Ⅰ 互联网时代,都说大数据,那什么是大数据
大数据(big data,mega
data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优专化能力的海量、高属增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的5V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值密度)、Veracity(真实性)。
Ⅱ 大数据赋能:如何利用大数据驱动,精细化运营
互联网时代,很明显的一个特征就是大多数信息都是以数据的形式进行记录,大数据的产生,简化了人们对世界的认知。通过将人的行为转化成无数个可以量化的数据节点,从而为人提供了一个“数据画像”。
大数据等技术的出现,给平台提供多样化的营销渠道,比如千人千面的商品推荐,C2M式的需求定制等。类似这样的大数据应用,既能提高用户体验又能提升平台效率。
1、大数据时代,数据如何驱动运营
在大数据的驱动下,呈现给用户的内容都是经过算法精密筛选的。
当你打开资讯类APP时,算法根据你的历史浏览类别算出你的阅读偏好,据此向你推荐内容;当你打开短视频APP时,你刷到的视频都是你感兴趣并且关注的标签内容;当你使用打车软件时,算法给你推荐你可能会选择的出租车和价格……
经过算法推荐,用户阅读到的都是自己感兴趣或与自己生活圈子相关的信息内容,不感兴趣或者观点相左的内容会被算法过滤。
2、大数据识别有价值信息,辅助决策
对于大数据来说,它不仅面临着如何识别一些重要的信息,而且还要将这些用于决策。
目前业内对于大数据的分析更多地注重在数据识别、储存、定性描述相关分析等领域。
大数据分析的优点不在于“大”,而在于“准”,尤其在这个信息量大的时代,采用哪些数据进行分析,从而得出更准确的结论则更重要。
3、大数据连接、赋能、跨行业数字化
通过数据对不同行业赋能,帮助不同行业进行数据价值挖掘。传统行业和数据行业结合的点在于将线上和线下的资源打通。例如新零售在大数据的赋能下,将广告和营销做结合,能够清晰的看到你的用户长成什么样。
4、如何解读数据成了非常重要的技能
互联网时代,人人都在说大数据、数据分析、数据运营。数据是为你的工作提供反馈和指导的工具,数据会告诉你问题出在哪里;你想达到一个运营推广目标,数据会告诉你途径和方法。
5、企业如何利用大数据分析精准运营
无疑,大数据时代,数据资产已成为企业的核心竞争力。但数据在手,不会运用它,就会变得没有价值。在当下企业数字化浪潮中,数据是企业转型的基础元素,如何将企业不同业务、类型的数据应用起来,推动企业运营,增加收入、降低成本、提高效率,控制风险等,是很多企业面临的难点。
数据对运营的重要性已不言而喻,互联网平台更是以数据驱动运营。产品研发从立项开始已经受到数据的驱动,而运营过程中的产品设计优化、市场渠道推广、用户需求、用户行为和用户价值等运营活动更离不开数据。
那么,数据从何而来呢?
构建数据需求: 构建平台关心的数据需求,围绕着用户的需求展开,通过数据卖点制定重要事件的采集。可以从数据上,明确看到你的用户增加、流失、渠道来源,从而帮助你做更好的数据管理,提升投放效率。
数据报表呈现: 数据采集完之后通过动态计算,形成报表,了解你关心数据的升降,你的运营、产品是否有效提升,都能在报表数据得到体现。
在精细化运营的大背景下,学会用数据分析来弄清用户从哪来、对什么感兴趣、为什么流失尤为重要。
01、用户分群,寻找更多的核心用户
用户分群本质来上来说,就是将用户分割成很多的群体,详细的看每个群体用户特征。最经典的用户模型是R(最近购买时间)F(频次)M(消费金额),三个维度画出九宫格立体的象限,了解你最高价值客户的分布和特征,辅助你进行决策。同时,通过高活跃核心用户的运营,能够帮助你理解你的客户。
02、营销转化漏斗分析
互联网营销就像个漏斗,线上曝光后,客户在浏览所发布的内容时,被层层过滤和筛选,没有需求的、与目标客群不符的都会离开,直到意向客户的预约。
03、客户浏览来源分析
互联网营销要在线上的各个渠道曝光,建立线上营销矩阵,官网、APP、公众号、小程序、朋友圈等等,哪个渠道的推广效果好,客户浏览多,对后期的投放具有非常重要的指导意义,更好的发挥自身的优势,同时弥补短板。
