导航:首页 > 网络数据 > 大数据下的数据分析平台架构

大数据下的数据分析平台架构

发布时间:2023-01-07 05:10:06

A. 大数据分析架构需权衡四要素

大数据分析架构需权衡四要素

通过提供对更广泛信息集的访问,大数据就可以为数据分析师和业务用户产生分析见解提供一臂之力。成功的大数据分析应用程序会揭示某些趋势和模式,以此来为决策制定提供更好的服务,并会指出新的创收机会和让企业领先于他们的商业竞争对手的方法。但首先,企业往往需要增强他们现有的IT基础设施建设以及数据管理流程以支持大数据架构的规模和复杂性。

Hadoop系统和NoSQL数据库已经成为管理大数据环境的重要工具。不过,在很多情况下,企业利用他们现有的数据仓库设施,或是一个新老混合的技术来对大数据流入他们的系统进行管理。

无论一个公司部署什么类型的大数据技术栈,有一些共通的因素必须加以考量,以保证为大数据分析工作提供一个有效的框架。在开始一个大数据项目之前,去审视项目所要承担的新数据需求的更大图景显得尤为关键。下面来让我们检视四个需要加以考量的因素。

数据准确性

数据质量问题对于BI和数据管理专业人士来说一定不陌生。很多BI和分析团队努力保证数据的有效性并说服业务使用人员去信任信息资产的准确性和可靠性。作为个性化分析库而得以广泛使用的电子表格或电子报表软件可以对数据中信任缺乏的问题加以弥补:在Excel中存储和操作分析数据的功能为支持自助分析能力创造了环境,但可能不会激发其他用户对结果的自信心。数据仓库与数据集成和数据质量工具一起,能够通过为管理BI和分析数据提供标准化流程来帮助树立信心。但是,由于不断增加的数据容量和更广泛多样的数据类型,特别是当涉及结构化和非结构化数据混合时,就会对一个大数据的实施增加难度系数。建立评估数据质量标准以及对它们进行升级以处理那些更大、更多样数据集,对于大数据实施的成功和分析框架的使用是至关重要的。

存储适用

数据仓储的一个核心要求是处理和存储大数据集的能力。但并不是所有数据仓库在这方面都满足要求。一些是针对复杂查询处理进行优化,而其他的则并非如此。并且在许多大数据应用程序中,相较于事务系统,由于添加了非结构化数据还有数据的创建和收集增速迅猛,用Hadoop和NoSQL技术增强数据仓库就成为必要。对于一个希望获取并分析大数据的组织来说,光有存储容量是不够的;而重要的部分在于将数据置于何处才是最佳的,这样数据就可以转化为有用信息并为数据科学家和其他用户所利用。

查询性能

大数据分析依赖于及时处理和查询复杂数据的能力。一个很好地例子就是:一家公司开发了一个数据仓库用来维护从能源使用计收集到的数据。在产品评估过程中,某供应商的系统有能力在15分钟内处理七百万条记录,而另一家则在相同时间内可以处理最高三十万条记录。能否识别正确的基础设施来支持快速的数据可用性和高性能查询就意味着成功还是失败。

稳定性

随着许多组织中数据量和数据种类的增长,大数据平台的建立需要有对未来的考量。必须提前考虑和求证正在进行评估的大数据技术是否能够进行扩展,以达到不断向前发展的需求所要求的级别。这便超出了存储容量的范畴,将性能也包含了进来,对那些从社交网络,传感器,系统日志文件以及其他非事务源获取数据作为其业务数据扩展的公司来说尤为如此。

分析多样而复杂的数据集需要一个健壮且富有弹性的大数据架构。在筹划项目时通过对这四个因素进行考量,组织可以确定他们是否已经拥有能够处理如此严苛大数据的分析程序亦或是需要额外的软硬件以及数据管理流程来达到他们的大数据目标。

