导航:首页 > 网络数据 > 大数据wiki

大数据wiki

发布时间:2023-01-02 15:15:36

大数据是什么概念

世界包含的多得难以想象的数字化信息变得更多更快……从商业到科学,从政府到艺术,这种影响无处不在。科学家和计算机工程师们给这种现象创造了一个新名词:“大数据”。

所谓大数据,那到底什么是大数据,他的来源在哪里,定义究竟是什么呢?

七:最后北京开运联合给您总结一下

不管大数据的核心价值是不是预测,但是基于大数据形成决策的模式已经为不少的企业带来了盈利和声誉。

1、从大数据的价值链条来分析,存在三种模式:

1)手握大数据,但是没有利用好;比较典型的是金融机构,电信行业,政府机构等。

2)没有数据,但是知道如何帮助有数据的人利用它;比较典型的是IT咨询和服务企业,比如,埃森哲,IBM,Oracle等。

3)既有数据,又有大数据思维;比较典型的是Google,Amazon,Mastercard等。

2、未来在大数据领域最具有价值的是两种事物:

1)拥有大数据思维的人,这种人可以将大数据的潜在价值转化为实际利益;

2)还未有被大数据触及过的业务领域。这些是还未被挖掘的油井,金矿,是所谓的蓝海。

大 数据是信息技术与专业技术、信息技术产业与各行业领域紧密融合的典型领域,有着旺盛的应用需求、广阔的应用前景。为把握这一新兴领域带来的新机遇,需要不
断跟踪研究大数据,不断提升对大数据的认知和理解,坚持技术创新与应用创新的协同共进,加快经济社会各领域的大数据开发与利用,推动国家、行业、企业对于
数据的应用需求和应用水平进入新的阶段。

Ⅱ 大数据是什么

什么是大数据?
大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
具体来说,大数据具有4个基本特征:
一是数据体量巨大。网络资料表明,其新首页导航每天需要提供的数据超过1.5PB(1PB=1024TB),这些数据如果打印出来将超过5千亿张A4纸。有资料证实,到目前为止,人类生产的所有印刷材料的数据量仅为200PB。
二是数据类型多样。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。
三是处理速度快。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。
四是价值密度低。以视频为例,一小时的视频,在不间断的监控过程中,可能有用的数据仅仅只有一两秒。

Ⅲ 大数据包括哪些

大数据技术庞大复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据内库、容数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。
大数据主要技术组件:Hadoop、HBase、kafka、Hive、MongoDB、Redis、Spark 、Storm、Flink等。
大数据技术包括数据采集,数据管理,数据分析,数据可视化,数据安全等内容。数据的采集包括传感器采集,系统日志采集以及网络爬虫等。数据管理包括传统的数据库技术,nosql技术,以及对于针对大规模数据的大数据平台,例如hadoop,spark,storm等。数据分析的核心是机器学习,当然也包括深度学习和强化学习,以及自然语言处理,图与网络分析等。

Ⅳ 什么是大数据啊好学吗

列举三个常用的大数据定义:
(1)具有较强决策、洞察和流程优化能力的海量、高增长、多样化的信息资产需要新的处理模式。
——Gartner
(2)海量数据量、快速数据流和动态数据速度、多样的数据类型和巨大的数据价值。
—— IDC
(3)或者是海量数据、海量数据、大数据,是指所涉及的数据太大,无法在合理的时间内被截取、管理、处理、整理成人类可以解读的信息。
—— Wiki
如何去学习呢?给你几点建议:
零基础的同学学习大数据开发不能急于求成,要分阶段分步骤来一步步完成,大概可以分为四步:
第一个阶段:了解大数据的基本概念
第二个阶段:学习计算机的编程语言
第三阶段:大数据有关的学习课程
第四个阶段:项目实战阶段

