A. 大数据时代的信息安全和未来展望
大数据时代的信息安全和未来展望
随着高级可持续性攻击的出现以及恶意软件的复杂性与日俱增,企业急需一种突破传统信息安全保障模式的、灵活的技术和方案来应对未来不断变化的安全威胁。大数据彻底的改变了信息安全行业,基于大数据分析的智能驱动型安全战略将帮助信息安全从业人员重获警惕性和时间的优势,以使他们更好地检测和防御高级网络威胁。
大数据时代信息安全面临挑战
在大数据时代,无处不在的智能终端、随时在线的网络传输、互动频繁的社交网络使得互联网时时刻刻都在产生着海量的数据。随着产生、存储、分析的数据量越来越大,在这些海量数据背后隐藏着大量的经济与政治利益。大数据如同一把双刃剑,在我们享受大数据分析带来的精准信息的同时,其所带来的安全问题也开始成为企业的隐患。
1、黑客更显著的攻击目标:在网络空间里,大数据是更容易被“发现”的大目标。一方面,大数据意味着海量的数据,也意味着更复杂、更敏感的数据,这些数据会吸引更多的潜在攻击者。另一方面,数据的大量汇集,使得黑客成功攻击一次就能获得更多数据,无形中降低了黑客的攻击成本,增加了其“收益率”。
2、隐私泄露风险增加:大量数据的汇集不可避免地加大了用户隐私泄露的风险。一方面,数据集中存储增加了泄露风险,而这些数据不被滥用,也成为人身安全的一部分。另一方面,一些敏感数据的所有权和使用权并没有明确界定,很多基于大数据的分析都未考虑到其中涉及的个体隐私问题。
3、威胁现有的存储和防护措施:大数据存储带来新的安全问题。数据大集中的后果是复杂多样的数据存储在一起,很可能会出现将某些生产数据放在经营数据存储位置的情况,致使企业安全管理不合规。大数据的大小也影响到安全控制措施能否正确运行。安全防护手段的更新升级速度无法跟上数据量非线性增长的步伐,就会暴露大数据安全防护的漏洞。
4、大数据技术成为黑客的攻击手段:在企业用数据挖掘和数据分析等大数据技术获取商业价值的同时,黑客也在利用这些大数据技术向企业发起攻击。黑客会最大限度地收集更多有用信息,比如社交网络、邮件、微博、电子商务、电话和家庭住址等信息,大数据分析使黑客的攻击更加精准。此外,大数据也为黑客发起攻击提供了更多机会。黑客利用大数据发起僵尸网络攻击,可能会同时控制上百万台傀儡机并发起攻击。
5、成为高级可持续攻击的载体:传统的检测是基于单个时间点进行的基于威胁特征的实时匹配检测,而高级可持续攻击(APT)是一个实施过程,无法被实时检测。此外,由于大数据的价值低密度特性,使得安全分析工具很难聚焦在价值点上,黑客可以将攻击隐藏在大数据中,给安全服务提供商的分析制造很大困难。黑客设置的任何一个会误导安全厂商目标信息提取和检索的攻击,都会导致安全监测偏离应有方向。
6、信息安全产业面临变革:大数据的到来也为信息安全产业的发展带来了新的契机,还没有意识到这场变革的安全厂商将在这场变革大潮中被抛弃。大数据正在为安全分析提供新的可能性,在未来的安全架构体系中,通过大数据智能分析有效的将原来分割的安全产品更好的融合起来,成为不同的安全智能节点,这将是在大数据时代安全产业需要研究突破的重点。
大数据安全未来趋势展望
据MacDonald预测,到2016年,40%的企业(银行、保险、医药和国防行业为主)将积极地对至少10TB数据进行分析,以找出潜在危险的活动。然而,供应商的产品格局却无法在短期内进行转变。现在,企业通常依赖于SIEM系统来关联和分析安全相关的数据,MacDonald表示目前的SIEM产品无法处理这么大的工作量,大多数SIEM产品提供接近实时数据,但只能处理规范化数据,还有些SIEM产品能够处理大量原始交易数据,但无法提供实时情报信息。
Gartner公司分析师表示,使用“大数据”来提高企业信息安全不完全是炒作,这在未来几年内这将成为现实。大数据将为安全团队带来新的工作方式,通过了解大数据的优势、制定切合实际的目标以及利用现有安全技术的优势,安全管理人员将会发现他们在大数据进行的投资是值得的。
RSA大中国区总经理胡军表示,“大数据将带动安全行业方向性的改变,安全与数据互相影响,未来共同促进发展。现今的安全需要更全面和广泛的可视性,敏捷的分析,可采取行动的情报和可扩展的基础设施。”
我们可以看到,大数据安全已经成为不可阻挡的趋势。在未来,不论是从商业需求角度,还是产业技术角度,大数据安全都将成为业界关注的热点。而在这场大数据安全的盛宴中,也必然会出现新老更替、推陈出新,这一切就让我们拭目以待吧!