互联网运营是个循序渐进的过程,大数据分析可以帮助你加快和不断完善这个过程。我们来看看中移互联网大数据如何通过大数据技术分析,真正从数据“触摸”获得实际价值。
中移互联网大数据平台-利用数据驱动运营
中移互联网大数据产品有数通过专业的SDK数据采集,经过大数据平台服务分析,提供专业的运营数据分析、用户画像分析、渠道分析、以及自定义事件分析等,实现数据化管理与运营。
帮助企业洞察用户画像和行为,根据用户画像结合实时用户数据,精准定位目标用户,实时了解用户行为变化,从中发现用户需求的改变,及时调整运营策略,降低业务推广成本,实现效益最大化。
帮助企业随时掌握各项数据,包括应用分析和网页分析(含H5),提供全面准确的运营分析、用户分析、渠道分析等系列服务,并输出相应的数据报表。完美的解决了企业无法获取应用或网页运营分析数据、无法分析渠道投放效果、无法统计应用收入情况等疑难问题。
Ⅲ 北京市消协点名大数据“杀熟”问题
北京市消协点名大数据“杀熟”问题
北京市消协点名大数据“杀熟”问题,数据显示,八成多(82.44%)受访者表示在网络购物过程中遭遇过大数据“杀熟”,但是却鲜有人去进行真正的维权。北京市消协点名大数据“杀熟”问题。
据北京市消费者协会3月1日发布的《北京市消协发布互联网消费大数据“杀熟”问题调查结果》显示,飞猪旅行和饿了么因存在“新老用户同时购买相同商品(服务)的标价不同,涉嫌侵犯消费者的合法权益。记者注意到,此前飞猪旅行曾因“大数据杀熟”多次被点名。
据悉,本次大数据“杀熟”问题调查主要采用网络问卷和消费体验两种方式,其中问卷调查结果显示6.91%的受访者认为自己有过被大数据“杀熟”的经历,82.37%的受访者认为互联网消费大数据“杀熟”问题普遍存在,92.33%的受访者认为大数据杀熟的原因是利用大数据技术开展差异化营销。
而在对16个消费者常用的电子商务平台进行的32个模拟消费体验样本中,有14个样本新老用户账户的价格不一致。其中,大多数样本是因为打折或优惠力度不同导致最后成交价格不同,但飞猪旅行和饿了么的体验样本显示,新老用户同时购买相同商品(服务)的标价不同,涉嫌侵犯消费者的合法权益。
海报新闻记者梳理发现,2018年10月,飞猪旅行曾因“大数据杀熟”被知名博主在新浪微博曝光;2019年3月27日,北京消协发布报告称去哪儿网、飞猪等网站存在新老用户价格不一致的现象;2020年10月19日,浙江省消保委通报了第三季度手里投诉情况分析,飞猪旅行因涉及“大数据杀熟”被点名。据黑猫投诉平台显示,飞猪旅行涉及“大数据杀熟”的投诉共计36条。
3月1日,北京市消协在官网公布了互联网消费大数据“杀熟”问题调查活动的最新结果——86.91%的受访者认为自己有过被大数据“杀熟”的经历,82.37%的受访者认为互联网消费大数据“杀熟”问题普遍存在,92.33%的受访者认为大数据杀熟的'原因是利用大数据技术开展差异化营销。
网络购物、在线旅游、外卖和网约车则是大数据“杀熟”最为集中的四个领域。
数据显示,八成多(82.44%)受访者表示在网络购物过程中遭遇过大数据“杀熟”,七成多(76.85%)受访者在在线旅游消费中遭遇过大数据“杀熟”,反映在网络外卖(66.96%)和网络打车(63.00%)消费过程中遭遇大数据“杀熟”的受访者均达到六成多。此外,还有部分受访者表示在电影消费和视频消费时遭遇过大数据“杀熟”问题。
据了解,此次问题调查主要采用网络问卷和消费体验两种方式。其中,问卷调查自2021年11月1日启动,截止至2021年11月11日,通过“北京消协”微信、北京市消费者协会网以及消费者网等渠道,共计收回有效调查问卷4186份;而消费体验调查则选取了16个消费者常用的电子商务平台,共完成32个模拟消费体验调查样本。
消费者眼中的“杀熟”标签
3月1日,国家网信办等四部门联合发布的《互联网信息服务算法推荐管理规定》(下称《规定》)正式施行。虽然《规定》并未直接界定大数据“杀熟”行为,但却对算法推荐管理划定了行为边界:算法推荐服务提供者不得设置诱导用户沉迷、过度消费等违反法律法规或者违背伦理道德的算法模型;不得根据消费者的偏好、交易习惯等特征,利用算法在交易价格等交易条件上实施不合理的差别待遇等违法行为。
那么,消费者眼中的大数据“杀熟”行为又有着怎样的特征标签?
