⑴ 什么和大数据随之在整个供应链中被广泛应用
什么和大数据随之在整个供应链中被广泛应用
什么和大数据随之在整个供应链中被广泛应用,在数字化时代,数据分析逐步成为从业人员的必备技能之一。所以我们应该注重做好数据分析。那么什么和大数据随之在整个供应链中被广泛应用?
大数据时代对采购和供应链带来的挑战和机遇
1、大数据时代及其特征
大数据(Big Data)是指所涉及的规模巨大的数据。随着时代的不断进步以及科技的飞速发展,互联网、物联网、移动通讯、管理信息化、电子商务等技术不断相互渗透,并作用到国家、企业和民生的方方面面,今天,人们用大数据来描述和定义信息爆炸时代产生的海量数据,以及在合理时间内达到撷取、管理、处理、并整理成为帮助人们处理事务和决策等更积极目的的资讯与知识。
美国互联网数据中心指出,互联网上的数据每年将增长50%,每两年便将翻一番,而目前世界上90%以上的数据都是最近几年才产生的。2020年,全世界所产生的数据规模将达到今天的44倍。从这些数据每天增加的数量来看,世界目前已进入大数据时代。
大数据时代凸显了数据资源的重要意义。2012年奥巴马政府宣布投资2亿美元拉动大数据相关产业的发展,将“大数据战略”上升为国家战略,将大数据定义为“未来的新石油”,把对数据的占有和控制视为陆权、海权、空权之外的另一种国家核心资产。2013年,法国政府发布了其《数字化路线图》,列出了将会大力支持的5项战略性高新技术,“大数据”就是其中一项。
2012年,日本总务省发布2013年行动计划,明确提出“通过大数据和开放数据开创新市场”。联合国在2012年发布的大数据政务白皮书中指出,大数据对于联合国和各国政府来说是一个历史性的机遇。我国也将大数据产业看作为战略性产业,成立了“大数据专家委员会”。
在“大数据”2014年十大趋势预测中,包括了数据商品化与数据共享联盟化,大数据生态环境逐步发展等内容。同时,大数据专家委员会预测,2014年大数据在互联网和电子商务、金融(股市预测、金融分析)、健康医疗(流行病监控和预测等)、生物信息、制药等方面将会有令人瞩目的应用。
大数据时代是大数据价值充分发挥的时代。据赛门铁克公司的调研报告,全球企业的信息存储总量已达2.2ZB(1ZB=1024EB,1EB=1024PB),年增67%。世界上每分钟产生1700TB 的数据,但是吸引我们的不仅仅是这个庞大的数字本身,而是我们如何利用这些数据做些什么。
大数据可以运用到各行各业,在宏观经济方面,IBM日本公司建立经济指标预测系统,从互联网新闻中搜索影响制造业的480项经济数据,计算采购经理人指数的预测值;印第安纳大学利用谷歌公司提供的心情分析工具,从近千万条网民留言中归纳出六种心情,进而对道琼斯工业指数的变化进行预测,准确率达到87%;
在制造业方面,华尔街对冲基金依据购物网站的顾客评论,分析企业产品销售状况;一些企业利用大数据分析实现对采购和合理库存量的管理,通过分析网上数据了解客户需求、掌握市场动向,等等。
据麦肯锡公司测算:大数据将给美国医疗服务业带来3000亿美元的价值,使美国零售业净利润增长达到60%,使制造业产品开发、组装成本下降50%,而大数据所带来的新需求,将推动整个信息产业的创新发展;根据经济与商业研究中心的最新研究,大数据将为英国经济增加2160亿英镑(约合3467亿美元)以上的潜在收益。
2、大数据时代对采购和供应链带来的挑战和机遇
首先,商务环境和商务模式变得越来越复杂,且更加动荡、多样和个性化。其二,电子商务业务模式的飞速发展打破了国家疆界,使得跨境业务速增、商业活动频繁,同时伴随着数据量的剧增。。其三,大数据应用处理成为企业和社会竞争发展的重要焦点。其四,有效挖掘大数据成为时代面临的重要课题。最后,许多企业对大数据的重要性认识不足,没有充分了解其价值。
供应链管理中,及时和准确的数据,为什么如此重要?
1 、供应链中数据的类型
数据有许多类型,其中有一种分类方法是把它分为静态和动态数据,前者包括了公司基本信息、产品型号、采购价格、BOM等等相对固定的信息。
后者主要是一些交易性的信息,比如生产线每日的产量、客户订单数量、仓库实际收货数量、运输所在位置等等变动的信息。
静态数据做到准确即可,没有实时性的要求,比如公司的名称一般不会发生变动,只需要确保公司地址、法人和开户银行等信息是正确的。
动态数据的要求就很高了,不仅要准确,还要能反映出每时每刻的实际情况。
大家都有网购的经验,在商品出库以后,快递公司会每隔一段时间刷新包裹所在位置,这是通过车载GPS定位实现的,然后根据卡车配送计划,大致上能给出派送的时间。通过一台卡车上的GPS,可以跟踪整车的货物,这是1对N的关系,因此实现动态数据的成本并不高。
离散型制造业的情况就复杂多了,一件商品需要从原材料供应商开始追溯,进入工厂以后,需要经过若干个不同生产加工中心,然后完成组装、检验,最终才能入库,配送给下游的经销商或零售商。
我们很少会在原材料上放置追踪】定位装置,除非这批货物价值很高,或是有这方面的强制监管要求,比如药品。
如果想要跟踪生产进度,就需要使用工业4、0的技术,在每台设备上装传感器,完成加工后,系统自动上传数据。如果要在每台生产和内部搬运设备上都安装传感器,对于一家工厂来说负担太大,性价比不高,除了少数的行业标杆企业以外,对于大多数工厂来说,想要做实时数据的想法并不强烈。
2、 为什么供应链需要及时和准确的数据?
