❶ 大数据是属于什么专业的
大数据是属于一个跨学科的多学科交叉融合的交叉学科、新兴学科,主体是属于统计学和计算机科学专业。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
❷ 大数据专业主要学什么
大数据时代,很多学校都开设了大数据相关的专业和课程。日前,在教育部公布的高校新增专业名单中,有32所高校成为第二批成功申请“数据科学与大数据技术”本科新专业的高校。
“大数据”专业学什么?
方向一:数据挖掘、数据分析&机器学习方向
方向二:大数据运维&云计算方向
方向三:Hadoop大数据开发方向
精通任何方向之一者,均会 “ 前(钱)”途无量。
三个方向中,大数据开发是基础。以Hadoop开发工程师为例,Hadoop入门月薪已经达到了 8K 以上,工作1年月薪可达到 1.2W 以上,具有2-3年工作经验的hadoop人才年薪可以达到30万—50万,一般需要大数据处理的公司基本上都是大公司,所以学习大数据专业也是进大公司的捷径!
“大数据”专业毕业以后干什么?
事实上,大数据工作者可以施展拳脚的领域非常广泛,从国防部、互联网创业公司到金融机构,到处需要大数据项目来做创新驱动。数据分析或数据处理的岗位报酬也非常丰厚,在硅谷,入门级的数据科学家的收入已经是6位数了(美元)。
①目前全国各类高校、高职院校已陆续开始围绕大数据专业建设展开研究并申报大数据专业。作为交叉型学科,大数据的相关课程涉及数学、统计和计算机等学科知识,“数据科学与大数据技术”专业也强调培养具有多学科交叉能力的大数据人才。
②该专业重点培养具有以下三方面素质的人才:
一是理论性的,主要是对数据科学中模型的理解和运用;
二是实践性的,主要是处理实际数据的能力;
三是应用性的,主要是利用大数据的方法解决具体行业应用问题的能力。
大数据人才缺口达150万
各大高校紧锣密鼓启动大数据人才培养,缘于大数据时代催生的大量相关人才缺口。
全球最顶尖管理咨询公司麦肯锡(McKinsey)出具的一份详细分析报告显示,预计到2018年,大数据或者数据工作者的岗位需求将激增,其中大数据科学家的缺口在140000到190000之间,对于懂得如何利用大数据做决策的分析师和经理的岗位缺口则将达到1500000!
尽管目前有很多大数据工作者只是拥有一个本科学士学位,或者仅接受过简单的训练,但是在互联网时代,每天都有海量的数据信息产生,数据的处理变得越来越复杂,很多大公司已经在寻求拥有更高学历的高手来补充自己的实力。
❸ 大数据专业主要学什么
什么是大数据?
在英文里被称为big data,或称为巨量资料,就是当代海量数据构成的一个集合,包括了我们在互联网上的一切信息。
大数据能干什么?
通过对大数据的抽取,管理,处理,并整理成为帮助我们做决策。列如:应用以犯罪预测,流感趋势预测,选举预测,商品推荐预测等等
大数据专业需要学什么?
因为涉及对海量数据的分析,离不开的就是数学,很多很多的数学。按照我们学习计划的安排来看,我在大一大二期间就学了有:数学分析,线性代数,概率统计,应用统计学,离散数学,常微分。相比起其他计算机专业来说,我们确实要学很多数学。然后什么公共课就不用多说了,如:大学英语,大学物理,思想政治,毛概等等。在专业课上,我们首先要学的就是C语言基础,然后就是数据结构,Python基础,Java面向对象程序设计,数据结构与算法,数学建模,大数据等,简直不要太多了,留给图看看吧
未完待写
接着上一次内容
学大数据能做什么工作?