问卷调查结果显示,八成多(85.38%)受访者认为大数据“杀熟”主要体现为同一时间不同用户购买相同商品或服务的价格不同,近八成(79.98%)受访者认为主要体现为多次浏览后价格自动上涨,七成多(75.80%)受访者认为主要体现为不同用户享有不同打折优惠形式,近七成(69.37%)受访者认为主要体现为隐藏或不送老用户优惠券,六成多(62.26%)受访者认为主要体现为根据用户特点提供特定商品或服务,还有部分受访者认为体现为手机配置不同价格不同、默认勾选之前购买过的服务、不买时送优惠券买时却没有等形式。
消费体验调查发现,部分平台存在新、老用户账号同时购买同一商品或服务实际成交价不同现象。例如,体验人员分别通过新、老用户两个账号同时在某平台订购同一饭店的同样饭菜,老用户账号不仅比新用户账号少了7元“双重补贴”红包,而且配送费也比新用户少优惠0.4元。
北京市消协表示,上述数据说明受访者认为大数据“杀熟”主要体现在同一时间不同用户购买相同商品或服务的价格不同、多次浏览后价格自动上涨、不同用户享有不同打折优惠形式、隐藏或不送老用户优惠券以及根据用户特点提供特定商品或服务等方面。
沉默的被侵权者
值得关注的是,尽管超过八成的受访者认为自己有过被大数据“杀熟”的经历,但是却鲜有人去进行真正的维权。数据显示,仅有0.43%受访者选择通过司法诉讼方式维权,另有有一半多受访者选择不再去该商家消费,有三成多受访者选择忍气吞声自认倒霉。
梳理调查结果,我们发现,在侵犯权益的认知上,超八成(80.65%)受访者认为侵犯了消费者的公平交易权,六成多(66.13%)受访者认为侵犯了消费者的知情权,超过一半(51.51%)受访者认为侵犯了消费者的选择权,还有三成多(37.82%)受访者认为侵犯了消费者的隐私权。
在侵权危害的认知上,九成多受访者认为大数据“杀熟”会扰乱市场秩序,八成多受访者认为会透支消费者信任,近四成(37.70%)受访者认为大数据“杀熟”还会降低用户忠诚度。
清醒的被“杀熟”认知与极少的维权行动形成了鲜明的对比。对此,北京市消协表示,这说明消费者的法律意识和自我保护意识需要进一步提升。
大数据“杀熟”维权是否还有其他拦路虎?
有近九成(88.01%)受访者认为是监管手段跟不上,认为是隐蔽性太强(85.95%)、相关法规不健全(82.32%)的受访者也均达到了八成多,此外还有近八成(79.53%)受访者认为是不容易取证。
就此,北京市消协提出了四点建议:完善相关法律法规,加大个人信息保护力度,为规范和治理大数据“杀熟”行为提供法律依据;创新监管方式方法,积极运用大数据监管技术,对违法违规经营者进一步加大监管和处罚力度;企业应诚信守法经营,合理采集和使用个人信息,主动接受监管,维护消费者合法权益;企业应诚信守法经营,合理采集和使用个人信息,主动接受监管,维护消费者合法权益。
全面遏制大数据杀熟迎来新动作。随着互联网信息服务算法备案系统3月1日起正式上线运行,一众线上平台依托“算法”对消费者实施价格差别化对待的土壤亦将荡然无存,由此带动遏制大数据杀熟正式进入约束“算法”的新阶段。
3月1日起,《互联网信息服务算法推荐管理规定》(以下简称《规定》)正式实施。根据《规定》要求,具有舆论属性或者社会动员能力的算法推荐服务提供者应当在提供服务之日起十个工作日内通过互联网信息服务算法备案系统填报服务提供者的名称、服务形式、应用领域、算法类型、算法自评估报告、拟公示内容等信息,履行备案手续。
这意味着,以往被各大互联网平台视为“机密”的算法服务将走向透明。互联网信息服务算法备案系统将成为各平台算法服务提供者向全社会公开展示其服务提供“算法”的“曝光台”,由此带来的影响或将让各大平台屡试不爽的大数据杀熟现象彻底无处遁形。
显然,《规定》也必将坚定贯彻其上位法——2021年11月1日起正式施行的《个人信息保护法》中对“应当保证决策的透明度和结果公平、公正,不得对个人在交易价格等交易条件上实行不合理的差别待遇”的要求,准确甄别披上“数字外衣”的传统商业“杀熟”行为,守护民众合法权益。
中国社会科学院法学研究所研究员李顺德在接受中国经济时报记者采访时表示,将个人信息保护提升到法律层面,无疑将让行政部门的监管有了更明确的法律依据,而部门出台实施的具体规定,将让一系列监管要求真正落地。
“只有在监督和约束的前提下,利用大数据等手段合理合法地善用个人信息,才能服务于经济社会的全面发展。”李顺德说,在数字经济时代,大数据杀熟的存在,背后是对整个市场营商环境的挑战。因此,确保个人信息和个人合法权益得以保护,也将对国家经济发展和良好的市场营商环境带来积极正面影响。
众所周知,“杀熟”原本的意思,是指向老顾客提供更高价格牟利的行为,这在传统商业领域早已有之,只不过在大数据算法快速商用的今天,数字技术正在成为一把“双刃剑”,原本受益于数字技术带来诸多便利的消费者,竟也在不知不觉中成为了商家或平台“待宰的羔羊”。
北京大学国家发展研究院中国经济研究中心教授汪浩在接受中国经济时报记者采访时表示,大数据算法让需求和供给能够更高效对接,对市场发展形成天然引导。这对要素的高效匹配而言有着积极作用。而通过约束算法遏制大数据杀熟,也有助于约束资本无序逐利的行为。
汪浩说,“不断完善法律约束,精准对数字经济运用个人信息加以监管和规范,清晰化数字经济发展与经济社会各个领域的基本关系和边界,有助于促进数字经济持续健康发展。”(中国经济时报)
Ⅳ 什么是大数据,它对新闻业有什么影响
什么是大数据,它对新闻业有什么影响?