话虽如此,供应链对于数据及时和准确性是有很强的需求的,因为我们要在所有的生产、分销、采购和售后服务之间建立数据的无缝链接。除此之外,还有两个关键因素使得我们必须获得及时和准确性。
2、1增强供应链可视性
对于供应链上的玩家来说,关键的可视性问题包括了货物的预计生产出货时间,比如供应商承诺了30天交货,但是实际上他需要45天,因为一些原材料涨价了,供应商需要更多的时间在市场上找到货源,他不愿意买更贵的原料,因为这会增加成本,除非客户愿意接受供应商的调价请求。
原料和零部件库存的所处位置也属于可视性,客户需要根据这些信息,来安排后续的生产和销售计划,并且非常依赖于信息的准确性。当供应商承诺货物将会在某日送到客户工厂后,供应链就把这个信息输入系统,并以此为依据来制定生产计划,销售根据生产完成日期来通知客户,环环相扣。
一旦供应商的信息有误,货物晚于承诺时间到达,就会影响到供应链下游的安排,所谓的“计划赶不上变化”就发生了。
追踪交货期和库存位置仅是可视性的初阶水平,更深层次的要求是可以预警供应链中断风险。根据现有的信息,我们需要判断何时何地会出现缺货,以及对生产和销售的影响是什么。
比如,生产线缺少某种零部件,所以会停线4个小时。如果每小时产量是100套产品,每套售价是200元,那么造成的损失就等于4*100*200=80000元。
当然在现实世界中计算的方式更加复杂,某种原料的短缺会牵涉到N多产品和N多客户。如果我们能增强可视性,就能够预见到未来的潜在供应短缺,并能够在第一时间里作出反应。
要实现这点,就必须让数据及时和准确地在供应链上下游之间自动传输,尽量减少人为的干预的环节。
2、2提高计划的'有效性
预测计划的重要输入是历史销售记录,以数据为基础,结合预测模型,制定出中长期的预测。
对于制造企业来说,财务需要供应链提供的输入,来制定未来的商业计划和各类预算,比如库存、采购金额、运费等等。
底层数据的准确性非常重要,所有的计划都是在这些数据的基础上,配以数据模型,然后“加工”出来的。供应链会花费一定的时间在数据维护上,就是要确保基础数据的准确性。
我们知道预测有一个定律,近期的准确性高于远期的,就像是预测天气一样,天气预报上关于明天的天气是最准的,越往后准确性越低。
供应链为了增强预测准确性,就需要拿到最新的数据,这样做出来的计划准确性就越高。现在的需求波动越来越频繁,可能一天一个样,想要做出最准确的判断,必须用最新的数据。
3、 获取及时和准确的数据的关键事项
考虑到以上的两点动因,供应链一直在努力获得最及时和准确的数据。这里有几个需要特别留意的点值得大家关注。
3、1自动化数据采集
如有可能的话,应该尽量在实时情况下收集、传输数据。数据存储在供应链内部和外部的各个节点上,为了提升数据可靠性和及时性,最好的办法就是自动化采集。
在内部实施这点相对容易,只需要投资数字化工具,实施IT项目就可以实现。
在外部伙伴实施起来难度就高了,其中的最大阻力是害怕共享数据后的商业机密泄露。
供应商担心客户知道了他的上游供应商的信息,可能会跳过中间商,不让他继续赚差价。因此在做系统对接的时候,要确保只分享可以分享的数据,比如包装规格之类的。
3、2控制对相关数据的访问
根据使用者在公司中的职能,给予特定的数据访问权限,比如采购订单只能由采购计划员进行创建和修改,公司里的其他人只有查看的权限。
对于外部伙伴也是一样,客户可以查看供应商的库存商品数量信息,但他绝对不能访问商品的成本分析等商业机密。
3、3努力提升、维护数据的准确性
我们需要不断提升数据的准确性,其中关键在于数据采集和输入。我们要定期维护数据,比如系统中库存或是倒冲过账出现了负数,说明某些地方的数据存在问题,流程可能有漏洞,需要我们找到问题点并且尽快处理掉。
数据是供应链的根基,为我们制定各类计划提供了基础。实现准确和及时的数据虽然有点小贵,但是在供应链大中断时期(the Great Supply Chain Disruption),投资必然能带来相应的回报。
大数据成为供应链利器
在中国供应链大数据份额中,零售业、制造业、服务业(非金融)、医疗业占比最多,约占83%市场份额,而能源仅占1%。而据易观智库预测,2016年中国供应链大数据市场将达到60亿左右(不含供应链金融部分)。
该报告把供应链大数据分为结构数据、非结构数据、传感器数据及新类型数据四种,涵盖了交易数据、时间段数据、库存数据、客户服务数据、位置数据等各个方面。报告显示,目前,大数据已经被广泛应用于包括物流、服务和金融等供应链环节。
有效推进物流模式变革
在供应链中,大数据的作用首先体现在物流中。2014年12月26日,中国物流信息中心公布的数据显示,1-11月,全国社会物流总额196.9万亿元,按可比价格计算,增长8.3%,较上年同期回落1.3个百分点。而从近五年的情况来看,物流企业资产规模增速逐步放缓,物流企业经营效益偏弱。
在这种情况下,物流企业需要从价值延伸的角度提供超过客户预期的服务,以高效物流+增值服务的思路发展,而大数据是物流企业提供增值服务的基础要素。另外,随着众多专业化物流模式的兴起,降低供应链成本的核心将是数据资产的运用,大数据能够有效地推进高效率的`物流模式变革,是降低物流成本费用的有效手段。
利用大数据,企业可以与中国气象服务中心合作,收集高速公路信息,提供全国高速公路的天气预报和道路实况服务,可以优化行车路线,并对车辆和货物状态进行实时监控、评估和预警,对产品的运输进行智能追溯。
企业通过大数据,依据物流的时间、成本、服务、物流数据、客户需要等决策因素,可以对风险进行有效预测和评估,制定出合理、准确和科学的决策。利用物流数据,企业可以进行详细的区域和网店预测,帮助电商平台和快递公司迅速做出决策。
例如,亚马逊已经申请专利的“预测性物流”就是个利用大数据洞察用户需求的典范。“预测性物流”会检测用户的鼠标在商品上的停留时间,再综合考虑用户的购买历史、搜索记录、愿望清单等。
从而根据这些海量数据预判用户的购买行为,提前将这些商品运出仓库,放到托运中心寄存,等到用户真的下单了,就可以立即开始运送商品。通过利用大数据,亚马逊大幅缩减了商品的送货时间。
构建预测模式提高协同效应
根据大数据的分析,物流企业可以构建预测模式,实现对产品销量的精准预测,进而实现对未来库存量的精准计算,使工厂、区域市场、本地市场的库存配置更加合理,从而提高协同效应。企业可以通过充分掌握供应链物流过程中的所有基础数据,结合企业自身的资源、能力状况,对整个供应链进行必要的控制和监督。
例如,神州租车的车辆租用率曾经在达到一定程度后出现了瓶颈,一部分车辆出现空置状态。通过使用SAP推出的数据库平台SAPHana,神州租车优化了流程,将车辆使用率再次提高了15%。
提供精准金融服务
通过大数据技术进行行业分析和价格波动分析,能够尽早提出预警,规避信贷风险,可以对目标客户进行资信评估、审批短期小额贷款,以及精准金融和物流服务贷款。
例如,为了实现银行和中小外贸企业之间的对接、打破信息不对等的状态,阿里巴巴旗下一达通公司运用自身的系统处理能力,将监管、申请、投放、还款、放贷等相关融资工作纳入一个统一的信息化网络处理平台,通过全程掌控交易流程。
获取交易环节的详细数据和信息,以第三方服务平台的角色验证企业贸易真实性,实现各方信息交互、业务协同、交易透明,从而为解决中小企业融资难问题找到可行的方案。
在供应链金融中,大数据还可以提供诸多的增值服务。利用大数据,从源头获取用户需求信息,洞察潜在需求,为供应链提供信息咨询;可以对供应链金融上下游客户进行全方位信用管理,形成互动的监管和控制机制,降低交易成本和风险;对供应链绩效进行分析与预测,指导供应链管理,尤其是供应链协同数据的运营。
⑵ 大数据引领经济浪潮 成为国家战略
大数据引领经济浪潮 成为国家战略
在信息社会,随着社交网站、微博、微信等互联网应用不断加快,海量数据正在行政管理、生产经营、商务活动等众多领域不断产生、积累、变化和发展,大数据由此也从概念走向实践。数据资源正和土地、劳动力、资本等生产要素一样,成为促进经济增长的基本要素。