B. 大数据的分析与信息安全管理论文开题报告怎么写
论点的位置一般有四个:文题、开
头、文章中间、结尾。但较多情况是在文章的开头,段落论点也是如此。当开始与结尾出现类似的语句时,开头的为论点,结尾处的是呼应论点。
C. 大数据背景下的信息安全问题探讨
大数据背景下的信息安全问题探讨
大数据具有体量巨大、类型繁杂、处理速度快、价值密度低四大特点,因此,对于个人来说,难以处理极其庞大的数据,只有国家和大型企业等组织或集团才有可能获取到各种敏感信息;大数据所搜集提取的个人信息可能连本人都不完全知晓,比如个人的行为特征、语言风格、爱好兴趣等。在大数据时代如何保护个人敏感信息或隐私,必将成为高难度的世界课题。
2013年6月,美国前中情局雇员斯诺登曝光了始于2007年小布什时期美国国家安全局和联邦调查局启动的代号为“棱镜”的秘密项目。美国国家安全局通过接入雅虎、谷歌、微软、苹果等9家美国互联网公司中心服务器,对邮件、图片、视频、电话等10类数据进行监控,以搜集情报,监视民众的网络活动。“棱镜”项目缘于2004年美国政府的“星风”监视计划。但是,当时小布什政府由于法律程序等敏感问题而做出让步,美国本土的监听项目有所缩减。为了“星风”计划的继续进行,小布什政府通过司法程序将“星风”监视计划分拆成由国家安全局执行的4个监视计划,包括“棱镜”、“主干道”、“码头”和“核子”,均交由美国家安全局执掌。“棱镜”项目用于监视互联网个人信息。“主干道”和“码头”项目负责存储和分析通信和互联网上数以亿兆计的“元数据”。元数据主要指通话或通信的时间、地点、使用设备、参与者等,不包括电话或邮件等的内容。“核子”项目负责内容信息的获取,截获电话通话者对话内容及关键词,通过拦截通话以及通话者所提及的地点,来实现日常的监控。由此可见,斯诺登不仅揭露了美国的大规模窃听计划,更揭示了大数据时代国家信息安全保护问题。大数据的分析与使用,无论对个人(如跟踪健康状况防范疾病)、对企业(如了解市场偏好以有效安排产品设计生产营销)乃至对国家(如防范疫情或恐怖主义)显然都有巨大的好处,从商业用途来说,谷歌、微软、雅虎等互联网公司,完全可以通过它们掌握到的数以百万计、千万计甚至亿万计的数据,经由“超级计算”,准确推断消费者的爱好及习惯、商品的销售额、疾病疫情的发展趋势。商业如此,在政治、经济、军事等方面亦存在诸多的用途和潜在利益。像“棱镜”计划里涉及的谷歌、雅虎、苹果、微软等大网站,人们每天由于各种业务需要,会把大量个人信息输入其中,但常常并不被事先告知数据的用途。而这些数据会被企业或政府用来进行一些特殊的计算或分析,如通过对大数据的分析预测来对人们尚未实施的行为进行惩罚。比如“大数据之父”舍恩伯格曾披露过一个例子:在美国有一个计划名为“预测式配警”,通过对大数据分析来预测美国某个城市的某条街道的某个时段是犯罪高峰时段,然后在那个位置部署更多的警力。从此该地区居民将长时间被监控,这是一种变相的侵犯或惩罚。他们不是因为做错事,而是因为某个计算机的算法预测他们可能做错事而被惩罚了,显然这是不公平的。美国国安局拥有的正是类似的一套基于“大数据”的新型情报收集系统,这套名为“无界爆料”的系统,以30天为周期,从全球网络系统中接收到970亿条讯息,再通过比对信用卡或者通讯记录等方式,能几近真实地还原个人的实时状况。当然,像谷歌这样的商业组织也有可能掌握同样量级的信息而进行商业预测分析。因此,必须建立一套规则予以规范和约束对大数据的收集和使用。第一,虽然这些信息储存在不同的服务器上,但这些数据是用户的资产,拥有权属于用户自己而不是这些公司,这是必须明确的,就像财产所有权一样,个人隐私数据也应该有所有权。第二,利用大数据、云计算技术给用户提供信息服务的公司或企业,需要把收集到的用户数据进行安全存储和传输,这是企业的责任和义务。第三,如果企业或政府要使用用户的信息,一定要让用户有知情权和选择权,泄露用户数据甚至牟利,不仅要被视作不道德的行为,而且是非法行为。大数据时代的数据存储和应用方式是跨地域甚至是跨国界的。作为国家层面要将大数据上升为国家战略,奥巴马政府在2012年3月将“大数据战略”上升为最高国策,像陆权、海权、空权一样,将对数据的占有和控制作为重要的国家核心能力。