以上是小编为大家分享的关于大数据分析架构需权衡四要素的相关内容,更多信息可以关注环球青藤分享更多干货

B. 如何架构大数据系统 hadoop

Hadoop在可伸缩性、健壮性、计算性能和成本上具有无可替代的优势,事实上已成为当前互联网企业主流的大数据分析平台。本文主要介绍一种基于Hadoop平台的多维分析和数据挖掘平台架构。作为一家互联网数据分析公司,我们在海量数据的分析领域那真是被“逼上梁山”。多年来在严苛的业务需求和数据压力下,我们几乎尝试了所有可能的大数据分析方法,最终落地于Hadoop平台之上。
1. 大数据分析大分类
Hadoop平台对业务的针对性较强,为了让你明确它是否符合你的业务,现粗略地从几个角度将大数据分析的业务需求分类,针对不同的具体需求,应采用不同的数据分析架构。
按照数据分析的实时性,分为实时数据分析和离线数据分析两种。
实时数据分析一般用于金融、移动和互联网B2C等产品,往往要求在数秒内返回上亿行数据的分析,从而达到不影响用户体验的目的。要满足这样的需求,可以采用精心设计的传统关系型数据库组成并行处理集群,或者采用一些内存计算平台,或者采用HDD的架构,这些无疑都需要比较高的软硬件成本。目前比较新的海量数据实时分析工具有EMC的Greenplum、SAP的HANA等。
对于大多数反馈时间要求不是那么严苛的应用,比如离线统计分析、机器学习、搜索引擎的反向索引计算、推荐引擎的计算等,应采用离线分析的方式,通过数据采集工具将日志数据导入专用的分析平台。但面对海量数据,传统的ETL工具往往彻底失效,主要原因是数据格式转换的开销太大,在性能上无法满足海量数据的采集需求。互联网企业的海量数据采集工具,有Facebook开源的Scribe、LinkedIn开源的Kafka、淘宝开源的Timetunnel、Hadoop的Chukwa等,均可以满足每秒数百MB的日志数据采集和传输需求,并将这些数据上载到Hadoop中央系统上。
按照大数据的数据量,分为内存级别、BI级别、海量级别三种。
这里的内存级别指的是数据量不超过集群的内存最大值。不要小看今天内存的容量,Facebook缓存在内存的Memcached中的数据高达320TB,而目前的PC服务器,内存也可以超过百GB。因此可以采用一些内存数据库,将热点数据常驻内存之中,从而取得非常快速的分析能力,非常适合实时分析业务。图1是一种实际可行的MongoDB分析架构。

图1 用于实时分析的MongoDB架构
MongoDB大集群目前存在一些稳定性问题,会发生周期性的写堵塞和主从同步失效,但仍不失为一种潜力十足的可以用于高速数据分析的NoSQL。
此外,目前大多数服务厂商都已经推出了带4GB以上SSD的解决方案,利用内存+SSD,也可以轻易达到内存分析的性能。随着SSD的发展,内存数据分析必然能得到更加广泛的应用。
BI级别指的是那些对于内存来说太大的数据量,但一般可以将其放入传统的BI产品和专门设计的BI数据库之中进行分析。目前主流的BI产品都有支持TB级以上的数据分析方案。种类繁多,就不具体列举了。
海量级别指的是对于数据库和BI产品已经完全失效或者成本过高的数据量。海量数据级别的优秀企业级产品也有很多,但基于软硬件的成本原因,目前大多数互联网企业采用Hadoop的HDFS分布式文件系统来存储数据,并使用MapRece进行分析。本文稍后将主要介绍Hadoop上基于MapRece的一个多维数据分析平台。
数据分析的算法复杂度
根据不同的业务需求,数据分析的算法也差异巨大,而数据分析的算法复杂度和架构是紧密关联的。举个例子,Redis是一个性能非常高的内存Key-Value NoSQL,它支持List和Set、SortedSet等简单集合,如果你的数据分析需求简单地通过排序,链表就可以解决,同时总的数据量不大于内存(准确地说是内存加上虚拟内存再除以2),那么无疑使用Redis会达到非常惊人的分析性能。
还有很多易并行问题(Embarrassingly Parallel),计算可以分解成完全独立的部分,或者很简单地就能改造出分布式算法,比如大规模脸部识别、图形渲染等,这样的问题自然是使用并行处理集群比较适合。
而大多数统计分析,机器学习问题可以用MapRece算法改写。MapRece目前最擅长的计算领域有流量统计、推荐引擎、趋势分析、用户行为分析、数据挖掘分类器、分布式索引等。
2. 面对大数据OLAP大一些问题

OLAP分析需要进行大量的数据分组和表间关联,而这些显然不是NoSQL和传统数据库的强项,往往必须使用特定的针对BI优化的数据库。比如绝大多数针对BI优化的数据库采用了列存储或混合存储、压缩、延迟加载、对存储数据块的预统计、分片索引等技术。