大数据引领新经济革命浪潮大数据即将带来一场颠覆性的革命,它将推动社会生产取得全面进步,助推医疗、零售业、制造业、金融、能源等各行各业产生根本性变革。大数据在临床诊断、研发、付款和定价、新运营模式等方面发挥了显著效果;零售行业中,在市场分析、销售规划、运营以及供应链等方面利用大数据进行分析优化;制造业中,大数据可以有助于了解客户的需求,全面提升产品设计、研发和销售等;金融行业(行情 股吧 买卖点)中,大数据发挥处理海量数据时快速、准确的优势,在较短的时间内构建准确的、实时的、贴切市场需求的模型;能源行业(行情 股吧 买卖点)中,随着传感器的广泛引入,大数据对传感器创造的海量数据进行快速、及时地分析。中国发展大数据的现实意义1.大数据有助于破解中国社会转型中的难题。中国经济已进入转型期,社会进入矛盾凸显期,改革进入攻坚期,增长进入换档期。宏观经济形势错综复杂、各种社会改革盘根错节、群体性事件频发等突出问题,仅仅依靠现有的管理手段与方法已明显落后。大数据能高效处理瞬息万变的海量信息,能有效破解转型中的社会难题。比如,2008年马云利用淘宝网的海量数据早半年成功地预测到了金融危机,大数据可以提高宏观经济预测的准确性。大数据同样能及时处理和分析海量交通信息,及时转化成出行指南,缓解交通拥堵。大数据更能及时处理瞬息万变的空气质量变化情况,准确判断污染源。例如位于亚特兰大的通用电气(GE)能源监测和诊断中心,每周7x24小时实时收集全球50多个国家约1550台燃气轮机的数据。2.大数据催生新产业,带来经济增长新空间。随着大数据在商业企业、政府公共事业、国防军事等领域应用,大数据日益形成一个新产业。大数据是一个事关国家社会发展全局的产业。《“十二五”国家战略性新兴产业发展规划》提出支持海量数据存储、处理技术的研发与产业化。围绕产业链上下游,大数据必将带动智能终端的普及应用、物联网、云计算等产业的蓬勃发展,高性能服务器产业的发展和信息技术服务业等产业的发展。3.大数据能有效减少社会运行成本,提高经济与社会运行效率。医疗卫生行业,能够利用大数据避免过度治疗、减少错误治疗和重复治疗,从而降低系统成本、提高工作效率,改进和提升治疗质量。麦肯锡报告估计美国医疗行业每年通过数据获得的潜在价值超过3000亿美元,能够使得美国医疗卫生支出降低超过8%。公共管理领域,能够利用大数据有效推动税收工作开展,提高教育部门和就业部门的服务效率;零售业领域,通过在供应链和业务方面使用大数据,能够改善和提高整个行业的效率,充分利用大数据的零售商有可能将其经营利润提高60%以上。4.大数据带来精准营销,改变传统商业模式。大数据能有效改善企业的数据资源利用能力,提高从数据到信息的转化率,让企业的决策更为准确,从而提高整体运营效率。网络通过大数据实现精准营销。阿里巴巴通过对淘宝网客户交易记录进行分析,能够以极低的成本准确评定每个商户的信用等级,阿里巴巴2010年开展的淘宝网中小企业无抵押贷款,至今累计坏账率也仅有1.94%,而且盈利可观。5.大数据推动政府开放,提高公共决策的预见性和响应性。为了响应大数据战略,政府开展逐步公开已有数据,如美国推出了政府数据在线网站(data.gov),英国推出了政府数据公开网站(data.gov.uk),数据开放推动政府不断开放。发达国家已上升为国家战略全球发达国家已经充分认识到大数据时代的发展趋势,纷纷将大数据上升为国家战略。哪些个人信息是可以获取的,怎样使用,以及个人是否允许这种使用,这都需要立法界定五项建议我们已经进入大数据时代,面对大数据革命浪潮,中国应着力做好以下几方面的工作:1.将发展大数据上升为国家战略。政府应顺应信息技术发展趋势,抓住大数据带来的生产效率提升和经济社会运行成本降低的战略机遇,研究大数据发展趋势,评估大数据对中国政府、经济与社会运行所带来革命性影响,制定未来五年或更长时间发展主要目标、重点任务、行动计划和保障措施,将大数据战略上升为国家战略,通过体制机制创新,盘活政府及社会的数据资源,将数据资源转化为生产力。2.加快政务数据资源开放。随着中国电子政务的深入发展,信息系统基本覆盖了中国政府的核心业务。政务在日常行政审批和为民提供公共服务时产生了大量业务数据。包括个人的户籍、卫生医疗保障、教育、就业等方面的数据,企业的工商、税务和基本法人信息,自然资源的气象、地震、土地、矿产资源、环境资源、海洋等部门的信息,还包括知识产权、进出口、出入境等相关政务数据。在这些数据中,有很多属于非敏感信息,政务应根据中国信息公开法,主动开放政府掌握的非敏感信息,提高信息资源的社会开放度,积极迎接大数据革命浪潮。3.营造大数据产业发展的市场环境。大数据是一个前景十分广阔的新兴产业,但当前仍然存在很多制约产业发展的因素。加快制定大数据标准和指南,鼓励重要领域关键技术研发。政府应充分发挥市场机制的作用,鼓励企业创新,保护知识产权,防止出现数据资源垄断,营造大数据产业发展的市场环境。出台鼓励大数据产业发展的财税政策,重点支持大数据的核心技术和推广应用。政府部门在气象、统计、医疗卫生等领域实施大数据重大应用示范工程,积极探索大数据在政府部门中的应用,在全社会形成推广示范效应。4.加快数据安全立法。大数据时代的安全与传统安全相比更为复杂。一方面大量的数据汇总,涉及到企业运营数据、客户信息、个人的隐私和各种行为的详细记录,对数据的合法抓取和使用需要法律保障。另一方面,中国关于信息产权不清晰,缺乏对信息的所有权、使用权和收益权的规定,这就导致了无法形成一个健全的信息资源市场,无法真正发挥市场在信息资源方面的优化配置作用,这就需要通过法律手段,对信息资源产权进行界定,以便公众理解哪些个人信息是可以获取的,怎样使用,以及个人是否允许这种使用。
5.加快大数据专业人才引进与培养。掣肘全球大数据产业发展的瓶颈之一就是人才短缺。政府可以采取培养和引进人才相结合策略。一方面加快高水平大数据人才的引进,另一方面重点培育数据挖掘、机器学习等方面的专业人才。政府应该出台激励措施并对企业管理者进行数据分析技术培训,提高大型企业管理人员的数据分析能力
⑶ 大数据时代下,经济预测与决策的方法可能发生哪些变化
大数据情况下,经济预测和决策会变得更加的精准。
除此以外,我们要充分利用高科技和大数据的作用。
⑷ 大数据管理与应用学什么
大数据管理与应用学微观经济学、宏观经济学、管理学、会计学、统计学、概率论与数理统计、Python程序设计、程序设计语言、算法与数据结构、数据库原理与应用、离散数学、数据挖掘等。
⑸ 中国宏观经济统计迈向大数据2.0时代
中国宏观经济统计迈向大数据2.0时代
大数据并不是单纯的海量数据,它更蕴含着一种计算和思维方式的转变。我们要通过对海量数据的交换、整合和分析,发现新的知识,创造新的价值,带来新的发现。
大数据比传统抽样调查的优势就在于,大数据是采集每个可以采集的数据点,用全面数据代替了抽样、片面、局部的数据。分析数据,就是为了从数字中寻找可能的规律。一个真实过硬的数据体系,更有益于科学决策,造福于社会。历史学家黄仁宇在《万历十五年》中有过一个著名论断:中国人不善于用数目字管理,对古币存世量的讨论,大多含糊其辞。
我国现行的《统计法》历经1996年和2009年两次修订。社会各方越来越重视分析比较各类数据。不过,现实表明,我们的宏观经济数据的统计工作仍有大力提升的空间。2013年全国31省区市的国内生产总值(GDP)之和约为63万亿,这个数据超出了全国GDP总量逾6.1万亿。事实上,像这样巨大的统计“误差”绝非个例。出现这类统计误差,原因不外乎两个,一是统计标准不一,比如未能有效厘清对特殊企业特殊行业的统计内容;二是统计中掺有政绩“水分”,这也是导致统计误差的重要原因。
在抽样分析时数据测量能力有限,而大数据能获得更加全面真实的数据,并且对宏观趋势给出快速预测。在大数据时代,数据已经能够自己说话,传统的科学统计模型已经过时,理论也可能被终结。
大数据的能量往往也超出我们的想象。在房地产价格统计上,银行的贷款信息及住建部门的网签数据能让房地产价格数据更真实可靠;在就业领域,搜索引擎大数据可以帮助监测预警失业率和劳动力市场供求状况;通过钢铁、有色金属、能源、水泥的贸易数据判断供需走势等等。这些不是异想天开,它们一旦落地,将大大提高宏观经济数据的精细化,提高决策的科学性。
正如国家统计局局长马建堂所说,“谁拥有了大数据,谁就占有了制高点。就政府而言,大数据必将成为宏观调控、国家治理、社会管理的信息基础”。他的话可谓高屋建瓴。今年全国两会就有人大代表提出,可以通过分析春节期间移动用户漫游情况,掌握人口的流动规模与迁徙规律,为交通管理、铁路运输、公共安全管理等提供决策参考。这是挖掘大数据价值的现实建议。
与不少发达国家已把大数据的开发应用提高到国家战略高度相比,我国的大数据管理还处萌芽状态。重定性、轻定量,重观点、轻数据的思维惯性,使得我们在数据收集、使用和管理上不太灵敏。
目前,虽然各方都为挖掘大数据开发了很多工具,但大数据的成熟应用还有很长一段时间。首先,数据杂乱,价值密度低,如何有效地收集数据信息仍没有成熟的方案。同时,数据的规模并不能决定一切,不论是哪种数据分析方式,都可能存在统计上的缺陷,不能说数据更大、更新、更快就没有问题。
以上是小编为大家分享的关于中国宏观经济统计迈向大数据2.0时代的相关内容,更多信息可以关注环球青藤分享更多干货
⑹ 可视化宏观经济分析的结论是什么
可视化宏观经济分析的结论是什么?答:可视化宏观经济分析的结论是大数据可视化分析,通过经济指标分析对比,计量经济模型,概率预测它实质是是根据过去和现在推测未来。
⑺ 运用经济生活知识分析政府应该如何发展大数据壮大数字经济
中青在线北京3月6日电 (中国青年报·中青在线 中国青年网记者 李翀 )5G、大数据、物联网、人工智能、新一代信息技术、传统行业互联网转型升级……这一串话题的背后是近年来全国两会对数字经济发展的聚焦。2017年,数字经济首次写入全国两会政府工作报告,明确提出“促进数字经济加快成长”;2019年,全国两会政府报告再对数字经济着墨,称“壮大数字经济”。
数字经济为何如此受重视?
