⑴ 提高数据分析能力必读书籍推荐
【导读】随着互联网的发展,数据分析已经成了非常热门的职业,大数据分析师也成了社会打工人趋之若鹜的职业,不仅高薪还没有很多职场微世界的繁琐事情,不过要想做好数据分析工作也并不简单,参看一些好书,对行进数据分析会更有帮助!今天小编就给大家带来了提高数据分析能力必读书籍推荐,希望对各位小伙伴有所帮助。
数据分析进阶
1.《精益数据分析》
本书展示了怎样验证自己的设想、找到实在的客户、打造能挣钱的产品,以及行进企业知名度。并经过30多个事例剖析,深化展示了怎样将六个典型的商业办法运用到各种规划的精益创业、数据分析根底,和数据驱动的思维办法中,找到企业添加的首先要害方针。
2.《数学之美》
本书把深邃的数学原理讲得愈加通俗易懂,让非专业读者也能领会数学的魅力。读者经过具体的比方学到的是考虑问题的办法 ——
怎样化繁为简,怎样用数学去向理工程问题,怎样跳出固有思维不断去考虑立异。
数据挖掘
1.《数据挖掘导论(无缺版)》
本书全面介绍了数据挖掘,包括了五个主题:数据、分类、相关剖析、聚类和异常检测。除异常检测外,每个主题都有两章。前一章包括根柢概念、代表性算法和点评技术,然后一章谈论高档概念和算法。这样读者在透彻地了解数据挖掘的根底的一同,还可以了解更多重要的高档主题。
2.《数据挖掘概念与技术》
本书无缺全面地叙说数据挖掘的概念、办法、技术和最新研讨翻开。本书对前两版做了全面修订,加强和从头组织了全书的技术内容,要害论说了数据预处理、再三办法挖掘、分类和聚类等的内容,还全面叙说了OLAP和离群点检测,并研讨了挖掘网络、凌乱数据类型以及重要运用范畴。
3.《数据挖掘与数据化运营实战:思维、办法、技巧与运用》
现在有关数据挖掘在数据化运营实践范畴比较全面和系统的作品,也是诸大都据挖掘书本中为数不多的交叉许多实在的实践运用事例和场景的作品,更是发明性地针对数据化运营中不同剖析挖掘课题类型,推出逐一对应的剖析思路集锦和相应的剖析技巧集成,为读者供给“菜单化”实战锦囊的作品
作为数据分析师,如果仅仅安于现状,不注重自我行进,那么,不久的将来,你很或许成为公司的“人肉”取数机,影响往后的工作生计。
以上就是小编今天给大家整理分享关于“提高数据分析能力必读书籍推荐”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,一直学习,这样更有核心竞争力与竞争资本。
⑵ 大神,关于大数据处理方面的书籍有推荐吗
《大数据处理之来道》作者:自何金池
分析比较了当下流行的大数据处理技术的优劣及适用场景,包括Hadoop、Spark、Storm、Dremel、Drill等,详细分析了各种技术的应用场景和优缺点;同时阐述了大数据下的日志分析系统,重点讲解了ELK日志处理方案;最后分析了大数据处理技术的发展趋势,重点从各种技术的起源、设计思想、架构等方面阐述大数据处理之道。
⑶ 推荐一本关于大数据,数据分析类似的书籍
1、《Hadoop权威指南》
现在3.1版本刚刚发布,但官方并不推荐在生产环境使用。作为hadoop的入门书籍,从2.x版本开始也不失为良策。
本书从Hadoop的缘起开始,由浅入深,结合理论和实践,全方位地介绍Hadoop这一高性能处理海量数据集的理想工具。刚刚更新的版本中,相比之前的版本增加了介绍YARN , Parquet , Flume, Crunch , Spark的章节,非常适合于Hadoop 初学者。
2、《Learning Spark》
《Spark 快速大数据分析》是一本为Spark 初学者准备的书,它没有过多深入实现细节,而是更多关注上层用户的具体用法。不过,本书绝不仅仅限于Spark 的用法,它对Spark 的核心概念和基本原理也有较为全面的介绍,让读者能够知其然且知其所以然。
3、《Spark机器学习:核心技术与实践》