Ⅳ 大数据包括一些什么

大数据技术包括数据收集、数据存取、基础架构、数据处理、统计分析、数据挖掘、模型预测、结果呈现1、数据收集:在大数据的生命周期中,数据采集处于第一个环节。根据MapRece产生数据的应用系统分类,大数据的采集主要有4种来源:管理信息系统、Web信息系统、物理信息系统、科学实验系统。2、数据存取:大数据的存去采用不同的技术路线,大致可以分为3类。第1类主要面对的是大规模的结构化数据。第2类主要面对的是半结构化和非结构化数据。第3类面对的是结构化和非结构化混合的大数据,3、基础架构:云存储、分布式文件存储等。4、数据处理:对于采集到的不同的数据集,可能存在不同的结构和模式,如文件、XML 树、关系表等,表现为数据的异构性。对多个异构的数据集,需要做进一步集成处理或整合处理,将来自不同数据集的数据收集、整理、清洗、转换后,生成到一个新的数据集,为后续查询和分析处理提供统一的数据视图。5、统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。6、数据挖掘:目前,还需要改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。7、模型预测:预测模型、机器学习、建模仿真。8、结果呈现:云计算、标签云、关系图等。

Ⅵ 大数据可以做什么

现在大家可能都听说过大数据,大数据的出现使得各个行业的发现具有了方向性,为推动社会做出了巨大的贡献,大数据离不开数据挖掘,那么大家知道不知道大数据可以做什么呢?简单来说,大数据可以让预测未来。
一、大数据可以预测未来

简而言之,大数据和数据挖掘能够赋予我们预测能力。而现在我们的生活已经数字化了,我们每天所做的任何事情都可以通过大数据记录下来,就好比每张信用卡交易都是数字化和可查询的。对于企业来说,大多数财务和运营数据都保存在数据库中。而现在,随着可穿戴设备的兴起,大家的每一次心跳和呼吸都被数字化并保存为可用数据。使得机器了解我们。
二、如果模式保持不变,那么未来就不再是未来

现在,我们生活中的许多不同事物都有不同的表现形式。比如说,一个人可能在任何工作日内在工作和家庭之间旅行,在周末到某个地方游玩,这种模式很少改变。商店将拥有任何一天的高峰时段和闲置时间,这种模式不太可能改变。企业将在一年中的某些月份要求更高的劳动力投入,这种模式不太可能改变。
由此,计算机通过终端去进行搜集到这些数据,就去分析这些数据,然后对受众群体进行合理的安排。计算机也就能够知道什么时候是适合促销的最佳时间,例如,如果这个人每周五的星期五都要洗车,或者是优惠券,那就是洗车促销如果这个人每年三月都要去度假,那就可以进行全方位的服务。同时计算机还可以预测商店全天的销售预测,然后制定业务战略以最大化总收入。一旦未来变得可预测,我们可以随时提前计划并为可能的最佳行动做好准备。这就说明了大数据给了我们预测未来的力量。这是数据挖掘的力量。数据挖掘始终与大数据联系在一起,因为大数据支持大量数据集,从而为所有预测提供了基础。

三、机器学习是什么?

刚才我们根据一块数据的处理方式进行了分析。假设这条数据包含一组购物者的购买行为,包括购买的商品总数,每个购物者购买的商品数量。这是迄今为止最简单的统计分析。如果我们的目标是分析不同类型的购物者之间的联系,或者如果我们想要推测特定类型的购物者的特殊偏好,或者甚至预测任何购物者的性别或年龄,我们将需要更多复杂的模型,通过录入的数据,我们称之为算法。机器学习可以更容易理解为为数据挖掘目的而开发的所有不同类型的算法,方便我们的生活。
四、数据挖掘是什么?

通过计算机去学习算法,用现有数据去预测未知数,这正是数据挖掘的奇迹与机器学习密切相关的原因。然而,任何机器学习算法的强度在很大程度上取决于大量数据集的供应。无论算法有多复杂,都不能从几行数据中做出预测,需要大量的数据作为样本。大数据技术是机器学习的前提,通过计算机的学习,我们能够从现有数据集中获得有价值的见解,这就是数据挖掘。
以上的内容就是对于大数据可以做什么?这两个问题的具体的解释了,大数据的出现能够让我们更好的预测未来,希望这篇文章能够给大家带来帮助,最后感谢大家的阅读。