分为三个大类,第一是大数据系统研发类,第二是大数据应用开发类,第三是大数据分析类
大数据分析师:大数据分析师要学会打破信息孤岛利用各种数据源,在海量数据中寻找数据规律,在海量数据中发现数据异常。负责大数据数据分析和挖掘平台的规划、开发、运营和优化;根据项目设计开发数据模型、数据挖掘和处理算法;通过数据探索和模型的输出进行分析,给出分析结果。
大数据工程师: 主要是偏开发层面,指的是围绕大数据系平台系统级的研发人员, 熟练Hadoop大数据平台的核心框架,能够使用Hadoop提供的通用算法, 熟练掌握Hadoop整个生态系统的组件如: Yarn,HBase、Hive、Pig等重要组件,能够实现对平台监控、辅助运维系统的开发。
数据挖掘师/算法工程师: 数据建模、机器学习和算法实现,需要业务理解、熟悉算法和精通计算机编程 。
数据架构师: 高级算法设计与优化;数据相关系统设计与优化,有垂直行业经验最佳,需要平台级开发和架构设计能力。
数据科学家:据科学家是指能采用科学方法、运用数据挖掘工具对复杂多量的数字、符号、文字、网址、音频或视频等信息进行数字化重现与认识,并能寻找新的数据洞察的工程师或专家(不同于统计学家或分析师)。一个优秀的数据科学家需要具备的素质有:懂数据采集、懂数学算法、懂数学软件、懂数据分析、懂预测分析、懂市场应用、懂决策分析等。
薪资待遇方面:
数据科学家->数据架构师==算法工程师>大数据工程师>数据分析师
❹ 大数据专业主要学什么
大数据专业
全称:数据科学与大数据技术,强调交叉学科特点,以大数据分析为核心,以统计学、计算机科学和数学为三大基础支撑性学科,培养面向多层次应用需求的复合型人才。
开设课程:
数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践、离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析等。
❺ 大数据专业主要学什么
近两年来,互联网的发展迅速,相对应的带动了很多行业的发展,大数据作为新兴行业之一,半年来的人才需求在也是居高不下。
通过持续的观察前程无忧与智联招聘需求,在2016年6月大数据相关职位需求量,北京为21,511+个,稳居榜首,职位量占比高达25.1%,上海与深圳虽然拿下第二与第三,但是数量相差甚远。前十名也全部都是一二线城市,由此可以得出,大数据的发展,当前最活跃于偏向于发达的一线城市以及沿海地区。
从各行业发布的数量上来看,以计算机软件职位需求量最大,互联网/电子商务、IT服务/系统/数据/维护,紧随其后,并且三者相差不大,由此可以看出,计算机、互联网、IT类的职位需求的空缺一直很大,对于很多求职者而言,这是一个非常大的机遇。排名前四的与第五的数据相差很大,一方面是传统岗位数量的饱和,另一方面也就是新兴行业人才的稀缺。同时已经可以看出大数据在咨询、房地产、教育等行业的应用已经出现一个小的趋势,未来这些行业或将出现巨大的需求(或许这以一切的数据现象反映了当前国内的经济现状)。
从薪资水平上来看,5-8K是起步,20K以上的在2015年仅占2.4%,而在2016年却是增长到了21.5%%,由此可以看出,大数据其实也就是这一年始真正的发展。不论是平均最高月薪还是平均最低月薪,2016年在2015年的基础上都有明显的增长。平均月薪的增长意味着大数据进入了越来越多人的视线,专业人才难求,平均月薪疯长,大数据不火都不行。
目前大数据培训相对其他培训项目要好就业,因为其他语言还是技能培训都是有一定的市场基础的,而大数据在最近两年才大力发展,并且在各领域蔓延,因此所产生的人才缺口巨大,而在企业中真正对大数据技能比较强力的技术人才,又特别的少;
应用越来越广,技术人才却产生较慢,刚培训的人员,只能适应基本的软件操作和理论基础;还达不到企业要完成复杂业务的技术需求;所以培训入门快,拿薪资快,但只是一时,进入企业,不努力学习是跟不上发展与用人需求的。
大数据领域有三个大的技术方向,这些不同的技术方向,对应企业的哪些招聘岗位?
大数据技术与应用专业市场需求旺盛,对应岗位有大数据开发工程师、爬虫工程师、数据分析师、数据科学家、数据挖掘工程师、机器学习工程师等;
大数据入门月薪已经达到了8K以上,工作1年月薪可达到1.2W以上,具有2-3年工作经验的人才年薪可以达到30万—50万,一般需要大数据处理的公司基本上都是大公司,所以学习大数据专业也是进大公司的捷径。
1. Hadoop大数据开发方向市场需求旺盛,大数据培训的主体,目前IT培训机构的重点对应岗位:大数据开发工程师、爬虫工程师、数据分析师等2. 数据挖掘、数据分析&机器学习方向学习起点高、难度大,市面上只有很少的培训机构在做。对应岗位:数据科学家、数据挖掘工程师、机器学习工程师等3. 大数据运维&云计算方向市场需求中等,更偏向于Linux、云计算学科对应岗位:大数据运维工程师
当下,大数据的趋势已逐步从概念走向落地,而在IT人跟随大数据浪潮的转型中,各大企业对大数据高端人才的需求也越来越紧迫。这一趋势,也给想要从事大数据方面工作的人员提供了难得的职业机遇。
❻ 大数据属于什么专业
大数据属于数学一类的专业。相关专业名称有信息与计算科学、数学与应用数学、统计学,大数据是众多学科与统计学交叉产生的一门新兴学科,大数据牵扯的数据挖掘、云计算一类的,所以是数学一类的专业。统计学是通过搜索、整理、分析、描述数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。