我国也应从国家高度重视大数据,在对其进行安全保护、政策制定需要重视三个方面:一是要正视数据霸权,要清醒认识到我国在网络控制权、关键技术和高端设备等方面,还受制于西方。二是要明确主权,数据作为一种重要的战略资源,无论是个人拥有还是国家拥有,都要纳入到主权范围里面来考虑。三是要有治权,因为有主权不一定能够管治。比如:数据存到国外,云计算跨越国境,可能不在你的主权范围之内。要区别对待不同的数据,对确需保护的数据,必须有切实可靠的手段进行有效管理。如果做不到对数据的有效管理,大数据就必然面临失控的危险。政策界定安全责任问题。大数据的安全问题涉及政府、相关企业、网络运营商、服务提供者,以及数据产生者、使用者等方方面面,必须对各自的安全责任有明晰的政策界定。信息安全风险存在于数据的全生命周期之中,从技术思路、产品开发、用户使用、服务管理,各个环节均要分担相应的安全责任。监管保障基础设施安全问题。大数据的发展离不开电信网络甚至工控系统等关键基础设施,其安全可靠同样依赖于这些基础设施,受供应链全球化、产业私有化的影响,网络与关键基础设施间的安全日趋复杂,一国的大数据可能存放在别国的网络中,一国的基础设施可能同时服务于多个国家,高度的全球相互依赖性,挑战着原有的国家主权观念。所以,关键基础设施的安全监管体系十分重要,我国需要尽快确立对供应链的实质性国家安全审查和对基础网络的常态化安全监管。
网络空间冲突管理问题。大数据的资源价值越来越高,围绕大数据的争夺和冲突就越来越激烈。大数据的生成、处理和利用方式,将极大改变各种冲突的表现方式和破坏烈度。通过立法与国际合作应对包括知识产权的保护、网络犯罪的处置、网络破坏活动特别是网络恐怖主义的打击以及网络战争的威胁。
D. 大数据时代安全要怎样的分析技术
大数据时代安全要怎样的分析技术
网络时代的发展日新月异,技术与体验的改变与改进正变得异常迅速。如今,我们的网络已经从千兆迈向了万兆时代,这便使得诸多网络安全设备要分析的数据包数据量急剧上升。而随着下一代防火墙等安全产品的出现,安全网关所要进行的分析的数据量大增、安全监测的内容不断细化使得安全产品所要监测和分析比以往更多的数据。除了数据包、日志、资产数据,更多的诸如漏洞信息、配置信息、身份与访问信息、用户行为信息、应用信息、业务信息、外部情报信息等正在逐渐加入安全要素信息中。正如上述情况所说的那样,随着企业和组织安全体系架构变得越来越复杂,与之俱来的是各类安全数据正在变得越来越多。而传统的分析能力已不足以应对当下安全数据的分析。在面对新型威胁的兴起时,传统的分析方法无法对更多的安全信息做出准确分析,也就更加无从谈起更加快速的做出判定和响应。而以上信息安全所面临的这些问题,正是大数据时代带来的挑战。
在此背景下,对信息安全业而言,如何将大数据技术应用于安全领域、将大数据分析技术应用于信息安全的技术的大数据安全分析的需求正变得愈加急迫。而与此同时,安全数据的数量、速度、种类的迅速膨胀,不仅带来了海量异构数据的融合、存储和管理的问题,更是对传统的安全分析方法带来了挑战。
目前,市场上绝大多数安全分析工具和方法都是针对小数据量设计的,在面对大数据量时难以为继。新的攻击手段层出不穷,需要检测的数据越来越多,传统的分析技术已是不堪重负。
一方面,高速海量安全数据的采集和存储变得困难,而异构数据的存储和管理同样变得困难;而传统的安全分析技术对历史数据的检测能力很弱,对安全事件的调查效率十分低;以往,安全系统相互独立,无法有效地进行协同工作,对于趋势性的威胁更是无法预测,在应对当今诸如APT等高级威胁的攻击时防护效果十分薄弱。另一方面,传统的分析方法大都采用基于规则和特征的分析引擎,必须要有规则库和特征库才能工作,而规则和特征只能对已知的攻击和威胁进行描述,无法识别未知的攻击,或者是尚未被描述成规则的攻击和威胁。
可见,对于大数据安全分析而言,如何以安全数据自身的特点和安全分析为目标,让大数据安全分析的应用更加凸显其价值是十分必要的。
如今,对于信息与网络安全分析出现了两个基本趋势:情境感知的安全分析与智能化的安全分析。Gartner曾经在2010年的两份报告中分别指出:“未来的信息安全将是情境感知的和自适应的。”以及“要为企业安全智能的兴起做好准备。”