答:(1)大数据及其特点
“大数据”(Big Data,Massive Datasets)是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据具有4V特征,即海量的数据规模(volume)、快速的数据流转(velocity)、多样的数据类型(variety)和价值密度低(value)四大特征。
在互联网行业中,大数据是指互联网公司在日常运营中生成、累积的用户网络行为数据。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。目前,大数据技术已广泛应用于电子商务、O2O、物流配送等领域,对新闻生产也产生了一定的影响。
(2)大数据对新闻报道的帮助
①提升新闻报道的质量。由于大数据能够精准地检测出确切的数据信息,不仅检测范围广大,而且能够呈现整体的事实并预测事件的发展趋势。因此利用大数据技术,可以有效地检测出媒体的报道方式和报道成果是否有缺陷。另外,新闻工作者可以借助计算机网络技术,利用新闻媒体以及合作机构数据库来挖掘大量的数据信息,进行深层次的数据挖掘,有了这样的技术,媒体的新闻报道水准将得到有效的提升。
②准确预测新闻报道走向。未来新闻业务层面的一个发展方向是趋势预测性新闻,以往新闻报道的选题更多来源于正在发生或已经发生的事实,如果媒体能够广泛借助大数据技术来进行重大趋势的预测与分析,那么,它对 社会 的影响力就能得到提升。
③减轻新闻报道工作人员的工作量。大数据技术的灵活运用,催生了数据新闻和机器人写作。数据新闻是将数据转化为信息的一种新闻生产形式,表现形式以数据和图表为主,这不仅大大增强了新闻报道的真实性、准确性和可说服性,还缓解了新闻报道人员的工作压力。机器人写作则是通过计算机对数据进行分析,按照新闻结构来对数据进行整理和自动撰写,平均每分钟就能够生产出两条新闻报道,这也为新闻报道撰稿人员分担了不少的工作量。
④使新闻报道更能满足受众需求。一方面,新闻生产者和发布者通过对受众的新闻阅读行为进行大数据分析,可以找出影响受众的各方面因素,使新闻报道的受众定位更加准确;另一方面,大数据技术不仅对受众的行为进行普遍化分析,而且还强调受众的个性化特征,从而促使媒体机构为受众提供更加个性化的新闻报道和服务。
Ⅳ 什么是大数据,大数据时代有哪些趋势
行业主要上市公司:易华录(300212)、美亚柏科(300188)、海量数据(603138)、同有科技(300302)、海康威视(002415)、依米康(300249)、常山北明(000158)、思特奇(300608)、科创信息(300730)、神州泰岳(300002)、蓝色光标(300058)等
本文核心数据:大数据产业链、产业规模、应用市场结构、竞争格局、发展前景预测等
产业概况
1、定义:大数据产业覆盖范围广
根据中国信通院发布的《大数据白皮书》,大数据产业是以数据及数据所蕴含的信息价值为核心生产要素,通过数据技术、数据产品、数据服务等形式,使数据与信息价值在各行业经济活动中得到充分释放的赋能型产业。不同机构对大数据的定义也有所不同,具体如下:
2、产业链剖析:大数据产业链庞大
大数据产业链覆盖范围广,上游是基础支撑层,主要包括网络设备、计算机设备、存储设备等硬件供应,此外,相关云计算资源管理平台、大数据平台建设也属于产业链上游;
大数据产业中游立足海量数据资源,围绕各类应用和市场需求,提供辅助性的服务,包括数据交易、数据资产管理、数据采集、数据加工分析、数据安全,以及基于数据的IT运维等;
大数据产业下游则是大数据应用市场,随着我国大数据研究技术水平的不断提升,目前,我国大数据已广泛应用于政务、工业、金融、交通、电信和空间地理等行业。
大数据产业上游基础设施具体包括IT设备、电源设备、基础运营商及其他设备,相关代表企业华为、中兴通讯、艾默生、三大运营商等。
中游大数据领域可以细分为数据中心、大数据分析、大数据交易与大数据安全等子行业,相关代表企业包括宝信软件、数据港、久其软件、拓尔思、上海数据交易中心、贵阳大数据交易所与华云数据等。
在下游应用市场,我国大数据应用范围正在快速向各行各业延伸,除发展较早的政务大数据、交通大数据外,在工业、金融、健康医疗等众多领域大数据应用均初见成效。
产业发展历程:十年来大数据产业高速增长,信息智能化程度得到显著提升
我国大数据产业布局相对较早,2011年,工信部就把信息处理技术作为四项关键技术创新工程之一,为大数据产业发展奠定了一定的政策基础。自2014年起,“大数据”首次被写进我国政府工作报告,大数据产业上升至国家战略层面,此后,国家大数据综合试验区逐渐建立起来,相关政策与标准体系不断被完善,到2020年,我国大数据解决方案已经发展成熟,信息社会智能化程度得到显著提升。