以实践方式助你掌握Spark机器学习技术。本书采用理论与大量实例相结合的方式帮助开发人员掌握使用Spark进行分析和实现机器学习算法。通过这些示例和Spark在各种企业级系统中的应用,帮助读者解锁Spark机器学习算法的复杂性,通过数据分析产生有价值的数据洞察力。
⑷ 市面上大数据的书不少,如果只挑一本,哪本值得推荐
市场上大数据的说不少,但是你要挑一本的话,其实我还是觉得你在网络上选择一些自己可以公开的数据。因为每个人需要的每个程度的书是不一样的,你可以选择购买一些书的电子版本。电子版本反而比书籍会更好一点。
⑸ 有什么比较好的大数据入门的书推荐
比较好的大数据入门的书有《大数据日知录:架构与算法》。
《大数据日知录:架构与算法》是2014年电子工业出版社出版的图书,作者是张俊林。《大数据日知录:架构与算法》从架构与算法的角度全面梳理了大数据存储与处理的相关技术。大数据技术具有涉及的知识点异常众多且正处于快速演进发展过程中等特点。
其技术点包括底层的硬件体系结构、相关的基础理论、大规模数据存储系统、分布式架构设计、各种不同应用场景下的差异化系统设计思路、机器学习与数据挖掘并行算法以及层出不穷的新架构、新系统等。
主要介绍
本书对众多纷繁芜杂的相关技术文献和系统进行了择优汰劣并系统性地对相关知识分门别类地进行整理和介绍,将大数据相关技术分为大数据基础理论、大数据系统体系结构、大数据存储。
以及包含批处理、流式计算、交互式数据分析、图数据库、并行机器学习的架构与算法以及增量计算等技术分支在内的大数据处理等几个大的方向。通过这种体系化的知识梳理与讲解,相信对于读者整体和系统地了解、吸收和掌握相关的技术有很大的帮助与促进作用。
⑹ 数据挖掘从入门到进阶 要看什么书
数据挖掘从入门到进阶 要看什么书
做数据挖掘也有些年头了,写这篇文一方面是让我写篇文,朋友作为数据挖掘方面的参考,另一方面也是有抛砖引玉之意,希望能够和一些大牛交流,相互促进,让大家见笑了。
Q&A:
Q:学习,最近在看集体智慧编程,楼主可否推荐下数学基础的书?
A:我数学本身也不好 自己也在偷偷补 因为看的不多也不能给出个提纲式的建议 只能给您列下我近期看过和在看的觉得不错的书 您看做参考吧
矩阵方面 Kaare Brandt Petersen的《The Matrix Cookbook》 网易公开课中的《麻省理工公开课:线性代数》
2.概率论与数理统计方面 JohnA.Rice 的《数理统计与数据分析》《统计建模与R软件》
3.微积分方面 网易公开课中的《麻省理工学院公开课:单变量微积分》
其实您只要有了
1、概率论与数理统计以及其他统计学基础
2、扎实的线性代数功底
3、微积分(如果能学习下实变函数和泛函分析就更好了)
这几方面的基础 基本上机器学习的大部分算法您都具有了其数学基础
如果您觉得我说的太泛 可以先看看《模式分类》这本书的附录中的数学基础 这样您就大体有个印象了
入门:
数据挖掘入门的书籍,中文的大体有这些:
Jiawei Han的《数据挖掘概念与技术》
Ian H. Witten / Eibe Frank的《数据挖掘 实用机器学习技术》
Tom Mitchell的《机器学习》
TOBY SEGARAN的《集体智慧编程》
Anand Rajaraman的《大数据》
Pang-Ning Tan的《数据挖掘导论》
Matthew A. Russell的《社交网站的数据挖掘与分析》
很多人的第一本数据挖掘书都是Jiawei Han的《数据挖掘概念与技术》,这本书也是我们组老板推荐的入门书(我个人觉得他之所以推荐是因为Han是他的老师)。其实我个人来说并不是很推荐把这本书。这本书什么都讲了,甚至很多书少有涉及的一些点比如OLAP的方面都有涉猎。但是其实这本书对于初学者不是那么友好的,给人一种教科书的感觉,如果你有大毅力读完这本书,也只能获得一些零碎的概念的认识,很难上手实际的项目。