情境感知的安全分析,更多地需要利用相关性要素信息的综合研判来提升安全决策的能力,例如:资产感知、位置感知、拓扑感知、应用感知、身份感知、内容感知,等等。利用情境感知分析技术,安全分析会得以在纵深方面得到极大的扩展;而更多的安全要素信息的纳入,也拉升了分析的空间和时间范围。而安全智能则更加强调将过去分散的安全信息进行集成与关联,独立的分析方法和工具进行整合形成交互,最终实现智能化的安全分析与决策。
从长远看,借助大数据安全分析技术,能够更好地解决大量安全要素信息的采集、存储的问题,借助基于大数据分析技术的机器学习和数据挖据算法,亦能够更加智能地洞悉信息与网络安全的态势,从而更加主动、弹性地去应对新型复杂的威胁和未知多变的风险。在未来一段时期内,关于大数据安全分析技术的探究,必会成为新的市场热点。
以上是小编为大家分享的关于大数据时代安全要怎样的分析技术的相关内容,更多信息可以关注环球青藤分享更多干货
E. 基于大数据审计的信息安全日志分析法
噪声数据随着经济和信息技术的不断发展,许多企业开始引入了ERP等系统,这些系统使得企业的众多活动数据可以实时记录,形成了大量有关企业经营管理的数据仓库。从这些海量数据中获取有用的审计数据是目前计算机审计的一个应用。接下来我为你带来基于大数据审计的信息安全日志分析法,希望对你有帮助。
大数据信息安全日志审计分析方法
1.海量数据采集。
大数据采集过程的主要特点和挑战是并发数高,因此采集数据量较大时,分析平台的接收性能也将面临较大挑战。大数据审计平台可采用大数据收集技术对各种类型的数据进行统一采集,使用一定的压缩及加密算法,在保证用户数据隐私性及完整性的前提下,可以进行带宽控制。
2.数据预处理。
在大数据环境下对采集到的海量数据进行有效分析,需要对各种数据进行分类,并按照一定的标准进行归一化,且对数据进行一些简单的清洗和预处理工作。对于海量数据的预处理,大数据审计平台采用新的技术架构,使用基于大数据集群的分布式计算框架,同时结合基于大数据集群的复杂事件处理流程作为实时规则分析引擎,从而能够高效并行地运行多种规则,并能够实时检测异常事件。
3.统计及分析。
按照数据分析的实时性,分为实时数据分析和离线数据分析。大数据平台在数据预处理时使用的分布式计算框架Storm就非常适合对海量数据进行实时的统计计算,并能够快速反馈统计结果。Storm框架利用严格且高效的事件处理流程保证运算时数据的准确性,并提供多种实时统计接口以使用。
4.数据挖掘。
数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识,所以它所得到的信息具有未知、有效、实用三个特征。与传统统计及分析过程不同的是,大数据环境下的数据挖掘一般没有预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测的效果,并进一步实现一些高级别数据分析的需求。
大数据分析信息安全日志的解决方案
统一日志审计与安全大数据分析平台能够实时不间断地将用户网络中来自不同厂商的安全设备、网络设备、主机、操作系统、数据库系统、用户业务系统的日志和警报等信息汇集到管理中心,实现全网综合安全审计;同时借助大数据分析和挖掘技术,通过各种模型场景发现各种网络行为、用户异常访问和操作行为。
1.系统平台架构。
以国内某大数据安全分析系统为例,其架构包括大数据采集平台、未知威胁感知系统、分布式实时计算系统(Storm)、复杂事件处理引擎(Esper)、Hadoop平台、分布式文件系统(HDFS)、分布式列数据库(Hbase)、分布式并行计算框架(Map/Rece、Spark)、数据仓库(Hive)、分布式全文搜索引擎(ElasticSearch)、科学计算系统(Euler)。这些技术能够解决用户对海量事件的采集、处理、分析、挖掘和存储的需求。
如图1所示,系统能够实时地对采集到的不同类型的信息进行归一化和实时关联分析,通过统一的控制台界面进行实时、可视化的呈现,协助安全管理人员迅速准确地识别安全事件,提高工作效率。
2.实现功能。
系统能够实现的功能包括:审计范围覆盖网络环境中的全部网络设备、安全设备、服务器、数据库、中间件、应用系统,覆盖200多种设备和应用中的上万类日志,快速支持用户业务系统日志审计;系统收集企业和组织中的所有安全日志和告警信息,通过归一化和智能日志关联分析引擎,协助用户准确、快速地识别安全事故;通过系统的'安全事件并及时做出安全响应操作,为用户的网络环境安全提供保障;通过已经审计到的各种审计对象日志,重建一段时间内可疑的事件序列,分析路径,帮助安全分析人员快速发现源;整个Hadoop的体系结构主要通过分布式文件系统(HDFS)来实现对分布式存储的底层支持。