此前上海社科院发布的一项报告指出,数字经济正在席卷全球,全球经济向数字经济迁移已经势在必然,数字经济已成为国家的核心竞争力。而世界经济论坛则给出过一个研究数据:数字化程度每提高10%,人均GDP增长0.5%至0.26%。
全国人大代表、苏宁控股集团董事长张近东直言:“数字经济给全球的社会和经济发展都带来了巨大动力,各国也高度重视数字经济发展,纷纷拟定数字经济计划。”在他看来,所谓数字经济,可认为是由互联网产业高速发展带来的新经济模式,为国民经济的增长提供了全新动能,促使社会变革迈入里程碑式的一步。
如今,数字经济是各国博弈瞄准的新舞台,没有任何一个国家愿意错过数字经济的红利,中国也不例外。
工信部旗下中国信息通信研究院就做过初步测算,2018年上半年中国数字经济规模为16万亿元(人民币,下同),占GDP比重达到38.2%。
《2018中国数字经济指数白皮书》指出,随着居民消费升级以及信息通信技术与传统产业的加速融合,我国数字经济未来整体上仍然会呈现加速增长态势。预计2020年我国数字经济规模将达到6.4万亿美元,同比增速达到19.4%。
“今年政府工作报告中提到,深化大数据、人工智能等研发应用,壮大数字经济,再次明确数字经济的信心。”全国人大代表、浪潮集团董事长孙丕恕说,如今,云计算、大数据、人工智能等为代表的新经济正茁壮成长,其与传统产业融合创新,将对旧有经济模式进行颠覆和重塑,为实体经济插上“翅膀”,带动数字经济快速发展,让整个数字经济完整的形成起来。
数字经济应在哪些领域发力?
全国政协委员、网络董事长李彦宏连续五年将人工智能相关提案带上两会,今年他最新的提案内容涵盖构建车路协同的智能交通、完善电子病历管理制度及加强人工智能伦理研究三个方面。
以智能交通为例,李彦宏表示,缓解交通拥堵通常以扩大交通基础设施建设为主要手段,但因物理空间有限,传统方式已无法有效缓解拥堵;利用人工智能等新技术,构建智能交通解决方案,可以实现对交通的“全面感知、全局决策、实时控制”,能有效缓解交通拥堵、减少交通事故。
全国人大代表、小米集团董事长雷军把目光投向了5G应用和物联网发展。
“5G是数字经济新引擎,产业应用不限于智能手机、基站建设等领域,更会推动物联网、区块链、视频社交、人工智能产品与应用的发展。”雷军说,目前受制于5G基础建设尚未完成,相关标准尚未明确,5G的服务与应用资源也不够丰富等因素,5G的产业发展仍存在困难与挑战。
但考虑到5G是各国未来一段时间主要信息基础设施和技术竞争关键领域,对社会经济发展具有较强的拉动作用,由此,雷军建议提前布局5G产业应用,推动5G与物联网的创新融合发展。
数字经济之路应该怎么走?
数字经济之路该怎么走?这是一个涉及到如何化封闭为共享、使发展与稳定能平衡、让创新和监管“共舞”的问题。
孙丕恕说,人工智能的发展依赖于计算力、算法、数据资源三大支撑,其中数据是基础。然而在我国,海量数据中,20%是互联网数据,80%是组织数据,组织数据中的80%由政府掌握。目前政府数据共享程度不够、政府数据开放程度不够、政府掌握社会数据不全面的现象依然存在,很大程度制约了数据的高价值释放。要让“死数据”变成“活水之源”,需推动政府数据资源的共享、开放。
“阻碍中国数字经济发展的重要因素正是部分对数据的开发和利用没有在合法合规的前提下展开,损害了公众的合法权利,也不利于大数据产业和数字经济的长久健康发展。”张近东表示,相关立法滞后造成敏感信息的安全性无法得到有效保障,合法合规前提下的数据管理和共享缺少统一的规范和标准,跨境数据的保护和合法共享缺少有效的国际沟通交流机制是造成上述现象的主因。
张近东认为,应该从法规制定、政府引导、资金扶持、大众支持、国际合作等角度,强化数据安全保护,发展高质量数字经济。
在数据安全方面,老百姓最为关注无疑是个人隐私保护。孙丕恕说,在数字经济时代,数据是越来越重要的“生产资料”,任何数字产业的发展,智能应用的升级都需要数据发挥作用。而保护数据隐私与合法、合规使用数据,发展数据产业并不矛盾。
他以浪潮集团推动政府数据开放运营的过程为例介绍说,从数据的汇集、治理,保护到今天的授权运营,浪潮探索出了合法、合规使用数据的经验与方式,且在技术层面做到了数据“可用而不可见”,保护数据隐私的同时,还能服务于民生与社会发展。
(原标题:政府工作报告再提“数字经济”:从“促进”到“壮大” 该怎么走?)