Hadoop平台上的OLAP分析,同样存在这个问题,Facebook针对Hive开发的RCFile数据格式,就是采用了上述的一些优化技术,从而达到了较好的数据分析性能。如图2所示。
然而,对于Hadoop平台来说,单单通过使用Hive模仿出SQL,对于数据分析来说远远不够,首先Hive虽然将HiveQL翻译MapRece的时候进行了优化,但依然效率低下。多维分析时依然要做事实表和维度表的关联,维度一多性能必然大幅下降。其次,RCFile的行列混合存储模式,事实上限制死了数据格式,也就是说数据格式是针对特定分析预先设计好的,一旦分析的业务模型有所改动,海量数据转换格式的代价是极其巨大的。最后,HiveQL对OLAP业务分析人员依然是非常不友善的,维度和度量才是直接针对业务人员的分析语言。
而且目前OLAP存在的最大问题是:业务灵活多变,必然导致业务模型随之经常发生变化,而业务维度和度量一旦发生变化,技术人员需要把整个Cube(多维立方体)重新定义并重新生成,业务人员只能在此Cube上进行多维分析,这样就限制了业务人员快速改变问题分析的角度,从而使所谓的BI系统成为死板的日常报表系统。
使用Hadoop进行多维分析,首先能解决上述维度难以改变的问题,利用Hadoop中数据非结构化的特征,采集来的数据本身就是包含大量冗余信息的。同时也可以将大量冗余的维度信息整合到事实表中,这样可以在冗余维度下灵活地改变问题分析的角度。其次利用Hadoop MapRece强大的并行化处理能力,无论OLAP分析中的维度增加多少,开销并不显著增长。换言之,Hadoop可以支持一个巨大无比的Cube,包含了无数你想到或者想不到的维度,而且每次多维分析,都可以支持成千上百个维度,并不会显著影响分析的性能。


而且目前OLAP存在的最大问题是:业务灵活多变,必然导致业务模型随之经常发生变化,而业务维度和度量一旦发生变化,技术人员需要把整个Cube(多维立方体)重新定义并重新生成,业务人员只能在此Cube上进行多维分析,这样就限制了业务人员快速改变问题分析的角度,从而使所谓的BI系统成为死板的日常报表系统。
3. 一种Hadoop多维分析平台的架构
整个架构由四大部分组成:数据采集模块、数据冗余模块、维度定义模块、并行分 析模块。

数据采集模块采用了Cloudera的Flume,将海量的小日志文件进行高速传输和合并,并能够确保数据的传输安全性。单个collector宕机之后,数据也不会丢失,并能将agent数据自动转移到其他的colllecter处理,不会影响整个采集系统的运行。如图5所示。

数据冗余模块不是必须的,但如果日志数据中没有足够的维度信息,或者需要比较频繁地增加维度,则需要定义数据冗余模块。通过冗余维度定义器定义需要冗余的维度信息和来源(数据库、文件、内存等),并指定扩展方式,将信息写入数据日志中。在海量数据下,数据冗余模块往往成为整个系统的瓶颈,建议使用一些比较快的内存NoSQL来冗余原始数据,并采用尽可能多的节点进行并行冗余;或者也完全可以在Hadoop中执行批量Map,进行数据格式的转化。

维度定义模块是面向业务用户的前端模块,用户通过可视化的定义器从数据日志中定义维度和度量,并能自动生成一种多维分析语言,同时可以使用可视化的分析器通过GUI执行刚刚定义好的多维分析命令。
并行分析模块接受用户提交的多维分析命令,并将通过核心模块将该命令解析为Map-Rece,提交给Hadoop集群之后,生成报表供报表中心展示。
核心模块是将多维分析语言转化为MapRece的解析器,读取用户定义的维度和度量,将用户的多维分析命令翻译成MapRece程序。核心模块的具体逻辑如图6所示。

图6中根据JobConf参数进行Map和Rece类的拼装并不复杂,难点是很多实际问题很难通过一个MapRece Job解决,必须通过多个MapRece Job组成工作流(WorkFlow),这里是最需要根据业务进行定制的部分。图7是一个简单的MapRece工作流的例子。

MapRece的输出一般是统计分析的结果,数据量相较于输入的海量数据会小很多,这样就可以导入传统的数据报表产品中进行展现。

C. 大数据平台系统结构有哪些

首要层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在版这里从大数据的特征定义权理解行业对大数据的整体描绘和定性;从对大数据价值的讨论来深入解析大数据的珍贵地点;观察大数据的开展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的持久博弈。

第二层面是技能,技能是大数据价值表现的手法和前进的基石。在这里分别从云核算、分布式处理技能、存储技能和感知技能的开展来说明大数据从收集、处理、存储到构成结果的整个进程。

第三层面是实践,实践是大数据的最终价值表现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展示的美好景象及即将完成的蓝图。

关于大数据平台系统结构有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

D. 大数据平台有哪些架构

01

传统大数据架构

以上的种种架构都围绕海量数据处理为主,Unifield架构则将机器学习和数据处理揉为一体,在流处理层新增了机器学习层。

优点:

提供了一套数据分析和机器学习结合的架构方案,解决了机器学习如何与数据平台进行结合的问题。

缺点:

实施复杂度更高,对于机器学习架构来说,从软件包到硬件部署都和数据分析平台有着非常大的差别,因此在实施过程中的难度系数更高。

适用场景:

有着大量数据需要分析,同时对机器学习方便又有着非常大的需求或者有规划。

大数据时代各种技术日新月异,想要保持竞争力就必须得不断地学习。写这些文章的目的是希望能帮到一些人了解学习大数据相关知识 。加米谷大数据,大数据人才培养机构,喜欢的同学可关注下,每天花一点时间学习,长期积累总是会有收获的。

E. “大数据架构”用哪种框架更为合适

个完整的大数据平台应该提供离线计算、即席查询、实时计算、实时查询这几个方面的功能。
hadoop、spark、storm 无论哪一个,单独不可能完成上面的所有功能。

hadoop+spark+hive是一个很不错的选择.hadoop的HDFS毋庸置疑是分布式文件系统的解决方案,解决存储问题;hadoop maprece、hive、spark application、sparkSQL解决的是离线计算和即席查询的问题;spark streaming解决的是实时计算问题;另外,还需要HBase或者Redis等NOSQL技术来解决实时查询的问题。

除了这些,大数据平台中必不可少的需要任务调度系统和数据交换工具;
任务调度系统解决所有大数据平台中的任务调度与监控;数据交换工具解决其他数据源与HDFS之间的数据传输,比如:数据库到HDFS、HDFS到数据库等等。关于大数据平台的架构技术文章,可搜索"lxw的大数据田地",里面有很多。

F. 主流的数据分析平台构架有哪些

1、Hadoop


Hadoop 采用 Map Rece 分布式计算框架,根据 GFS开发了 HDFS 分布式文件系统,根据 Big Table 开发了 HBase数据存储系统。Hadoop 的开源特性使其成为分布式计算系统的事实上的国际标准。Yahoo,Facebook,Amazon 以及国内的网络,阿里巴巴等众多互联网公司都以 Hadoop 为基础搭建自己的分布。


2、Spark


Spark 是在 Hadoop 的基础上进行了一些架构上的改良。Spark 与Hadoop 最大的不同点在于,Hadoop 使用硬盘来存储数据,而Spark 使用内存来存储数据,因此 Spark 可以提供超过 Ha?doop 100 倍的运算速度。由于内存断电后会丢失数据,Spark不能用于处理需要长期保存的数据。


3、Storm


Storm是 Twitter 主推的分布式计算系统。它在Hadoop的基础上提供了实时运算的特性,可以实时的处理大数据流。不同于Hadoop和Spark,Storm不进行数据的收集和存储工作,它直接通过网络实时的接受数据并且实时的处理数据,然后直接通过网络实时的传回结果。


4、Samza


Samza 是由 Linked In 开源的一项技术,是一个分布式流处理框架,专用于实时数据的处理,非常像Twitter的流处理系统Storm。不同的是Sam?za 基于 Hadoop,而且使用了 Linked In 自家的 Kafka 分布式消息系统。


Samza 非常适用于实时流数据处理的业务,如数据跟踪、日志服务、实时服务等应用,它能够帮助开发者进行高速消息处理,同时还具有良好的容错能力。

G. 如何搭建大数据分析平台

1、 搭建大数据分析平台的背景
在大数据之前,BI就已经存在很久了,简单把大数据等同于BI,明显是不恰当的。但两者又是紧密关联的,相辅相成的。BI是达成业务管理的应用工具,没有BI,大数据就没有了价值转化的工具,就无法把数据的价值呈现给用户,也就无法有效地支撑企业经营管理决策;大数据则是基础,没有大数据,BI就失去了存在的基础,没有办法快速、实时、高效地处理数据,支撑应用。 所以,数据的价值发挥,大数据平台的建设,必然是囊括了大数据处理与BI应用分析建设的。
2、 大数据分析平台的特点
数据摄取、数据管理、ETL和数据仓库:提供有效的数据入库与管理数据用于管理作为一种宝贵的资源。
Hadoop系统功能:提供海量存储的任何类型的数据,大量处理功率和处理能力几乎是无限并行工作或任务
流计算在拉动特征:用于流的数据、处理数据并将这些流作为单个流。
内容管理特征:综合生命周期管理和文档内容。
数据治理综合:安全、治理和合规解决方案来保护数据。
3、 怎样去搭建大数据分析平台
大数据分析处理平台就是整合当前主流的各种具有不同侧重点的大数据处理分析框架和工具,实现对数据的挖掘和分析,一个大数据分析平台涉及到的组件众多,如何将其有机地结合起来,完成海量数据的挖掘是一项复杂的工作。我们可以利用亿信一站式数据分析平台(ABI),可以快速构建大数据分析平台,该平台集合了从数据源接入到ETL和数据仓库进行数据整合,再到数据分析,全部在一个平台上完成。
亿信一站式数据分析平台(ABI)囊括了企业全部所需的大数据分析工具。ABI可以对各类业务进行前瞻性预测分析,并为企业各层次用户提供统一的决策分析支持,提升数据共享与流转能力。