3.应用场景。
上述系统可解决传统日志审计无法实现的日志关联分析和智能定位功能。如在企业的网络系统中,大范围分布的网络设备、安全设备、服务器等实时产生的日志量非常大,要从其中提取想要的信息非常困难,而要从设备之间的关联来判断设备故障也将是一大难点。例如,某企业定位某设备与周围直连设备的日志消息相关联起来判断该设备是否存在异常或故障,如对于其中一台核心交换机SW1,与之直连的所有设备如果相继报接口down的日志,则可定位该设备SWl为故障设备,此时应及时做出响应。而传统数据难以通过周围设备的关联告警来定位该故障,大数据审计平台则是最好的解决方法。
大数据分析方法可以利用实体关联分析、地理空间分析和数据统计分析等技术来分析实体之间的关系,并利用相关的结构化和非结构化的信息来检测非法活动。对于集中存储起来的海量信息,可以让审计人员借助历史分析工具对日志进行深度挖掘、调查取证、证据保全。
F. 大数据安全问题及应对思路研究
大数据安全问题及应对思路研究
随着互联网、物联网、云计算等技术的快速发展,全球数据量出现爆炸式增长。与此同时,云计算为这些海量的多样化数据提供了存储和运算平台,分布式计算等数据挖掘技术又使得大数据分析规律、研判趋势的能力大大增强。在大数据不断向各个行业渗透、深刻影响国家的政治、经济、民生和国防的同时,其安全问题也将对个人隐私、社会稳定和国家安全带来巨大的潜在威胁,如何应对面临巨大挑战。
一、大数据安全关键问题
随着数字化进程不断深入,大数据逐步渗透至金融、汽车、制造、医疗等各个传统行业,甚至到社会生活的每个角落,大数据安全问题影响也日益增大。
(一)国家数据资源大量流失。互联网海量数据的跨境流动,加剧了大数据作为国家战略资源的大量流失,全世界的各类海量数据正在不断汇总到美国,短期内还看不到转变的迹象。随着未来大数据的广泛应用,涉及国家安全的政府和公用事业领域的大量数据资源也将进一步开放,但目前由于相关配套法律法规和监管机制尚不健全,极有可能造成国家关键数据资源的流失。
(二)大数据环境下用户隐私安全威胁严重。随着大数据挖掘分析技术的不断发展,个人隐私保护和数据安全变得非常紧迫。一是大数据环境下人们对个人信息的控制权明显下降,导致个人数据能够被广泛、详实的收集和分析。二是大数据被应用于攻击手段,黑客可最大限度地收集更多有用信息,为发起攻击做准备,大数据分析让黑客的攻击更精准。三是随着大数据技术发展,更多信息可以用于个人身份识别,个人身份识别信息的范围界定困难,隐私保护的数据范围变得模糊。四是以往建立在“目的明确、事先同意、使用限制”等原则之上的个人信息保护制度,在大数据场景下变得越来越难以操作。
(三)基于大数据挖掘技术的国家安全威胁日益严重。大数据时代美国情报机构已抢占先机,美国通过遍布在全球的国安局监听机构如地面卫星站、国内监听站、海外监听站等采集各种信息,对采集到的海量数据进行快速预处理、解密还原、分析比对、深度挖掘,并生成相关情报,供上层决策。2013年6月底,美中情局前雇员斯诺登爆料,美国情报机关通过思科路由器对中国内地移动运营商、中国教育和科研计算机网等骨干网络实施长达4年之久的长期监控,以获取网内海量短信数据和流量数据。
(四)基础设施安全防护能力不足引发数据资产失控。一是基础通信网络关键产品缺乏自主可控,成为大数据安全缺口。我国运营企业网络中,国外厂商设备的现网存量很大,国外产品存在原生性后门等隐患,一旦被远程利用,大量数据信息存在被窃取的安全风险。二是我国大数据安全保障体系不健全,防御手段能力建设处于起步阶段,尚未建立起针对境外网络数据和流量的监测分析机制,对棱镜监听等深层次、复杂、高隐蔽性的安全威胁难以有效防御、发现和处置。
二、国外大数据安全相关举措及我国应对思路
