后,通过报表和分析技术,数据被切片、切块,并交付给成千上万的人。担当数据管家的人,需要保证 市场数据的完整性,准确性,唯一性,真实性和不冗余。
十、数据安全研究
数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。数据安全研究员还需要具有较强的管理经验,具备运维管理方面的知识和能力,对企业传统业务有较深刻的理解,才能确保企业数据安全做到一丝不漏。