我个人推荐的入门书是这两本:TOBY SEGARAN的《集体智慧编程》和Ian H. Witten / Eibe Frank的《数据挖掘 实用机器学习技术》
《集体智慧编程》很适合希望了解数据挖掘技术的程序员,这本书讲述了数据挖掘里面的很多实用的算法,而且最重要的是其讲述的方式不是像Han那种大牛掉书袋的讲法,而是从实际的例子入手,辅以python的代码,让你很快的就能理解到这种算法能够应用在哪个实际问题上,并且还能自己上手写写代码。唯一的缺点是不够深入,基本没有数学推导,而且不够全面,内容不够翔实。不过作为一本入门书这些缺点反而是帮助理解和入门的优点。
推荐的另一本《数据挖掘 实用机器学习技术》则相对上一本书要稍微难一点,不过在容易理解的程度上依然甩Han老师的书几条街,其作者就是著名的Weka的编写者。整本书的思想脉络也是尽可能的由易到难,从简单的模型入手扩展到现实生活中实际的算法问题,最难能可贵的是书的最后还稍微讲了下如何使用weka,这样大家就能在学习算法之余能够用weka做做小的实验,有直观的认识。
看完上述两本书后,我觉得大体数据挖掘就算有个初步的了解了。往后再怎么继续入门,就看个人需求了。
如果是只是想要稍微了解下相关的技术,或者作为业余爱好,则可随便再看看Anand Rajaraman的《大数据》以及Matthew A. Russell的《社交网站的数据挖掘与分析》。前者是斯坦福的”Web挖掘”这门课程的材料基础上总结而成。选取了很多数据挖掘里的小点作为展开的,不够系统,但讲的挺好,所以适合有个初步的了解后再看。后者则亦是如此,要注意的是里面很多api因为GFS的缘故不能直接实验,也是个遗憾
如果是继续相关的研究学习,我认为则还需要先过一遍Tom Mitchell的《机器学习》。这本书可以看做是对于十多年前的机器学习的一个综述,作者简单明了的讲述了很多流行的算法(十年前的),并且对于各个算法的适用点和特点都有详细的解说,轻快地在一本薄薄的小书里给了大家一个机器学习之旅。
进阶:
进阶这个话题就难说了,毕竟大家对于进阶的理解各有不同,是个仁者见仁的问题。就我个人来说,则建议如下展开:
视频学习方面:
可以看看斯坦福的《机器学习》这门课程的视频,最近听说网易公开课已经全部翻译了,而且给出了双语字幕,更加容易学习了^_^
书籍学习方面:
我个人推荐的是这样:可以先看看李航的《统计学习方法》,这本书着重于数学推导,能让我们很快的对于一些算法的理解更加深入。有了上面这本书的基础,就可以开始啃一些经典名著了。
这些名著看的顺序可以不分先后,也可以同时学习:
Richard O. Duda的《模式分类》这本书是力荐,很多高校的数据挖掘导论课程的教科书便是这本(也是我的数据挖掘入门书,很有感情的)。如果你不通读这本书,你会发现在你研究很多问题的时候,甚至一些相对简单的问题(比如贝叶斯在高斯假设下为什么退化成线性分类器)都要再重新回头读这本书。
Christopher M. Bishop的《Pattern Recognition And Machine Learning》这本书也是经典巨著,整本书写的非常清爽。
The Elements of Statistical Learning》这本书豆友有句很好的吐槽“机器学习 — 从入门到精通”可以作为这本书的副标题。可以看出这本书对于机器学习进阶的重要性。值得一说的是这本书虽然有中文版,但是翻译之烂也甚是有名,听说是学体育的翻译的。
Hoppner, Frank的《Guide to Intelligent Data Analysis》这本书相对于上面基本经典巨著并不出名,但是写的甚好,是knime官网上推荐的,标榜的是解决实际生活中的数据挖掘问题,讲述了CRISP-DM标准化流程,每章后面给出了R和knime的应用例子。
项目方面:
事实上,我觉得从进阶起就应该上手一些简单的项目了。如果不实践只是看书和研究算法,我觉得是无法真正理解数据挖掘的精髓所在的。打个简单的比方,就算你看完了C Primer、effective C 等等书籍,如果自己不写C ,那么自己也就会停留在hello world的级别。实践出真知非常切合数据挖掘这门学科,实际上手项目后才会发现什么叫”80%的准备,20%的建模”,real world的问题我认为并不是仅仅靠modeling就能很好的解决的。详细的可以看看《Guide to Intelligent Data Analysis》就能略知一二。如果上手做推荐或者一些简单的项目,也可以考虑用用mahout,推荐的入门手册是《mahout in action》。项目问题说来话长,有时间会以CRISP流程为引单独作文,这里也就不详谈了。
软件方面:
我常用而且推荐的软件有如下,这里只是简单的列出,以后有时间再详细分析和写出入门:
Weka Java的软件,可以集成到自己的项目中
Orange 一个用python写的数据挖掘开源软件,界面做的很漂亮,可以做图形化实验,也可以用python调用编程。
Knime 和Orange类似,特点是可以集成weka和R等开源软件
SAS的EM模块以及R 还有最最经典的matlab大大
这里有篇文有简要的介绍http://www.oschina.net/question/12_14026
再往后:
再往后的其实就是我就是觉得是学数学了,然后就是深入读一些你感兴趣的topic的书籍和paper,接项目,做项目了。发展有数据分析师或者去专门的企业做数据研究员,当然混学术界的我就不清楚了。
初略写完发现成一篇长文了,最近也是在做一个用眼底照片预测stroke的项目,比较忙,等闲下来以后也会写些算法或者软件或者实际项目的心得的文。当然也只是我个人粗浅的想法,也希望能和大家有所交流,相互促进,我个人的邮箱是[email protected],有什么问题可以再帖子里讨论,也可邮件交流^_^
⑺ 想从零开始自学大数据,请问有哪些书籍推荐
在人人高呼的大数据时代,你是想继续做一个月薪6K+的码农,还是想要翻身学习成为炙手可热名企疯抢的大数据工程师呢?
随着互联网技术的发展,大数据行业前景非常被看好,有很多朋友对大数据行业心向往之,却苦于不知道该如何下手,或者说学习大数据不知道应该看些什么书。作为一个零基础大数据入门学习者该看哪些书?今天就给大家分享几本那些不容错过的大数据书籍。
1、《数据挖掘》
这是一本关于数据挖掘领域的综合概述,本书前版曾被KDnuggets的读者评选为最受欢迎的数据挖掘专著,是一本可读性极佳的教材。它从数据库角度全面系统地介绍数据挖掘的概念、方法和技术以及技术研究进展,并重点关注近年来该领域重要和最新的课题——数据仓库和数据立方体技术,流数据挖掘,社会化网络挖掘,空间、多媒体和其他复杂数据挖掘。
2、《Big Data》
这是一本在大数据的背景下,描述关于数据建模,数据层,数据处理需求分析以及数据架构和存储实现问题的书。这本书提供了令人耳目一新的全面解决方案。但不可忽略的是,它也引入了大多数开发者并不熟悉的、困扰传统架构的复杂性问题。本书将教你充分利用集群硬件优势的Lambda架构,以及专门用来捕获和分析网络规模数据的新工具,来创建这些系统。
3、《Mining of Massive Datasets》
这是一本书是关于数据挖掘的。但是本书主要关注极大规模数据的挖掘,也就是说这些数据大到无法在内存中存放。由于重点强调数据的规模,所以本书的例子大都来自Web本身或者Web上导出的数据。另外,本书从算法的角度来看待数据挖掘,即数据挖掘是将算法应用于数据,而不是使用数据来“训练”某种类型的机器学习引擎。
⑻ 有什么比较好的大数据入门的书推荐
1. 《大数据分析:点“数”成金》