⑻ 宏观经济分析的基本方法及资料搜集是怎样的
我分析宏观经济是从下面几个方面(个人角度)
宏观经济:
分析以下一个因版素
1资源,物质资权源
2劳动力人口, 年龄,就业率,技能水平等。
3财富拥有量。(总量和人均财富量)。
4负债率。
5制造生产能力(包括软硬两方面)。
6市场流动速度(信息,物流,资金)。
7财富地域及人的势差。
8主要财富项(就是人们有什么,财富拥有量是多少)。
9人的收入来源,支出,可支配收入。
主要是结合大数据,进行具体分析。
⑼ 盘点政府推动大数据应用及发展的举措
盘点政府推动大数据应用及发展的举措
一、政府:推动大数据应用的最关键力量
(一)政府掌握大量最具应用价值的核心数据,是推动大数据应用的最关键力量
根据麦肯锡大数据研究报告指出, 各个行业利用大数据价值的难易度以及发展潜力 对比下,政府利用大数据难度最低而潜力最大。
大数据
另一方面政府开放大数据运用已经是大势所趋:
1、 政府掌握了大量最具应用价值的核心数据。 过去十多年来政府投资进行了大量电子政务或者称为政府信息化的工作,后台积累了大量的数据,而这些数据和公众的生产生活息息相关。有研究表明政府所掌握的数据使政府成为了一个国家最重要的信息保有者,有百分之七十到八十的核心数据存在于政府的后台 。
2、 开放数据本身就是政府在大数据时代提供的一项公共服务。 政府数据本质上是国家机关在履行职责时所获取的数据,采集这些数据的经费来自于公共财政,因而这些数据是公共产品,归全社会所有,应取之于民,用之于民。
3、 政府开放数据供社会进行增值开放和创新应用,推动经济增长乃至整个经济增长方式的转型。 数据是互联网创新的重要基础,如果政府不开放这一部分数据,很多创新应用没有数据作为支持,数据开发者能利用政府开放的数据,提供更好的服务,创造更多的价值, 这个过程能够提高整个国家在大数据时代的竞争力。
4、 政府开放数据推动经济增长获得的税收高于单纯卖数据获得的收入。 201 年世界经合组织在关于开放政府数据的报告中提到政府通过开放数据推动经济增长,从而获得的税收收入远高于单卖数据所能获得收入。开放数据激发经济活力从而得到税收提升,这是一个良 性循环,更是一个能创造巨大公共价值的全局性的战略。
(二) 国内外政府开放数据的情况
在 2009 年奥巴马签署开放政府数据的行政命令后,这些年来开放政府数据已成为了世界性的一个趋势。美国联邦数据平台 Data.gov 上线后,在美洲、欧洲、亚洲等地,开放政府数据已成为了政府的一项重要工作。美国联邦政府的开放政府数据平台开放了来自多个领 域的 13 万个数据集的数据。这些领域包括图中所列的农业、商业、气候、生态、教育、能源、金融、卫生、科研等十多个主题。这些主题下的数据都是美国联邦政府的各个部委所开放的。英国、加拿大、新西兰等国在 2009 年之后都建立起了政府数据开放平台,成为 了国际信息化和大数据领域的一个重要趋势。
大数据
在我国, 2011 年香港特区政府上线了 data.gov.hk,称为香港政府资料一线通。上海在 2012年 6 月推出了中国大陆第一个数据开放平台。之后,北京、武汉、无锡、佛山南海等城市也都上线了自己的数据平台。
大数据
(三)、 大数据对于政府治理具有极大的价值
大数据其实对政府的治理带来了全新的价值,无论是对宏观经济的决策能力、产业聚集能力、协同治理能力、社会管理能力、公众服务能力、快速响应能力的提升,大数据都可以在有很大层面上帮助政府治理。
大数据大数据
(四)、大数据上升至国家战略成为共识。
大数据时代,对大数据的开发、利用与保护的争夺日趋激烈,制信权成为继制陆权、制海权、制空权之后的新制权,大数据处理能力成为强国弱国区分的又一重要指标。国际上以美国为代表的发达国家纷纷布局大数据产业,相继推出大数据相关政策,大力支持大数据产 业在本国的发展。以美国为例,美国从开展关键技术研究、推动大数据应用和开放政府数据三方面布局大数据产业,尤其在开放政府数据方面非常积极,通过 Data.gov开放 37 万个数据集,并开放网站的 API 和源代码,提供上千个数据应用。我们认为,大数据未来将 引发新一轮大国竞争,大数据对整个世界的影响力会呈现爆发性增长趋势,因此包括我国在内的国家会在政策支持力度上不断提升,大数据战略将上升至国家战略已毋庸臵疑。
大数据
(五)、 我国 高度重视大数据未来发展
自去年 3 月“大数据”首次出现在《政府工作报告》中以来,国务院常务会议一年内 6次提及大数据运用。近期在 6 月 17 日的国务院常务会议上,李克强总理再次强调“我们正在推进简政放权,放管结合、优化服务,而大数据手段的运用十分重要。” 7 月 1 日, 国务院办公厅印发了《关于运用大数据加强对市场主体服务和监管的若干意见》。
大数据
大数据大数据
(六). 各部委行动时间表已经确,我国大数据发展面临历史性机遇
值得注意的是,近期国务院出台文件对各个部委推进大数据任务制定了明确的时间表,很多推进工作任务要求在 2015 年 12 月底前出台政策并实施,近期将是我国大数据发展政策出台的密集期。
表 3: 各部委推进大数据应用时间表
序号工作任务负责单位时间进度1加快建立公民、法人和其他组织统一社会信用代码制度。发展改革委、中央编办、公安部、民政部、人民银行、税务总局、工商总局、质检总局2015 年 12 月底前出台并实施2全面实行工商营业执照、组织机构代码证和税务登记证“三证合一”、 “一照一码”登记制度改革。工商总局、中央编办、发展改革委、质检总局、税务总局2015 年 12 月底前实施3建立多部门网上项目并联审批平台,实现跨部门、跨层级项目审批、核准、备案的“统一受理、同步审查、信息共享、透明公开”。发展改革委会同有关部门2015 年 12 月底前完成4推动政府部门整合相关信息,紧密结合企业需求,利用网站和微博、微信等新兴媒体为企业提供服务。网信办、工业和信息化部持续实施5研究制定在财政资金补助、政府采购、政府购买服务、政府投资工程建设招投标过程中使用信用信息和信用报告的政策措施。财政部、发展改革委2015 年 12 月底前出台并实施6充分运用大数据技术,改进经济运行监测预测和风险预警,并及时向社会发布相关信息,合理引导市场预期。发展改革委、统计局持续实施7支持银行、证券、信托、融资租赁、担保、保险等专业服务机构和行业协会、商会运用大数据为企业提供服务。人民银行、银监会、证监会、保监会、民政部持续实施8健全事中事后监管机制,汇总整合和关联分析有关数据,构建大数据监管模型,提升政府科学决策和风险预判能力。各市场监管部门2015 年 12 月底前取得阶段性成果9在办理行政许可等环节全面建立市场主体准入前信用承诺制度。 信用承诺向社会公开,并纳入市场主体信用记录。各行业主管部门2015 年广泛开展试点, 2017 年 12 月底前完成10加快建设地方信用信息共享交换平台、部门和行业信用信息系统,通过国家统一的信用信息共享交换平台实现互联共享。各省级人民政府,各有关部门2016 年 12 月底前完成11建立健全失信联合惩戒机制,将使用信用信息和信用报告嵌入行政管理和公共服务的各领域、各环节,作为必要条件或重要参考依据。在各领域建立跨部门联动响应和失信约束机制。建立各行业“黑名单”制度和市场退出机制。推动将申请人良好的信用状况作为各类行政许可的必备条件。各有关部门,各省级人民政府2015 年 12 月底前取得阶段性成果12建立产品信息溯源制度,加强对食品、药品、农产品、日用消费品、特种设备、地理标志保护产品等重要产品的监督管理,利用物联网、射频识别等信息技术,建立产品质量追溯体系,形成来源可查、去向可追、责任可究的信息链条。