产业政策背景:优化升级数字基础设施,鼓励大数据产业发展
2014年,大数据首次写入政府工作报告,大数据逐渐成为各级政府关注的热点,政府数据开放共享、数据流通与交易、利用大数据保障和改善民生等概念深入人心。此后国家相关部门出台了一系列政策,鼓励大数据产业发展。
当前,随着5G、云计算、人工智能等新一代信息技术快速发展,信息技术与传统产业加速融合,数字经济蓬勃发展,数据中心作为各个行业信息系统运行的物理载体,已成为经济社会运行不可或缺的关键基础设施,在数字经济发展中扮演至关重要的角色。数据中心作为大数据产业重要的基础设施,其快速发展极大程度地推动了大数据产业的进步。在2021年3月发布的“十四五”规划中,大数据标准体系的完善成为发展重点。
产业发展现状
1、行业整体情况:大数据产业规模维持高速增长 主要应用于金融和政府领域
——大数据产业规模:2021年超过800亿元
近年来我国大数据行业取得快速发展,赛迪CCID统计,我国大数据市场规模由2019年的619.7亿元增长至2021年的863.1亿元,复合年增长率达到18.0%,大数据市场规模包含了大数据相关硬件、软件、服务市场收入。
——大数据市场结构:产业整体以大数据服务为主,应用领域以金融和政府领域为主
从产业结构来看,目前,我国的大数据产业进入高质量发展阶段,大数据软件和大数据服务的需求开始不断提升,大数据硬件占比有所下降但仍占据主导地位,
CCID统计,2021年我国大数据市场结构中,大数据硬件、大数据软件和大数据服务的市场占比分别为40.5%、25.7%和33.8%。近几年大数据硬件的占比在逐渐下降,大数据软件和大数据服务的占比在逐步提高。未来我国大数据软件和服务市场相比硬件市场将呈现更好的发展态势。
从应用领域来看,大数据分析产品及服务已经从最早的为电信领域客户提供经营分析、为银行领域客户提供风控管理等辅助性经营决策,发展到目前的为金融、电信、政府、互联网、工业、健康医疗、电力等多个行业领域客户提供预测性分析、自主与持续性分析等,以实现企业决策与行动最优化。大数据分析产品及服务应用已经十分广泛,但由于各下游领域业务特点的不同,决定了其对大数据分析产品及服务的具体需求存在一定差异。
CCID统计,2021年我国大数据分析市场下游行业中,金融、政府、电信和互联网位居应用领域前四名,市场占比分别为19.1%、16.5%、15.2%和13.9%,合计超过60%;其他重点应用领域主要包括健康医疗、交通运输、工业、电力等。
2、细分市场一:金融大数据
——金融大数据需求:金融业务规模不断扩大,带动大数据需求提升
从金融领域需求来看,近年来,中国金融领域业务规模不断扩大,其中中国银行业金融机构不断积极拥抱金融科技,推动数字化转型,整体行业规模扩大;保险业和证券业的收入也随着市场经济的发展而提升。
近年来,随着新一代信息技术加速突破应用,以移动金融、互联网金融、智能金融等为代表的金融新业态、新应用、新模式正蓬勃兴起,我国金融业开始步入一个与信息社会和数字经济相对应的数字化新时代,金融数字化转型成为金融行业转型发展的焦点。2019年,人民银行印发《金融科技发展规划(2019-2021年)》,构建起金融科技“四梁八柱”的顶层设计,明确了金融科技发展方向和任务、路径和边界。2022年1月,人民银行再次发布《金融科技发展规划(2022-2025年)》明确提出,从战略、组织、管理、目标、路径以及考评等方面将金融数字化打造成金融机构的“第二发展曲线”。随着金融业务规模不断扩大,加之新一代信息技术的发展,大数据在金融领域的需求将不断提升。
——金融大数据应用场景
过去几年,金融大数据带来了重大的技术创新,为行业提供了便捷、个性化和安全的解决方案。目前,中国金融大数据典型的应用场景包括股票洞察、欺诈检测和预防、风险分析与金融服务领域。
3、细分市场二:政府大数据
——政府大数据需求:互联网政务服务用户规模不断提升
从政府领域需求来看,根据中国互联网络信息中心(CNNIC)发布的第49次《中国互联网络发展状况统计报告》数据显示,互联网政务服务发展展现出了巨大潜能。截至2021年12月,我国互联网政务服务用户规模达9.21亿,较2020年12月增长9.2%,占网民整体的89.2%。“十四五”规划纲要提出要“推进网络强国建设,加快建设数字经济、数字社会、数字政府,以数字化转型整体驱动生产方式、生活方式和治理方式变革”。2021年,我国各省市积极探索、持续推进互联网政务服务建设发展,努力提升公共服务、社会治理等数字化、智能化水平。截至2021年11月,全国已有20多个省(区、市)相继出台数字政府建设的有关规划,为我国互联网政务服务发展注入新的活力。