你现在正坐在一座金矿上,这些金子或被埋于备份,或正藏在你眼前的数据集里,他们是提升公司效益、拓展新的商业关系、制定更直观决策的秘诀所在,足以使你的企业更上一层楼。你将明白如何利用、分析和驾驭数据来获得丰厚回报。作者Frank Ohlhorst厚积数十年的技术经验写了此书。该书介绍了如何将大数据应用于各行各业,你将了解到如何对数据进行挖掘,怎样从数据中揭示趋势并转化为竞争策略及提取价值的方法。这些更有意思也是更有效的方法能够提升企业的智能化水平,将有助于企业解决实际问题,提升利润空间,提高生产率并发现更多的商业机会。
2.《大数据时代》
《大数据时代》是国外大数据系统研究的先河之作,本书作者维克托被誉为”大数据商业应用第一人”,拥有再哈佛大学、牛津大学和新加坡国立大学等多个互联网研究重镇任教经历,早在2010年就在《经济学人》上发布了长达14页对大数据应用的前瞻性研究。该书主要讲了大数据时代的变革、商业变革和管理变革。《大数据时代》认为大数据的核心就是预测。大数据为人类的生活创造了前所未有的可量化的维度。大数据已经成为了新发明和新服务的源泉,而更多的改变正蓄势待发。
3.《云端时代杀手级应用:大数据分析》
《云端时代杀手级应用:大数据分析》分析了什么是大数据、大数据大商机、技术与前瞻三个部分。第一个部分介绍大数据分析的概念,以及企业、政府部门可应用的范畴。什么是大数据分析?与个人与企业有什么关系?将对全球产业造成什么样的冲击?第二部分完整介绍了大数据在各产业的应用实况,为企业及政府部门提供应用的方向。提供了全球各地的实际应用案例,涵盖了零售、金融、政府部门、能源、制造、娱乐等各个行业,充分展示了大数据分析产生的效益。第三部分则简单介绍了大数据分析所需要的技术及未来的发展趋势,为读者提供了应用与研究的方向。
4.《大数据》
本书通过讲述美国半个多世纪信息开放、技术创新的历史,以别开生面的经典案例奥巴马建设”前所未有的开放政府“的雄心、公开财务透明的曲折。《数据质量法》背后隐情,全国医改法案的波澜、统一身份证的百年纠结以及云计算、Facebook和推特等社交媒体等等,为您一一讲解数据创新给社会带来的种种变革和挑战。
5.《大数据互联网大规模数据挖掘与分布式处理》。
该书主要讲的是海量数集数据挖掘常用的算法。书中分析了海量数据集数据挖掘常用的算法,介绍了目前WEB端应用的许多重要话题等。
⑼ 《Hadoop与大数据挖掘》epub下载在线阅读,求百度网盘云资源
《Hadoop与大数据挖掘》(张良均 樊哲 位文超 刘名军等 著)电子书网盘下载免费在线阅读
链接:https://pan..com/s/1VZ3pQ_TdIVoJzwp1QNcUnA 提取码:kx9d
书名:Hadoop与大数据挖掘
作者:张良均 樊哲 位文超 刘名军等 著
出版社:机械工业出版社
出版年份:2017-6-1
页数:322
内容简介:
这是一本适合教学和零基础自学的Hadoop与大数据挖掘的教程,即便你完全没有Hadoop编程基础和大数据挖掘基础,根据本书中的理论知识和上机实践,也能迅速掌握如何使用Hadoop进行大数据挖掘。全书主要分为两篇:基础篇(1-7章),首先从宏观上介绍了大数据相关概念和技术,然后逐一对Hadoop、Hive、HBase、Pig、Spark、Oozie等一系列大数据技术的概念、原理、架构,以及企业应用方法进行了详细介绍,同时配有大量的案例。掌握了这些内容,就具备了大数据技术的基础;挖掘实战篇(8章),主要是一个企业级大数据应用项目——电子商务智能推荐系统。通过分析应用背景、构建系统,使读者了解针对系统的每一层应用使用什么大数据技术来解决问题。涉及的流程有数据采集、数据预处理、模型构建等,在每一个流程中会进行大数据相关技术实践,运用实际数据来进行分析,使读者切身感受到利用大数据技术解决问题的魅力。
⑽ 数据挖掘参考书推荐
《数据挖掘:概念与技术(原书第3版)》入门首选。学习数据挖掘,不能没有软件工具,spss,sas,R语言,你可以学这些工具,当然excl也不错。