商务部、网信办会同食品药品监管总局、农业部、质检总局、工业和信息化部2015 年 12 月底前出台并实施13加强对电子商务平台的监督管理,加强电子商务信息采集和分析,指导开展电子商务网站可信认证服务,推广应用网站可信标识,推进电子商务可信交易环境建设。健全权益保护和争议调处机制。工商总局、商务部、网信办、工业和信息化部持续实施14进一步加大政府信息公开和数据开放力度。除法律法规另有规定外,将行政许可、行政处罚等信息自作出行政决定之日起 7 个工作日内上网公开。各有关部门,各省级人民政府持续实施15加快实施经营异常名录制度和严重违法失信企业名单制度。建设国家企业信用信息公示系统,依法对企业注册登记、行政许可、行政处罚等基本信用信息以及企业年度报告、经营异常名录和严重违法失信企业名单进行公示,并与国家统一的信用信息共享交换平台实现有机对接和信息共享。工商总局、其他有关部门,各省级人民政府持续实施16支持探索开展社会化的信用信息公示服务。建设“信用中国 ”网站,归集整合各地区、各部门掌握的应向社会公开的信用信息,实现信用信息一站式查询,方便社会了解市场主体信用状况。各级政府及其部门网站要与 “信用中国 ”网站连接,并将本单位政务公开信息和相关市场主体违法违规信息在“信用中国 ”网站公开。发展改革委、人民银行、其他有关部门,地方各级人民政府2015 年 12 月底前完成17推动各地区、各部门已建、在建信息系统互联互通和信息交换共享。在部门信息系统项目审批和验收环节,进一步强化对信息共享的要求。发展改革委、其他有关部门持续实施18健全国家电子政务网络,加快推进国家政务信息化工程建设,统筹建立人口、法人单位、自然资源和空间地理、宏观经济等国家信息资源库,加快建设完善国家重要信息系统。发展改革委、其他有关部门分年度推进实施, 2020 年前基本建成19加强对市场主体相关信息的记录,形成信用档案。对严重违法失信的市场主体,按照有关规定列入“黑名单”,并将相关信息纳入企业信用信息公示系统和国家统一的信用信息共享交换平台。各有关部门2015 年 12 月底前实施20探索建立政府信息资源目录。各有关部门2016 年 12 月底前出台目录编制指南21引导征信机构根据市场需求,大力加强信用服务产品创新,进一步扩大信用报告在行政管理和公共服务及银行、证券、保险等领域的应用。发展改革委、人民银行、银监会、证监会、保监会2017 年 12 月底前取得阶段性成果22落实和完善支持大数据产业发展的财税、金融、产业、人才等政策,推动大数据产业加快发展。发展改革委、工业和信息化部、财政部、人力资源社会保障部、人民银行、网信办、银监会、证监会、保监会2017 年 12 月底前取得阶段性成果23加快研究完善规范电子政务,监管信息跨境流动,保护国家经济安全、信息安全,以及保护企业商业秘密、个人隐私方面的管理制度,加快制定出台相关法律法规。网信办、公安部、工商总局、工业和信息化部、发展改革委等部门会同法制办2017 年 12 月底前出台(涉及法律、行政法规的,按照立法程序推进)24推动出台相关法规,对政府部门在行政管理、公共服务中使用信用信息和信用报告作出规定,为联合惩戒市场主体违法失信行为提供依据。发展改革委、人民银行、法制办2017 年 12 月底前出台(涉及法律、行政法规的,按照立法程序推进)25建立大数据标准体系,研究制定有关大数据的基础标准、技术标准、应用标准和管理标准等。加快建立政府信息采集、存储、公开、共享、使用、质量保障和安全管理的技术标准。引导建立企业间信息共享交换的标准规范。工业和信息化部、国家标准委、发展改革委、质检总局、网信办、统计局2020 年前分步出台并实施26推动实施大数据示范应用工程,在工商登记、统计调查、质量监管、竞争执法、消费维权等领域率先开展示范应用工程,实现大数据汇聚整合。在宏观管理、税收征缴、资源利用与环境保护、食品药品安全、安全生产、信用体系建设、健康医疗、劳动保障、教育文化、交通旅游、金融服务、中小企业服务、工业制造、现代农业、商贸物流、社会综合治理、收入分配调节等领域实施大数据示范应用工程。
⑽ 大数据的七大核心价值
大数据的七大核心价值
随着移动互联网的飞速发展,信息的传输日益方便快捷,端到端的需求也日益突出,纵观整个移动互联网领域,数据已被认为是继云计算、物联网之后的又一大颠覆性的技术性革命,毋庸置疑,大数据市场是待挖掘的金矿,其价值不言而喻。可以说谁能掌握和合理运用用户大数据的核心资源,谁就能在接下来的技术变革中进一步发展壮大。
大数据,可以说是史上第一次将各行各业的用户、方案提供商、服务商、运营商以及整个生态链上游厂商,融入到一个大的环境中,无论是企业级市场还是消费级市场,亦或政府公共服务,都正或将要与大数据发生千丝万缕的联系。
近期有不少文章畅谈大数据的价值,以及其价值主要凸显在哪些方面,这里我们对大数据的核心具体价值进行了分门别类的梳理汇总,希望能帮助读者更好的获悉大数据的大价值。
核心价值究其用户到底是谁?
谈及价值,首先必须要弄清楚其用户到底是谁?有针对企业数据市场的,还有针对终端消费者的,还有针对政府公共服务的;其次要弄清楚大数据核心价值的表现形式、价值的体现过程以及最后呈现的结果。
商业的发展天生就依赖于大量的数据分析来做决策,对于企业用户,更关心的还是决策需求,其实早在BI时代这就被推上了日程,经过十余年的探索,如今已形成了数据管理、数据可视化等细分领域,来加强对决策者的影响,达到决策支持的效果。还有企业营销需求,从本质上来说,主要聚焦在针对消费者市场的精准营销。
对于消费者用户,他们对大数据的需求主要体现在信息能按需搜索,并能提供友好、可信的信息推荐,其次是提供高阶服务,例如智能信息的提供、用户体验更快捷等等。
还有,大数据也不断被应用到政府日常管理和为民服务中,并成为推动政府政务公开、完善服务、依法行政的重要力量。从户籍制度改革,到不动产登记制度改革,再到征信体系建设等等都对数据库建设提出了更高的目标要求,而此时的数据库更是以大数据为基础的,可见,大数据已成为政府改革和转型的技术支撑杠杆。
数据,除了它第一次被使用时提供的价值以外,那些积累下来的数据海洋并不是无用的废物,它还有着无穷无尽的“剩余价值”,关于这一点,人们已经有了越来越多的认识。事实上,大数据已经开始并将继续影响我们的生活,接下来让我们共同探索大数据的核心价值吧!当然这是需要借助于一些具体的应用模式和场景才能得到集中体现的。
《大数据时代》一书作者维克托认为大数据时代有三大转变:“第一,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不是依赖于随机采样。更高的精确性可使我们发现更多的细节。第二,研究数据如此之多,以至于我们不再热衷于追求精确度。适当忽略微观层面的精确度,将带来更好的洞察力和更大的商业利益。第三,不再热衷于寻找因果关系,而是事物之间的相关关系。例如,不去探究机票价格变动的原因,但是关注买机票的最佳时机。”大数据打破了企业传统数据的边界,改变了过去商业智能仅仅依靠企业内部业务数据的局面,而大数据则使数据来源更加多样化,不仅包括企业内部数据,也包括企业外部数据,尤其是和消费者相关的数据。
随着大数据的发展,企业也越来越重视数据相关的开发和应用,从而获取更多的市场机会。