——政府大数据应用场景
中国政府大数据主要应用于信息共享、政务数据管理、城市网络管理与社会管理几大领域。加强电子政务建设,管理好政府的数据资产,完善政府决策流程,将是未来数年大数据在公共管理领域发展的重要方向。大数据将对政府部门的精细化管理和科学决策发挥重要作用,从而提高政府的服务水平。舆情监测、交通安防、医疗服务等将是公共管理领域重点应用领域。
4、细分市场三:互联网大数据
——互联网大数据需求:互联网行业规模不断提升
在人工智能、云计算、大数据等信息技术和资本力量的助推和国家各项政策的扶持下,2021年,互联网和相关服务业发展态势平稳向好。企业业务收入和营业利润保持较快增长;互联网平台服务和数据业务实现快速发展,信息服务收入较快增长;多省份保持增长态势。2021年我国规模以上互联网和相关服务企业完成业务收入15500亿元,同比增长21.2%。
2022年上半年,我国规模以上互联网和相关服务企业完成互联网业务收入7170亿元,同比增长0.1%。
注:2021年及以前年份,规模以上互联网和相关服务企业,指获得《增值电信业务经营许可证》在中国大陆境内经营全国或区域性增值电信业务、上年度互联网业务收入500万元及以上的企业。2022年,规模以上互联网和相关服务企业口径由互联网和相关服务收入500万元以上调整为2000万元及以上。
——互联网大数据应用场景
在互联网行业,除了社交、B2C业务之外,像在线音视频业务、广告监测、精准营销等等,也是未来潜在应用场景。
产业竞争格局
1、区域竞争:中国大数据企业主要分布在华南和华东沿海地区
根据企查猫数据,截止2022年9月23日,全国大数据产业中“存续”及“在业”的企业多集中分布在华南和华东沿海地区。其中,广东省的大数据企业最多。
2、企业竞争:技术领域创新和经验是关键,融合应用领域行业龙头更能获得青睐
根据大数据产业联盟调研和发布的2022大数据企业投资价值百强榜单来看,榜单共选取了10个细分领域,涉及大数据基础软件、数据治理与分析、数据安全、商业智能、营销大数据5个通用领域,以及政府大数据、金融大数据、工业大数据、健康医疗大数据、空间地理信息大数据5个融合应用领域。
大数据基础软件、数据治理与分析、数据安全、数据可视化等,是所有细分行业应用场景的基础支撑,体现了大数据技术价值和作用。在这些细分领域提供技术解决方案的企业中,技术创新能力较强、在各自的细分领域有较长时间技术积累的厂商是投资机构的关注重点。
政府大数据、金融大数据发展相对成熟,落地实践案例多和品牌知名度高的企业受市场关注程度较高。工业大数据、健康医疗大数据、空间地理信息大数据等市场仍处于待爆发阶段,在各自细分领域建立竞争优势的企业容易获得投资机构的青睐。
注:2022年大数据企业投资价值百强榜是从企业估值/市值、营收状况、创新投入、产品竞争力、细分市场潜力、领导层能力等多个维度进行综合评比,同时结合行业专家打分,评选出2022年度大数据领域最具投资价值的100家企业。
产业发展前景:大数据将继续保持高速增长
大数据作为新一代信息技术的重要标志,对生产制造、流通、分配、消费活动以及经济运行机制、社会生活方式和国家治理能力均产生重要影响。伴随国家快速推动数字经济、数字中国、智慧城市等发展建设,未来大数据行业对经济社会的数字化创新驱动、融合带动作用将进一步增强,应用范围将得到进一步拓宽,大数据市场也将保持持续快速的增长态势。预计2027年我国大数据市场规模将达到2930.9亿元,未来六年复合年增长率为22.6%。
更多本行业研究分析详见前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。
Ⅵ 互联网大数据时代企业面临的挑战
没有人会否定疫情下数据给全国防控带来的帮助。得益于大数据、 云计算 、人工智能以及5G技术的发展,数据得以更好的共享以及分析,政府、企业推出的健康码、防疫行程卡等应用,使得人员流通、密切接触者排查有数可依。
也没有企业不清楚数据在这个年代对经营管理的价值。通过将数据沉淀、清洗,并挖掘、分析,企业运营效率将得以提升、成本得以优化,经营也将得以改善。
事实正是如此。在智能终端、 物联网 以及5G的推动下,全球数据量正呈指数般增长:2010年全球数据量刚刚突破1ZB,而今年全球数据量预计将超过40ZB。相关数据表明,到2025年时,全球的数据量将达到163ZB。
数据洪流下,全球也正从IT信息时代走向DT数据时代。由大数据引发的产业变革已经开始。IDC发布的《全球半年度大数据支出指南,2018H2》曾预计, 2019年大数据与商业分析解决方案全球市场的整体收益将达到1896.6亿美元,同比增长12.1%。