Ⅶ 什么叫大数据

大数据概述
专业解释:大数据英文名叫big data,是一种IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
通俗解释:大数据通俗的解释就是海量的数据,顾名思义,大就是多、广的意思,而数据就是信息、技术以及数据资料,合起来就是多而广的信息、技术、以及数据资料。
大数据提出时间
“大数据”这个词是由维克托·迈尔-舍恩伯格及肯尼斯·库克耶于2008年8月中旬共同提出。
大数据的特点
Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)-由IBM提出。
大数据存在的意义和用途是什么?
看似大数据是一个很高大上的感觉,和我们普通人的生活相差甚远,但是其实不然!大数据目前已经存在我们生活中的各种角落里了,举个例子,我们现在目前最关心的疫情情况数据,用的就是大数据的技术,可以实时查看确诊人数以及各种疫情数据。
大数据存在的意义是什么?
从刚才的举例中我们基本可以了解,大数据是很重要的,其存在的意义简单来说也是为了帮助人们更直观更方便的去了解数据。而通过了解这些数据后又可以更深一步的去挖掘其他有价值的数据,例如今日头条/抖音等产品,通过对用户进行整理和分析,然后根据用户的各种数据来判断用户的喜爱,进而推荐用户喜欢看的东西,这样做不仅提升了自身产品的体验度,也为用户提供了他们需要的内容。
大数据的用途有哪些?
要说大数据的用途,那可就相当广泛了,基本各行各业都可以运用到大数据的知识。如果简单理解的话,可分为以下四类:
用途一:业务流程优化
大数据更多的是协助业务流程效率的提升。能够根据并运用社交网络数据信息 、网站搜索及其天气预告找出有使用价值的数据信息,这其中大数据的运用普遍的便是供应链管理及其派送线路的提升。在这两个层面,自然地理精准定位和无线通信频率的鉴别跟踪货物和送大货车,运用交通实时路况线路数据信息来选择更好的线路。人力资源管理业务流程也根据大数据的剖析来开展改善,这这其中就包含了职位招聘的调整。
用途二:提高医疗和研发
大型数据分析应用程序的计算能力允许我们在几分钟内解码整个dna。可以创造新的治疗方法。它还能更好地掌握和预测疾病。如同大家配戴智能手表和别的能够转化成的数据信息一样,互联网大数据还可以协助病人尽快医治疾患。现在大数据技术已经被用于医院监测早产儿和生病婴儿的状况。通过记录和分析婴儿的心跳,医生预测可能的不适症状。这有助于医生更好地帮助宝宝。
用途三:改善我们的城市
大数据也被用于改进我们在城市的生活起居。比如,依据城市的交通实时路况信息,运用社交媒体季节变化数据信息,增加新的交通线路。现阶段,很多城市已经开展数据分析和示范点新项目。
用途四:理解客户、满足客户服务需求
互联网大数据的运用在这个行业早已广为人知。重点是如何使用大数据来更好地掌握客户及其兴趣和行为。企业非常喜欢收集社交数据、浏览器日志、分析文本和传感器数据,以更全面地掌握客户。一般来说,建立数据模型是为了预测。
如何利用大数据?
那我们了解了这么多关于大数据的知识,既然大数据这么好,我们怎么去利用大数据呢?那这个就要说到大数据的工具BI了,BI简单理解就是用来分析大数据的工具,从数据的采集到数据的分析以及挖掘等都需要用到BI,BI兴起于国外,比较知名的BI工具有Tableau、Power BI等;而国内比较典型的厂家就是亿信华辰了。虽然BI兴起于国外,但是这些年随着国内科技的进步以及不断的创新,目前国内BI在技术上也不比国外的差,而且因为国内外的差异化,在BI的使用逻辑上,国内BI更符合国内用户的需求。
希望对您有所帮助!~