一方面,大数据能够明显提升企业数据的准确性和及时性;此外还能够降低企业的交易摩擦成本;更为关键的是,大数据能够帮助企业分析大量数据而进一步挖掘细分市场的机会,最终能够缩短企业产品研发时间、提升企业在商业模式、产品和服务上的创新力,大幅提升企业的商业决策水平,降低了企业经营的风险。
一、大数据助企业挖掘市场机会探寻细分市场
大数据能够帮助企业分析大量数据而进一步挖掘市场机会和细分市场,然后对每个群体量体裁衣般的采取独特的行动。获得好的产品概念和创意,关键在于我们到底如何去搜集消费者相关的信息,如何获得趋势,挖掘出人们头脑中未来会可能消费的产品概念。用创新的方法解构消费者的生活方式,剖析消费者的生活密码,才能让吻合消费者未来生活方式的产品研发不再成为问题,如果你了解了消费者的密码,就知道其潜藏在背后的真正需求。大数据分析是发现新客户群体、确定最优供应商、创新产品、理解销售季节性等问题的最好方法。
在数字革命的背景下,对企业营销者的挑战是从如何找到企业产品需求的人到如何找到这些人在不同时间和空间中的需求;从过去以单一或分散的方式去形成和这群人的沟通信息和沟通方式,到现在如何和这群人即时沟通、即时响应、即时解决他们的需求,同时在产品和消费者的买卖关系以外,建立更深层次的伙伴间的互信、双赢和可信赖的关系。
大数据进行高密度分析,能够明显提升企业数据的准确性和及时性;大数据能够帮助企业分析大量数据而进一步挖掘细分市场的机会,最终能够缩短企业产品研发时间、提升企业在商业模式、产品和服务上的创新力,大幅提升企业的商业决策水平。因此,大数据有利于企业发掘和开拓新的市场机会;有利于企业将各种资源合理利用到目标市场;有利于制定精准的经销策略;有利于调整市场的营销策略,大大降低企业经营的风险。
企业利用用户在互联网上的访问行为偏好能为每个用户勾勒出一副“数字剪影”,为具有相似特征的用户组提供精确服务满足用户需求,甚至为每个客户量身定制。这一变革将大大缩减企业产品与最终用户的沟通成本。例如:一家航空公司对从未乘过飞机的人很感兴趣(细分标准是顾客的体验)。而从未乘过飞机的人又可以细分为害怕飞机的人,对乘飞机无所谓的人以及对乘飞机持肯定态度的人(细分标准是态度)。在持肯定态度的人中,又包括高收入有能力乘飞机的人(细分标准是收入能力)。于是这家航空公司就把力量集中在开拓那些对乘飞机持肯定态度,只是还没有乘过飞机的高收入群体。通过对这些人进行量身定制、精准营销取得了很好的效果。
二、大数据提高决策能力
当前,企业管理者还是更多依赖个人经验和直觉做决策,而不是基于数据。在信息有限、获取成本高昂,而且没有被数字化的时代,让身居高位的人做决策是情有可原的,但是大数据时代,就必须要让数据说话。
大数据能够有效的帮助各个行业用户做出更为准确的商业决策,从而实现更大的商业价值,它从诞生开始就是站在决策的角度出发。虽然不同行业的业务不同,所产生的数据及其所支撑的管理形态也千差万别,但从数据的获取,数据的整合,数据的加工,数据的综合应用,数据的服务和推广,数据处理的生命线流程来分析,所有行业的模式是一致的。
这种基于大数据决策的特点是:一是量变到质变,由于数据被广泛挖掘,决策所依据的信息完整性越来越高,有信息的理性决策在迅速扩大,拍脑袋的盲目决策在急剧缩小。二是决策技术含量、知识含量大幅度提高。由于云计算出现,人类没有被海量数据所淹没,能够高效率驾御海量数据,生产有价值的决策信息。三是大数据决策催生了很多过去难以想象的重大解决方案。如某些药物的疗效和毒副作用,无法通过技术和简单样本验证,需要几十年海量病历数据分析得出结果;做宏观经济计量模型,需要获得所有企业、居民以及政府的决策和行为海量数据,才能得出减税政策最佳方案;反腐倡廉,人类几千年历史都没解决,最近通过微博和人肉搜索,贪官在大数据的海洋中无处可藏,人们看到根治的希望等等。
如果在不同行业的业务和管理层之间,增加数据资源体系,通过数据资源体系的数据加工,把今天的数据和历史数据对接,把现在的数据和领导和企业机构关心的指标关联起来,把面向业务的数据转换成面向管理的数据,辅助于领导层的决策,真正实现了从数据到知识的转变,这样的数据资源体系是非常适合管理和决策使用的。
在宏观层面,大数据使经济决策部门可以更敏锐地把握经济走向,制定并实施科学的经济政策;而在微观方面,大数据可以提高企业经营决策水平和效率,推动创新,给企业、行业领域带来价值。
三、大数据创新企业管理模式,挖掘管理潜力
当下,有多少企业还会要求员工像士兵一样无条件服从上级的指示?还在通过大量的中层管理者来承担管理下属和传递信息的职责?还在禁止员工之间谈论薪酬等信息?《华尔街日报》曾有一篇文章就说,NO。这一切已经过时了,严格控制,内部猜测和小道消息无疑更会降低企业效率。一个管理学者曾经将企业内部关系比喻为成本和消耗中心,如果内部都难以协作或者有效降低管理成本和消耗,你又如何指望在今天瞬息万变的市场和竞争环境下生存、创新和发展呢?
我们试着想想,当购物、教育、医疗都已经要求在大数据、移动网络支持下的个性化的时代,创新已经成为企业的生命之源,我们还有什么理由还要求企业员工遵循工业时代的规则,强调那种命令式集中管理、封闭的层级体系和决策体制吗?当个体的人都可以通过佩戴各种传感器,搜集各种来自身体的信号来判断健康状态,那样企业也同样需要配备这样的传感系统,来实时判断其健康状态的变化情况。
今天信息时代机器的性能,更多决定于芯片,大脑的存储和处理能力,程序的有效性。因而管理从注重系统大小、完善和配合,到注重人,或者脑力的运用,信息流程和创造性,以及职工个性满足、创造力的激发。
在企业管理的核心因素中,大数据技术与其高度契合。管理最核心的因素之一是信息搜集与传递,而大数据的内涵和实质在于大数据内部信息的关联、挖掘,由此发现新知识、创造新价值。两者在这一特征上具有高度契合性,甚至可以标称大数据就是企业管理的又一种工具。因为对于任何企业,信息即财富,从企业战略着眼,利用大数据,充分发挥其辅助决策的潜力,可以更好地服务企业发展战略。
大数据时代,数据在各行各业渗透着,并渐渐成为企业的战略资产。数据分析挖掘不仅本身能帮企业降低成本:比如库存或物流,改善产品和决策流程,寻找到并更好的维护客户,还可以通过挖掘业务流程各环节的中间数据和结果数据,发现流程中的瓶颈因素,找到改善流程效率,降低成本的关键点,从而优化流程,提高服务水平。大数据成果在各相关部门传递分享,还可以提高整个管理链条和产业链条的投入回报率。
四、大数据变革商业模式催生产品和服务的创新
在大数据时代,以利用数据价值为核心,新型商业模式正在不断涌现。能够把握市场机遇、迅速实现大数据商业模式创新的企业,将在IT发展史上书写出新的传奇。
大数据让企业能够创造新产品和服务,改善现有产品和服务,以及发明全新的业务模式。回顾IT历史,似乎每一轮IT概念和技术的变革,都伴随着新商业模式的产生。如个人电脑时代微软凭借操作系统获取了巨大财富,互联网时代谷歌抓住了互联网广告的机遇,移动互联网时代苹果则通过终端产品的销售和应用商店获取了高额利润。
纵观国内,以金融业务模式为例,阿里金融基于海量的客户信用数据和行为数据,建立了网络数据模型和一套信用体系,打破了传统的金融模式,使贷款不再需要抵押品和担保,而仅依赖于数据,使企业能够迅速获得所需要的资金。阿里金融的大数据应用和业务创新,变革了传统的商业模式,对传统银行业带来了挑战。