目前世界各国均通过出台国家战略、促进数据融合与开放、加大资金投入等推动大数据应用。相比之下,各国在涉及大数据安全方面的保障举措则起刚刚起步,主要集中在通过立法加强对隐私数据的保护。德国在2009年对《联邦数据保护法》进行修改并生效,约束范围包括互联网等电子通信领域,旨在防止因个人信息泄露导致的侵犯隐私行为;印度在2012年批准国家数据共享和开放政策的同时,通过拟定非共享数据清单以保护涉及国家安全、公民隐私、商业秘密和知识产权等数据信息;美国在2014年5月发布《大数据:把握机遇,守护价值》白皮书表示,在大数据发挥正面价值的同时,应该警惕大数据应用对隐私、公平等长远价值带来的负面影响,建议推进消费者隐私法案、通过全国数据泄露立法、修订电子通信隐私法案等。
我国在布局、鼓励和推动大数据发展应用的同时,也应提早谋划、积极应对大数据带来的安全挑战,从战略制定、法律法规、基础设施防护等方面应对大数据安全问题。
(一)将大数据资源保护上升为国家战略,建立分级分类安全管理机制。一是把数据资源视为国家战略资源,将大数据资源保护纳入到国家网络空间安全战略框架中,构建大数据环境下的信息安全体系,提高应急处置能力和安全防范能力,提升服务能力和运作效率。二是通过国家层面的战略布局,明确大数据资源保护的整体规划和近远期重点工作。三是对国内大数据资源按实施分级分类安全保护思路,保障数据安全、可靠,积极开展大数据安全风险评估工作,针对不同级别大数据特点加强安全防范。五是尽快制定不同级别的大数据采集、存储、备份、迁移、处理和发布等关键环节的安全规范和标准,配套完善相应的监管措施。
(二)完善法律法规,加大个人信息保护监管力度。一是积极推动个人信息保护法律的立法工作,探索通过技术标准、行业自律等手段解决法律出台前的个人信息保护问题。加快《网络安全法》的出台,在《网络安全法》中对电信和互联网行业用户信息保护作出明确法律界定,为相关工作开展提供法律依据。二是加强对个人隐私保护的行政监管,同时要加大对侵害个人隐私行为的打击力度,建立对个人隐私保护的测评机制,推动大数据行业的自律和监督。
(三)加强国家信息基础设施保护,提升大数据安全保障与防范能力。一是促进技术研究和创新,通过加大财政支持力度,激励关系国家安全和稳定的政府和国有企事业单位采用安全可控的产品,提升我国基础设施关键设备的安全可控水平。二是加强大数据信息安全系统建设,针对大数据的收集、处理、分析、挖掘等过程设计与配置相应的安全产品,并组成统一的、可管控的安全系统,推动建立国家级、企业级的网络个人信息保护态势感知、监控预警、测评认证平台。三是充分利用大数据技术应对网络攻击,通过大数据处理技术实现对网络异常行为的识别和分析,基于大数据分析的智能驱动型安全模型,把被动的事后分析变成主动的事前防御;基于大数据的网络攻击追踪,实现对网络攻击行为的溯源。
以上是小编为大家分享的关于大数据安全问题及应对思路研究的相关内容,更多信息可以关注环球青藤分享更多干货
G. 大数据时代给信息安全带来的挑战
大数据时代给信息安全带来的挑战
在大数据时代,商业生态环境在不经意间发生了巨大变化:无处不在的智能终端、随时在线的网络传输、互动频繁的社交网络,让以往只是网页浏览者的网民的面孔从模糊变得清晰,企业也有机会进行大规模的精准化的消费者行为研究。大数据蓝海将成为未来竞争的制高点。
大数据在成为竞争新焦点的同时,不仅带来了更多安全风险,同时也带来了新机遇。
一、大数据成为网络攻击的显著目标。
在网络空间,大数据是更容易被“发现”的大目标。一方面,大数据意味着海量的数据,也意味着更复杂、更敏感的数据,这些数据会吸引更多的潜在攻击者。另一方面,数据的大量汇集,使得黑客成功攻击一次就能获得更多数据,无形中降低了黑客的进攻成本,增加了“收益率”。
二、大数据加大隐私泄露风险。
大量数据的汇集不可避免地加大了用户隐私泄露的风险。一方面,数据集中存储增加了泄露风险,而这些数据不被滥用,也成为人身安全的一部分。另一方面,一些敏感数据的所有权和使用权并没有明确界定,很多基于大数据的分析都未考虑到其中涉及的个体隐私问题。
三、大数据威胁现有的存储和安防措施。
大数据存储带来新的安全问题。数据大集中的后果是复杂多样的数据存储在一起,很可能会出现将某些生产数据放在经营数据存储位置的情况,致使企业安全管理不合规。大数据的大小也影响到安全控制措施能否正确运行。安全防护手段的更新升级速度无法跟上数据量非线性增长的步伐,就会暴露大数据安全防护的漏洞。
四、大数据技术成为黑客的攻击手段。