同时,在2019-2023年预测期内,全球大数据市场相关收益将实现13.1%的CAGR(复合年均增长率),并预计总收益于2023年达到3126.7亿美元。
具体到中国大数据市场, 2019-2023年预测期内的年CAGR(复合年均增长率)为23.5%,增速高于全球平均水平。到2023年,中国大数据市场规模则将增长至224.9亿美元。
尽管大数据市场前景一片光明,但真正能很好把握数据,充分发挥数据价值的企业,往往是少数在技术、资本、人才均占据优势的行业领导者。
而绝多数长尾企业,本就在行业竞争中处于劣势,在大数据产业变革中,尽管知道数据对经营管理那么重要。但受限于运营成本、人才以及技术,很难找到一款合适的工具,去抓住这些数据中蕴藏的商机。
数字经济下的企业经营困扰
众所周知的是,无论是国家层面“新基建”概念的提出,还是受疫情影响企业、组织加速数字化转型的步伐,这些均代表着数字经济时代的到来。
数据最直观:到2021年,全球数字经济规模将达到45万亿美元,全球数字经济的比重将超过50%。中国是全球数字经济的引领者之一。到2021年,中国数字经济规模将达到8.5万亿美元,其中数字经济所占比重将超过55%。截止目前,中国数字经济增速已连续3年排名世界第一。
但作为数字经济的推动者,企业在面对错综繁杂的 互联网 大数据时,依然不能采取行之有效的方案,将其妥善的用于经营管理。具体来看的话,企业在借助互联网大数据帮助经营管理时面临的挑战主要在以下几方面:
一是缺乏专业的市场研究工具或团队。 相比企业现在所使用的IT技术,大数据可以说是一门新技术。对于没有部署这一技术的企业而言,由于没有专业的市场研究工具或者研究团队,一方面将由于数据质量不佳面临产品开发设计难题。
这是因为企业无法对所处的市场进行量化统计分析,如市场规模是否增加,友商最近有何动态,是否有新入局者,该市场某细分市场是否有潜在机会。同时,由于不知道市场上有哪些爆款产品、创新产品,友商的竞品有何特性以及潜在市场的需求,导致企业在产品开发、策划、推广时没有针对性,难以形成爆款。
另一方面导致店铺运营效率不佳: 同样,由于缺乏专业的监控、分析工具,企业无法对友商线上渠道布局清晰掌握,无法实现自营/经销店铺的批量监控、店铺异动的自动记录以及爆款产品的促销复盘。并且,由于无法及时获取用户的吐槽、建议等,店铺在改善运营上也存在难度。
二是部署大数据技术面临的资金、周期等问题。 使用大数据改善经营管理是大势所趋,所以企业要么已经部署大数据要么考虑部署。而在自行部署大数据技术时,不免要多方考虑,既要考虑新硬件的采购费用或者云服务的购买费用,同时还要考虑开发人员的招聘费用,开发周期及运维等。而对 中小企业 而言,这无疑又是一项重大开支。
三是数据的安全问题。大数据技术从诞生到现在,其发展并不算太完善,因此自身安全性相对弱一些。同时,大数据平台又存在诸多组件,以Hadoop为例,至少包含了二三十个组件,这意味着黑客入侵某一个组件便可对整个组群整个平台进行控制。
不可避免,企业在开发大数据方案时需要与公司原有IT系统以及各部门数据间打通,这些入口也增加了大数据平台的安全风险。
不难看出,数字经济时代,企业在借助互联网大数据改善经营管理过程中,主要面临的便是大数据平台的部署、应用以及运维难题。
○本文节选自DOIT传媒《释放数据红利 美云智数互联网大数据与企业掘金数字经济》,图片为阴山所加。
Ⅶ 大数据的产生与发展现状研究
摘 要:大数据的产生给未来信息技术带来新的机遇与挑战。大数据对数据处理的有效性、实时性提出了更高要求,需要根据大数据的特点对当前数据处理技术实施变革,从而形成更有益于大数据采集、存储、处理、管理、分析、共享的新兴技术。本文从大数据的产生与发展、特征、主要应用以及大数据所带来的挑战等方面进行阐述与分析。
关键词 :大数据 物联网 信息处理 海量计算
一、大数据的产生与发展现状
随着物联网、云计算等信息技术的飞速发展,大数据技术(Big Data)也越发进入人们的视线。大数据是用传统方法或工具很难处理或分析的数据信息。目前,人们对大数据的理解还不够全面和深入,关于大数据的含义也没有一个统一的定义。亚马逊大数据科学家John Rauser认为:大数据是超过任何一台计算机处理能力的庞大数据量。Informatica 的中国区首席顾问但彬指出:大数据是海量数据与复杂类型的数据的结合。而维基网络则把大数据定义成诸多大而复杂的、难以用当前数据库处理的数据集合。