H. 大数据分析系统平台方案有哪些

目前常用的大数据解决方案包括以下几类
一、Hadoop。Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。
二、HPCC。HPCC,High Performance Computing and Communications(高性能计算与通信)的缩写。HPCC主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆 比特网络技术,扩展研究和教育机构及网络连接能力。

三、Storm。Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。 Storm支持许多种编程语言,使用起来非常有趣。Storm由Twitter开源而来
四、Apache Drill。为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。该项目帮助谷歌实现海量数据集的分析处理,包括分析抓取Web文档、跟踪安装在Android Market上的应用程序数据、分析垃圾邮件、分析谷歌分布式构建系统上的测试结果等等。

I. 大数据平台架构有哪些

一、事务使用:其实指的是数据收集,你经过什么样的方法收集到数据。互联网收集数据相对简略,经过网页、App就能够收集到数据,比方许多银行现在都有自己的App。

更深层次的还能收集到用户的行为数据,能够切分出来许多维度,做很细的剖析。但是对于涉及到线下的行业,数据收集就需要借助各类的事务体系去完成。

二、数据集成:指的其实是ETL,指的是用户从数据源抽取出所需的数据,经过数据清洗,终究依照预先定义好的数据仓库模型,将数据加载到数据仓库中去。而这儿的Kettle仅仅ETL的其中一种。

三、数据存储:指的便是数据仓库的建设了,简略来说能够分为事务数据层(DW)、指标层、维度层、汇总层(DWA)。

四、数据同享层:表明在数据仓库与事务体系间提供数据同享服务。Web Service和Web API,代表的是一种数据间的衔接方法,还有一些其他衔接方法,能够依照自己的情况来确定。

五、数据剖析层:剖析函数就相对比较容易理解了,便是各种数学函数,比方K均值剖析、聚类、RMF模型等等。

六、数据展现:结果以什么样的方式呈现,其实便是数据可视化。这儿建议用敏捷BI,和传统BI不同的是,它能经过简略的拖拽就生成报表,学习成本较低。

七、数据访问:这个就比较简略了,看你是经过什么样的方法去查看这些数据,图中示例的是因为B/S架构,终究的可视化结果是经过浏览器访问的。

关于大数据平台架构有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

J. 大数据平台由哪5个部分组成简述各个部分内容的特点

一、数据采集

ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。

二、数据存取

关系数据库、NOSQL、SQL等。

三、基础架构

云存储、分布式文件存储等。

四、数据处理

自然语言处理(NLP,Natural Language Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机"理解"自然语言,所以自然语言处理又叫做自然语言理解(NLU,Natural Language Understanding),也称为计算语言学(Computational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。

五、统计分析

假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。

六、数据挖掘

分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)。

七、模型预测

预测模型、机器学习、建模仿真。

八、结果呈现

云计算、标签云、关系图等。

阅读全文

与大数据下的数据分析平台架构相关的资料

热点内容
矩阵论教程 浏览:971
字体文件分系统吗 浏览:921
编程一级考试要带什么证件 浏览:923
extjs表格修改前数据 浏览:612
什么是数据库的函数 浏览:722
oppo手机怎么用数据线连接电脑 浏览:247
恒智天成备份文件在哪里 浏览:976
电脑没联网怎么拷贝文件 浏览:224
wps工具栏怎么换成中文 浏览:338
win7和xp共享文件 浏览:883
苹果4代音量键没反应 浏览:827
怎样打开tif文件 浏览:153
java下载文件zip 浏览:440
qq浏览器压缩文件怎么设密码 浏览:526
黄埔数控编程哪里好 浏览:406
mac109升级1010 浏览:691
在java的菜单如何导入文件 浏览:982
现在什么网站销量最高 浏览:760
angularjsclass定义 浏览:157
ug数控编程怎么导出程序 浏览:466

友情链接