还有,大数据技术可以有效的帮助企业整合、挖掘、分析其所掌握的庞大数据信息,构建系统化的数据体系,从而完善企业自身的结构和管理机制;同时,伴随消费者个性化需求的增长,大数据在各个领域的应用开始逐步显现,已经开始并正在改变着大多数企业的发展途径及商业模式。如大数据可以完善基于柔性制造技术的个性化定制生产路径,推动制造业企业的升级改造;依托大数据技术可以建立现代物流体系,其效率远超传统物流企业;利用大数据技术可多维度评价企业信用,提高金融业资金使用率,改变传统金融企业的运营模式等。
过去,小企业想把商品卖到国外要经过国内出口商、国外进口商、批发商、商场,最终才能到达用户手中,而现在,通过大数据平台可以直接从工厂送达到用户手中,交易成本只是过去的十分之一。以我们熟悉的网购平台淘宝为例,每天有数以万计的交易在淘宝上进行,与此同时相应的交易时间、商品价格、购买数量会被记录,更重要的是,这些信息可以与买方和卖方的年龄、性别、地址、甚至兴趣爱好等个人特征信息相匹配。运用匹配的数据,淘宝可以进行更优化的店铺排名和用户推荐;商家可以根据以往的销售信息和淘宝指数进行指导产品供应、生产和设计,经营活动成本和收益实现了可视化,大大降低了风险,赚取更多的钱;而与此同时,更多的消费者也能以更优惠的价格买到了更心仪的产品。
维克托曾预言2020年,大数据时代就会真正来临。在那个时候,最经常会用到的应用就是个性化生活所需要的,尤其是智能手机的应用。
五、大数据让每个人更加有个性
对个体而言,大数据可以为个人提供个性化的医疗服务。比如,我们的身体功能可能会通过手机、移动网络进行监控,一旦有什么感染,或身体有什么不适,我们都可以通过手机得到警示,接着信息会和手机库进行对接或者咨询相关专家,从而获得正确的用药和其他治疗。
过去我们去看病,医生只能对我们的当下身体情况做出判断,而在大数据的帮助下,将来的诊疗可以对一个患者的累计历史数据进行分析,并结合遗传变异、对特定疾病的易感性和对特殊药物的反应等关系,实现个性化的医疗。还可以在患者发生疾病症状前,提供早期的检测和诊断。早期发现和治疗可以显著降低肺癌给卫生系统造成的负担,因为早期的手术费用是后期治疗费用的一半。
还有,在传统的教育模式下,分数就是一切,一个班上几十个人,使用同样的教材,同一个老师上课,课后布置同样的作业。然而,学生是千差万别的,在这个模式下,不可能真正做到“因材施教”。
如一个学生考了90分,这个分数仅仅是一个数字,它能代表什么呢?90分背后是家庭背景、努力程度、学习态度、智力水平等,把它们和90分联系在一起,这就成了数据。大数据因其数据来源的广度,有能力去关注每一个个体学生的微观表现:如他在什么时候开始看书,在什么样的讲课方式下效果最好,在什么时候学习什么科目效果最好,在不同类型的题目上停留多久等等。当然,这些数据对其他个体都没有意义,是高度个性化表现特征的体现。同时,这些数据的产生完全是过程性的:课堂的过程,作业的情况,师生或同学的互动情景……而最有价值的是,这些数据完全是在学生不自知的情况下被观察、收集的,只需要一定的观测技术与设备的辅助,而不影响学生任何的日常学习与生活,因此它的采集也非常的自然、真实。
在大数据的支持下,教育将呈现另外的特征:弹性学制、个性化辅导、社区和家庭学习、每个人的成功……大数据支撑下的教育,就是要根据每一个人的特点,释放每一个人本来就有的学习能力和天分。
此外,维克托还建议中国政府要进一步补录数据库。政府以前提供财政补贴,现在可以提供数据库,打造创意服务。在美国就有完全基于政府提供的数据库,如为企业提供机场、高速公路的数据,提供航班可能发生延误的概率,这种服务这可以帮助个人、消费者更好地预测行程,这种类型的创新,就得益于公共的大数据。
六、智慧驱动下的和谐社会
美国作为全球大数据领域的先行者,在运用大数据手段提升社会治理水平、维护社会和谐稳定方面已先行实践并取得显着成效。
近年来,在国内,“智慧城市”建设也在如火如荼的开展。截止去年底,我国的国家智慧城市试点已达193个,而公开宣布建设智慧城市的城市超过400个。智慧城市的概念包含了智能安防、智能电网、智慧交通、智慧医疗、智慧环保等多领域的应用,而这些都要依托于大数据,可以说大数据是“智慧”的源泉。
在治安领域,大数据已用于信息的监控管理与实时分析、犯罪模式分析与犯罪趋势预测,北京、临沂等市已经开始实践利用大数据技术进行研判分析,打击犯罪。
在交通领域,大数据可通过对公交地铁刷卡、停车收费站、视频摄像头等信息的收集,分析预测出行交通规律,指导公交线路的设计、调整车辆派遣密度,进行车流指挥控制,及时做到梳理拥堵,合理缓解城市交通负担。
在医疗领域,部分省市正在实施病历档案的数字化,配合临床医疗数据与病人体征数据的收集分析,可以用于远程诊疗、医疗研发,甚至可以结合保险数据分析用于商业及公共政策制定等等。
伴随着智慧城市建设的火热进行,政府大数据应用已进入实质性的建设阶段,有效拉动了大数据的市场需求,带动了当地大数据产业的发展,大数据在各个领域的应用价值已得到初显。
七、大数据如何预言未来?
著名的玛雅预言,尽管背后有着一定的天文知识基础,但除催生了一部很火的电影《2012》外,其实很多人的生活尚未受到太大的影响。现在基于人类地球上的各种能源存量,以及大气受污染、冰川融化的程度,我们获取真的可以推算出按照目前这种工业生产、生活的方式,人类在地球上可以存活的年数。《第三次工业革命》中对这方面有很深入的解释,基于精准预测,发现现有模式是死路一条后,人类就可以进行一些改变,这其实就是一种系统优化。
这种结合之前情景研究,不断进行系统优化的过程,将赋予系统生命力,而大数据就是其中的血液和神经系统。通过对大数据的深入挖掘,我们将会了解系统的不同机体是如何相互协调运作的,同样也可以通过对他们的了解去控制机体的下一个操作,甚至长远的维护和优化。从这个角度讲,基于网络的大数据可以看作是人类社会的神经中枢,因为有了网络和大数据人类社会才开始灵活起来,而不像以前那么死板。基于大数据,个体之间相互连接有了基础,相互的交互过程得到了简化,各种交易的成本减少很多。厂家等服务提供方可以基于大数据研发出更符合消费者需求的服务,机构内部的管理也更为细致,有了血液和神经系统的社会才真的拥有生命活力。
结语
透过以上这些行业典型的大数据应用案例和场景,不难悟出大数据的典型的核心价值。大数据是看待现实的新角度,不仅改变了市场营销、生产制造,同时也改变了商业模式。数据本身就是价值来源,这也就意味着新的商业机会,没有哪一个行业能对大数据产生免疫能力,适应大数据才能在这场变革中继续生存下去。
当下,正处于数据大爆发的时代,如何获取这些数据并对这些数据进行有效分析就显得尤为重要。各种企业机构之间的竞争非常残酷。如何基于以往的运行数据,对未来的运行模式进行预测,从而提前进行准备或者加以利用、调整,对很多企业机构其实是一种生死存亡的问题。这样一种情况同样适用于国家级别。正因为这一点,目前无论是在企业级别还是国家级别都开始研究、部署大数据。
可见,大数据应用已经凸显出了巨大的商业价值,触角已延伸到零售、金融、教育、医疗、体育、制造、影视、政府等各行各业。你可能会问这些具体价值实现的推动者有哪些呢?就是所谓的大数据综合服务提供商,从实践情况看,主要包括大数据解决方案提供商、大数据处理服务提供商和数据资源提供商三个角色,分别向大数据的应用者提供大数据服务、解决方案和数据资源。
未来大数据还将彻底改变人类的思考模式、生活习惯和商业法则,将引发社会发展的深刻变革,同时也是未来最重要的国家战略之一。
以上是小编为大家分享的关于大数据的七大核心价值的相关内容,更多信息可以关注环球青藤分享更多干货