在企业用数据挖掘和数据分析等大数据技术获取商业价值的同时,黑客也在利用这些大数据技术向企业发起攻击。黑客会最大限度地收集更多有用信息,比如社交网络、邮件、微博、电子商务、电话和家庭住址等信息,大数据分析使黑客的攻击更加精准。此外,大数据也为黑客发起攻击提供了更多机会。黑客利用大数据发起僵尸网络攻击,可能会同时控制上百万台傀儡机并发起攻击。
五、大数据成为高级可持续攻击的载体。
传统的检测是基于单个时间点进行的基于威胁特征的实时匹配检测,而高级可持续攻击(APT)是一个实施过程,无法被实时检测。此外,由于大数据的价值低密度特性,使得安全分析工具很难聚焦在价值点上,黑客可以将攻击隐藏在大数据中,给安全服务提供商的分析制造很大困难。黑客设置的任何一个会误导安全厂商目标信息提取和检索的攻击,都会导致安全监测偏离应有方向。
六、大数据技术为信息安全提供新支撑。
当然,大数据也为信息安全的发展提供了新机遇。大数据正在为安全分析提供新的可能性,对于海量数据的分析有助于信息安全服务提供商更好地刻画网络异常行为,从而找出数据中的风险点。对实时安全和商务数据结合在一起的数据进行预防性分析,可识别钓鱼攻击,防止诈骗和阻止黑客入侵。网络攻击行为总会留下蛛丝马迹,这些痕迹都以数据的形式隐藏在大数据中,利用大数据技术整合计算和处理资源有助于更有针对性地应对信息安全威胁,有助于找到攻击的源头。
H. 信息与网络安全需要大数据安全分析
信息与网络安全需要大数据安全分析
毫无疑问,我们已经进入了大数据(Big Data)时代。人类的生产生活每天都在产生大量的数据,并且产生的速度越来越快。根据IDC和EMC的联合调查,到2020年全球数据总量将达到40ZB。2013年,Gartner将大数据列为未来信息架构发展的10大趋势之首。Gartner预测将在2011年到2016年间累计创造2320亿美元的产值。
大数据早就存在,只是一直没有足够的基础实施和技术来对这些数据进行有价值的挖据。随着存储成本的不断下降、以及分析技术的不断进步,尤其是云计算的出现,不少公司已经发现了大数据的巨大价值:它们能揭示其他手段所看不到的新变化趋势,包括需求、供给和顾客习惯等等。比如,银行可以以此对自己的客户有更深入的了解,提供更有个性的定制化服务;银行和保险公司可以发现诈骗和骗保;零售企业更精确探知顾客需求变化,为不同的细分客户群体提供更有针对性的选择;制药企业可以以此为依据开发新药,详细追踪药物疗效,并监测潜在的副作用;安全公司则可以识别更具隐蔽性的攻击、入侵和违规。
当前网络与信息安全领域,正在面临着多种挑战。一方面,企业和组织安全体系架构的日趋复杂,各种类型的安全数据越来越多,传统的分析能力明显力不从心;另一方面,新型威胁的兴起,内控与合规的深入,传统的分析方法存在诸多缺陷,越来越需要分析更多的安全信息、并且要更加快速的做出判定和响应。信息安全也面临大数据带来的挑战。安全数据的大数据化
安全数据的大数据化主要体现在以下三个方面:
1) 数据量越来越大:网络已经从千兆迈向了万兆,网络安全设备要分析的数据包数据量急剧上升。同时,随着NGFW的出现,安全网关要进行应用层协议的分析,分析的数据量更是大增。与此同时,随着安全防御的纵深化,安全监测的内容不断细化,除了传统的攻击监测,还出现了合规监测、应用监测、用户行为监测、性能检测、事务监测,等等,这些都意味着要监测和分析比以往更多的数据。此外,随着APT等新型威胁的兴起,全包捕获技术逐步应用,海量数据处理问题也日益凸显。
2) 速度越来越快:对于网络设备而言,包处理和转发的速度需要更快;对于安管平台、事件分析平台而言,数据源的事件发送速率(EPS,Event per Second,事件数每秒)越来越快。
3) 种类越来越多:除了数据包、日志、资产数据,安全要素信息还加入了漏洞信息、配置信息、身份与访问信息、用户行为信息、应用信息、业务信息、外部情报信息等。
安全数据的大数据化,自然引发人们思考如何将大数据技术应用于安全领域。
传统的安全分析面临挑战
安全数据的数量、速度、种类的迅速膨胀,不仅带来了海量异构数据的融合、存储和管理的问题,甚至动摇了传统的安全分析方法。
当前绝大多数安全分析工具和方法都是针对小数据量设计的,在面对大数据量时难以为继。新的攻击手段层出不穷,需要检测的数据越来越多,现有的分析技术不堪重负。面对天量的安全要素信息,我们如何才能更加迅捷地感知网络安全态势?