大数据
其中用到了大量的数学及其它学科的专业知识,覆盖了社会科学和自然科学的各个领域。数学与应用数学是一个学科专业,培养掌握数学科学的基本理论与基本方法,运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练。能在科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作的高级专门人才。
❼ 大数据包括哪些专业
1、大数据专业,一般是指大数据采集与管理专业;
2、课程设置,大数据专业将从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地帮助企业掌握大数据应用中的各种典型问题的解决办法,包括实现和分析协同过滤算法、运行和学习分类算法、分布式Hadoop集群的搭建和基准测试、分布式Hbase集群的搭建和基准测试、实现一个基于、Maprece的并行算法、部署Hive并实现一个的数据操作等等,实际提升企业解决实际问题的能力。
3、核心技术,
(1)大数据与Hadoop生态系统。详细介绍分析分布式文件系统HDFS、集群文件系统ClusterFS和NoSQL Database技术的原理与应用;分布式计算框架Maprece、分布式数据库HBase、分布式数据仓库Hive。
(2)关系型数据库技术。详细介绍关系型数据库的原理,掌握典型企业级数据库的构建、管理、开发及应用。
(3)分布式数据处理。详细介绍分析Map/Rece计算模型和Hadoop Map/Rece技术的原理与应用。
(4)海量数据分析与数据挖掘。详细介绍数据挖掘技术、数据挖掘算法–Minhash, Jaccard and Cosine similarity,TF-IDF数据挖掘算法–聚类算法;以及数据挖掘技术在行业中的具体应用。
(5)物联网与大数据。详细介绍物联网中的大数据应用、遥感图像的自动解译、时间序列数据的查询、分析和挖掘。
(6)文件系统(HDFS)。详细介绍HDFS部署,基于HDFS的高性能提供高吞吐量的数据访问。
(7)NoSQL。详细介绍NoSQL非关系型数据库系统的原理、架构及典型应用。
4、行业现状,
今天,越来越多的行业对大数据应用持乐观的态度,大数据或者相关数据分析解决方案的使用在互联网行业,比如网络、腾讯、淘宝、新浪等公司已经成为标准。而像电信、金融、能源这些传统行业,越来越多的用户开始尝试或者考虑怎么样使用大数据解决方案,来提升自己的业务水平。
在“大数据”背景之下,精通“大数据”的专业人才将成为企业最重要的业务角色,“大数据”从业人员薪酬持续增长,人才缺口巨大。
❽ 大数据是属于什么专业的
大数据属于大数据采集与管理专业。
大数据采集与管理专业是从大数据应用的数据管理、系统开发、海量数据分析与挖掘等层面系统地帮助企业掌握大数据应用中的各种典型问题的解决办法的专业。
“大数据”(BigData)指一般的软件工具难以捕捉、管理和分析的大容量数据。“大数据”之“大”,并不仅仅在于“容量之大”,更大的意义在于:通过对海量数据的交换、整合和分析,发现新的知识,创造新的价值,带来“大知识”、“大科技”、“大利润”和“大发展”。
“大数据”能帮助企业找到一个个难题的答案,给企业带来前所未有的商业价值与机会。大数据同时也给企业的IT系统提出了巨大的挑战。
通过不同行业的“大数据”应用状况,我们能够看到企业如何使用大数据和云计算技术,解决他们的难题,灵活、快速、高效地响应瞬息万变的市场需求。
❾ 大数据专业学什么
大数据技术专业以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等。
大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。
以中国人民大学为例:
基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。
必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。
选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。
大数据专业就业方向
1、数据工程方向毕业生能够从事基于计算机、移动互联网、电子信息、电子商务技术、电子金融、电子政务、军事等领域的Java大数据分布式程序开发、大数据集成平台的应用、开发等方面的高级技术人才,可在政府机关、房地产、银行、金融、移动互联网等领域从事各类Java大数据分布式开发、基于大数据平台的程序开发、数据可视化等相关工作,也可在IT领域从事计算机应用工作。
2、数据分析方向毕业生能够从事基于计算机、移动互联网、电子信息、电子商务技术、电子金融、电子政务、军事等领域的大数据平台运维、流计算核心技术等方面的高级技术人才,可在政府机关、房地产、银行、金融、移动互联网等领域从事各类大数据平台运维、大数据分析、大数据挖掘等相关工作,也可在IT领域从事计算机应用工作。
❿ 大数据专业是个什么专业啊,干什么的
首先,我们来从大数据技术的角度看,分为大数据收集,大数据分析,大数据架构,大数据建模,大数据存储。
其次,需要掌握的计算机语言至少有Java,python。
之后,大数据具体的技术有:网络爬虫Internet worm,mongodb,python的第三方库pandas等等。
自己可以了解相关技术,再考虑一下,这东西说简单不简单,说难也不是很难。