Ⅷ 大数据时代的数据分析师该了解哪些事情

大数据时代的数据分析师该了解哪些事情
近几年来,大数据养精蓄锐,从刚开始的无人谈及,到现在的盛行谈论,就这样走进了公众的视野。什么是大数据呢?对于数据分析师,它有意味着什么?处在人人高谈的大数据时代,数据分析师该了解哪些内容,本文将为您解答。
用Google搜索了一下“BigData”,得到了19,600,000个结果……而使用同样的词语,在两年前你几乎搜索不到什么内容,而现在大数据的内容被大肆宣传,内容多得让人眼花缭乱。而这些内容主要是来自IBM、麦肯锡和O’Reilly ,大多数文章都是基于营销目的的夸夸其谈,对真实的情况并不了解,有些观点甚至是完全错误的。我问自己…… 大数据之于数据分析师,它意味着什么呢?如下图所示,谷歌趋势显示,与“网站分析”(web analytics)和”商业智能”(business intelligence)较为平稳的搜索曲线相比,“大数据”(big data)的搜索量迎来了火箭式的大幅度增长。
被神话的大数据
Gartner把“大数据”的发展阶段定位在“社交电视”和“移动机器人”之间,正向着中部期望的高峰点迈进,而现在是达到较为成熟的阶段前的二至五年。这种定位有着其合理性。各种奏唱着“大数据”颂歌的产品数量正在迅速增长,大众媒体也进入了“大数据”主题的论辩中,比如纽约时报的“大数据的时代“,以及一系列在福布斯上发布的题为” 大数据技术评估检查表“的文章。
进步的一面体现在
,大数据的概念正在促使内部组织的文化发生转变,对过时的“商务智能”形成挑战,并促进了“分析”意识的提升。
基于大数据的创新技术可以很容易地被应用到类似数据分析的各种环境中。值得一提的是,企业组织通过应用先进的业务分析,业务将变得更广泛、更复杂,价值也更高,而传统的网站分析受到的关注将会有所减弱。
大数据的定义
什么是“大数据”,目前并没有统一的定义。维基网络提供的定义有些拙劣,也不完整:“ 大数据,指的是所涉及的数据量规模巨大到无法通过主流的工具,在合理的时间内撷取、管理、处理、并整理成为人们所能解读的信息 “。
IBM 提供了一个充分的简单易懂的概述:
大数据有以下三个特点:大批量(Volume)、高速度(Velocity)和多样化(Variety) 。 大批量 – 大数据体积庞大。企业里到处充斥着数据,信息动不动就达到了TB级,甚至是PB级。 高速度 – 大数据通常对时间敏感。为了最大限度地发挥其业务价值,大数据必须及时使用起来。 多样化 – 大数据超越了结构化数据,它包括所有种类的非结构化数据,如文本、音频、视频、点击流、日志文件等等都可以是大数据的组成部分。 MSDN的布莱恩·史密斯在IBM的基础上增加了第四点: 变异性 – 数据可以使用不同的定义方式来进行解释。不同的问题需要不同的阐释。
从技术角度看大数据
大数据包括了以下几个方面:数据采集、存储、搜索、共享、分析和可视化,而这些步骤在商务智能中也可以找到。在皮特·沃登的“ 大数据词汇表 “中,囊括了60种创新技术,并提供了相关的大数据技术概念的简要概述。
获取 :数据的获取包括了各种数据源、内部或外部的、结构化或非结构化的数据。“大多数公共数据源的结构都不清晰,充满了噪音,而且还很难获得。” 技术: Google Refine、Needlebase、ScraperWiki、BloomReach 。
序列化:“你在努力把你的数据变成有用的东西,而这些数据会在不同的系统间传递,并可能存储在不同节点的文件中。这些操作都需要某种序列化,因为数据处理的不同阶段可能需要不同的语言和API。当你在处理非常大量的记录时,该如何表示和存储数据,你所做的选择对你的存储要求和性能将产生巨大影响。 技术: JSON、BSON、Thrift、Avro、Google Protocol Buffers 。
存储 :“大规模的数据处理操作使用了全新的方式来访问数据,而传统的文件系统并不适用。它要求数据能即时大批量的读取和写入。效率优先,而那些有助于组织信息的易于用户使用的目录功能可能就显得没那么重要。因为数据的规模巨大,这也意味着它需要被存储在多台分布式计算机上。“ 技术: Amazon S3、Hadoop分布式文件系统 。
服务器 :“云”是一个非常模糊的术语,我们可能对它所表示的内容并不很了解,但目前在计算资源的可用性方面已有了真正突破性的发展。以前我们都习惯于购买或长期租赁实体机器,而现在更常见的情况是直接租用正运行着虚拟实例的计算机来作为服务器。这样供应商可以以较为经济的价格为用户提供一些短期的灵活的机器租赁服务,这对于很多数据处理应用程序来说这是再理想不过的事情。因为有了能够快速启动的大型集群,这样使用非常小的预算处理非常大的数据问题就可能成为现实。“ 技术: Amazon EC2、Google App Engine、Amazon Elastic Beanstalk、Heroku 。