传统的分析方法大都采用基于规则和特征的分析引擎,必须要有规则库和特征库才能工作,而规则和特征只能对已知的攻击和威胁进行描述,无法识别未知的攻击,或者是尚未被描述成规则的攻击和威胁。面对未知攻击和复杂攻击如APT等,需要更有效的分析方法和技术!如何做到知所未知?
面对天量安全数据,传统的集中化安全分析平台(譬如SIEM,安全管理平台等)也遭遇到了诸多瓶颈,主要表现在以下几方面:
——高速海量安全数据的采集和存储变得困难
——异构数据的存储和管理变得困难
——威胁数据源较小,导致系统判断能力有限
——对历史数据的检测能力很弱
——安全事件的调查效率太低
——安全系统相互独立,无有效手段协同工作
——分析的方法较少
——对于趋势性的东西预测较难,对早期预警的能力比较差
——系统交互能力有限,数据展示效果有待提高
从上世纪80年代入侵检测技术的诞生和确立以来,安全分析已经发展了很长的时间。当前,信息与网络安全分析存在两个基本的发展趋势:情境感知的安全分析与智能化的安全分析。
Gartner在2010年的一份报告中指出,“未来的信息安全将是情境感知的和自适应的”。所谓情境感知,就是利用更多的相关性要素信息的综合研判来提升安全决策的能力,包括资产感知、位置感知、拓扑感知、应用感知、身份感知、内容感知,等等。情境感知极大地扩展了安全分析的纵深,纳入了更多的安全要素信息,拉升了分析的空间和时间范围,也必然对传统的安全分析方法提出了挑战。
同样是在2010年,Gartner的另一份报告指出,要“为企业安全智能的兴起做好准备”。在这份报告中,Gartner提出了安全智能的概念,强调必须将过去分散的安全信息进行集成与关联,独立的分析方法和工具进行整合形成交互,从而实现智能化的安全分析与决策。而信息的集成、技术的整合必然导致安全要素信息的迅猛增长,智能的分析必然要求将机器学习、数据挖据等技术应用于安全分析,并且要更快更好地的进行安全决策。
信息与网络安全需要大数据安全分析
安全数据的大数据化,以及传统安全分析所面临的挑战和发展趋势,都指向了同一个技术——大数据分析。正如Gartner在2011年明确指出,“信息安全正在变成一个大数据分析问题”。
于是,业界出现了将大数据分析技术应用于信息安全的技术——大数据安全分析(Big Data Security Analysis,简称BDSA),也有人称做针对安全的大数据分析(Big Data Analysis for Security)。
借助大数据安全分析技术,能够更好地解决天量安全要素信息的采集、存储的问题,借助基于大数据分析技术的机器学习和数据挖据算法,能够更加智能地洞悉信息与网络安全的态势,更加主动、弹性地去应对新型复杂的威胁和未知多变的风险。
I. 鹏宇成解析大数据时代会带来哪些信息安全隐患
通过建立这种宏观层面的信息,大数据可以让企业了解到他们的产品是如何以前所未有的经济理解水平在运行。也就是说,通过以新方式来结合和分析海量数据,我们可以实现新的业务洞察力。
保护大数据:基础设施准备
首先,对于利用大数据系统来分析企业内活动的安全工具,企业安全团队必须了解传统安全修复工具和它们之间的基础设施差异。在现在的企业安全办公室,我们并不难找到报告不同类型安全数据(试图查找问题的安全分析师会对这些数据感兴趣)的各种安全工具,日志记录工具、安全监控工具、外围安全设备、应用程序访问控制设备、配置系统、供应商风险分析程序、grc产品等,这些工具收集了大量信息,企业安全团队必须分解和规范化这些信息以确定安全风险。
虽然这些传统工具针对其特定类型的控制提供了数据视图,但这些系统的输出往往不是统一的,又或者这些数据被分解成汇总数据,并被输入到一个或者多个siem工具以在视觉上显示安全团队感兴趣的预定事件。一旦确定了某个趋势或者潜在事故,安全专业人士团队就必须从大量输出数据中筛选出证据以发现任何未经授权或恶意的活动。对于安全管理而言,这种“松散结合”的方法通常可行,但它速度很慢,很容易错过良好伪装的恶意事件,并且要在对大量历史数据进行收集、分析和总结后,才能发现严重的安全事件。
相比之下,大数据安全环境的创建需要依赖于前面提到的工具,为安全信息输入单一逻辑大数据安全信息仓库。这种仓库的优势在于,它将数据作为更大的安全生态系统的一部分,这个安全生态系统具有强大的分析和趋势分析工具来识别威胁,威胁需要通过检查多个数据集才能被确认,而不像传统的方法那样---安全团队通过虚拟放大镜来筛选松散耦合的数据集。