大数据研究受到国内外学术界和工业界的广泛关注,已成为当今信息时代全世界讨论的热点。2008年,Nature杂志就推出大数据专刊,计算社区联盟也在同一年发表了报告《Big data computing; Creating revolutionary breakthroughs in commerce, science and society》,报告阐述了解决大数据问题所需的关键技术以及所面临的挑战。美国奥x政府于2012年3月在白宫网站发布了《大数据研究和发展倡议》,提出了通过收集、处理海量、复杂的数据信息,从而提升能力,加快科学和工程领域的创新步伐,转变学习教育模式,强化美国本土的安全”。2011年1月,微软公司同惠普公司合作开发了一系列能够提升生产力,同时提高决策速度的设备。此外,欧盟委员会也提出驾驳大数据浪潮的战略思路,日本发布的《面向 2020 的 ICT综合战略》也提出需要构造大量丰富的数据基础。
近年来,我国也积极开展对大数据的研究。2011年10月,工信部确认京沪深杭等 5 城市为“云计算中心”试点城市。2012年6月,中国计算机学会青年计算机科技论坛也举办了“大数据时代,智谋未来”学术报告研讨会。大数据及其科学研究方法涉及应用领域很广,并将与国计民生密切相关的科学决策、金融工程以及知识经济领域紧紧接合。
二、大数据的特点
目前,企业界和学术界都一致认为,大数据具有4个“V”特征,即:容量(Volume)、种类(Variety)、速度(Velocity)和至关重要的`价值(Value)。
(1) 容量(Volume)巨大。海量的数据集从TB 级别提升到PB 级别。
(2) 种类(Variety)繁多。大数据数据源有多种,数据格式和种类不同于以前所规定的结构化数据范畴。
(3)价值(Value)密度低。如视频的例子,在不间断连续监控的过程中,可能有意义的数据仅有一两秒。
(4)速度(Velocity)快。包含大量实时、在线数据处理分析的需求1秒钟定律。
三、大数据应用的领域
大数据产业的发展将推动全球经济由粗放型向集约型转变,这将对提升企业整体竞争力和政府监管能力具有意义深远的影响。
商业作为大数据的重要应用领域。沃尔玛公司通过对消费者购物行为等一系列非结构化数据的分析,了解不同顾客的购物习惯,公司从所销售的数据进行分析,从而选出适合在一起搭配出售的商品;淘宝也针对买家开设了大数据平台,为客户量身打造了一整套完善的网购体验产品。
大数据在金融业也起到了至关重要的作用。美国Equifax公司利用大数据技术,通过对其的数据库中与财务有关的记录海量信息进行索引处理和交叉分享,从而得到客户的个人信用等级,以推断出客户的支付需求与能力。
随着大数据在医疗与生命科学研究过程中的广泛应用和不断扩展。2010年,中国公布的《十二五规划》指出:要重点建设国家级、省级和地市级三级医疗卫生信息平台,建设电子病历和电子档案两个最为基础的数据库。各级医院也将在医疗信息仓库、数据中心等领域加大投入,医疗数据信息的存储将愈加被关注,医疗信息中心的关注焦点也将由传统的计算领域转为存储领域。
除此之外,大数据在制造业领域也有着广阔的应用。制造业企业积累了广泛的数据信息,在开展对业务数据进行技术管理的同时,企业需要通过大数据处理技术来帮助决策者从数据库储存的海量信息中找到有价值的信息,并且对其进行分析处理,从而增强决策的正确性、规避风险。
四、大数据所面临的挑战
大数据技术使人们能够更好地利用之前不能使用的各个数据类型,找出被忽略的信息,促进企业组织更加高效、智能。但随着对大数据研究的不断深入,人们也更加意识到当大数据技术向人们敞开“方便之门”的同时,也带来了众多的挑战:
(1)大数据需要更为专业化的管理技术人才。
(2) 大数据的合理利用需要解决容量大、类别多和时效性高的数据处理问题。
(3)大数据的利用对信息安全提出了更高要求。
(4)大数据的集成与管理问题。
这些挑战已成为关系到未来大数据发展的重要因素,同时也成为未来引领大数据发展的推动力。
五、结束语
大数据已经逐步渗透到人们工作生活的诸多领域中,对于大数据的研究也在不断的深化。本文针对大数据的产生与发展、特征、主要应用以及大数据所带来的挑战等方面进行阐述与分析。大数据的发展还处于初级阶段,还有更为广阔的空间需要人们不断开拓,如何合理地利用大数据、更加高效地处理大数据来为人们服务仍需要广大研究者不断地研究和探索。
参考文献:
[1]刘智慧,张泉灵.大数据技术研究综述[J].浙江大学学报,2014,46(6):957- 972.
[2]严霄凤,张德馨.大数据研究[J].计算机技术与发展,2013,23(4):168-172.
[3]刘俊.基于大数据流的Multi-Agent系统模型研究[J].计算机技术与发展, 2007,17(5):166-169.