NoSQL:在IT行为中,NoSQL(实际上意味着“不只是SQL”)是一类广泛的数据库管理系统,它与关系型数据库管理系统(RDBMS)的传统模型有着一些显著不同,而最重要的是,它们并不使用SQL作为其主要的查询语言。这些数据存储可能并不需要固定的表格模式,通常不支持连接操作,也可能无法提供完整的ACID(原子性—Atomicity、一致性—Consistency、隔离性—Isolation、持久性—Durability)的保证,而且通常从水平方向扩展(即通过添加新的服务器以分摊工作量,而不是升级现有的服务器)。 技术: Apache Hadoop、Apache Casandra、MongoDB、Apache CouchDB、Redis、BigTable、HBase、Hypertable、Voldemort 。
处理 :“从数据的海洋中获取你想要的简洁而有价值的信息是一件挑战性的事情,不过现在的数据系统已经有了长足的进步,这可以帮助你把数据集到转变成为清晰而有意义的内容。在数据处理的过程中你会遇上很多不同的障碍,你需要使用到的工具包括了快速统计分析系统以及一些支持性的助手程序。“ 技术: R、Yahoo! Pipes、Mechanical Turk、Solr/ Lucene、ElasticSearch、Datameer、Bigsheets、Tinkerpop 。 初创公司: Continuuity、Wibidata、Platfora 。
MapRece :“在传统的关系数据库的世界里,在信息被加载到存储器后,所有的数据处理工作才能开始,使用的是一门专用的基于高度结构化和优化过的数据结构的查询语言。这种方法由Google首创,并已被许多网络公司所采用,创建一个读取和写入任意文件格式的管道,中间的结果横跨多台计算机进行计算,以文件的形式在不同的阶段之间传送。“ 技术: Hadoop和Hive、Pig、Cascading、Cascalog、mrjob、Caffeine、S4、MapR、Acunu、Flume、Kafka、Azkaban、Oozie、Greenplum 。
自然语言处理 :“自然语言处理(NLP)……重点是利用好凌乱的、由人类创造的文本并提取有意义的信息。” 技术: 自然语言工具包Natural Language Toolkit、Apache OpenNLP、Boilerpipe、OpenCalais。
机器学习:“机器学习系统根据数据作出自动化决策。系统利用训练的信息来处理后续的数据点,自动生成类似于推荐或分组的输出结果。当你想把一次性的数据分析转化成生产服务的行为,而且这些行为在没有监督的情况下也能根据新的数据执行类似的动作,这些系统就显得特别有用。亚马逊的产品推荐功能就是这其中最著名的一项技术应用。“ 技术: WEKA、Mahout、scikits.learn、SkyTree 。
可视化 :“要把数据的含义表达出来,一个最好的方法是从数据中提取出重要的组成部分,然后以图形的方式呈现出来。这样就可以让大家快速探索其中的规律而不是仅仅笼统的展示原始数值,并以此简洁地向最终用户展示易于理解的结果。随着Web技术的发展,静态图像甚至交互式对象都可以用于数据可视化的工作中,展示和探索之间的界限已经模糊。“ 技术: GraphViz、Processing、Protovis、Google Fusion Tables、Tableau 。
大数据的挑战
最近举行的世界经济论坛也在讨论大数据,会议确定了一些大数据应用的机会,但在数据共用的道路上仍有两个主要的问题和障碍。
1.隐私和安全
正如Craig & Ludloff在“隐私和大数据“的专题中所提到的,一个难以避免的危机正在形成,大数据将瓦解并冲击着我们生活的很多方面,这些方面包括私隐权、政府或国际法规、隐私权的安全性和商业化、市场营销和广告……试想一下欧盟的cookie法规,或是这样的一个简单情景,一个公司可以轻易地在社交网络上收集各种信息并建立完整的资料档案,这其中包括了人们详细的电子邮箱地址、姓名、地理位置、兴趣等等。这真是一件吓人的事情!
2.人力资本
麦肯锡全球研究所的报告显示 ,美国的数据人才的缺口非常大,还将需要140,000到190,000个有着“深度分析”专业技能的工作人员和1.500个精通数据的经理。寻找熟练的“网站分析”人力资源是一个挑战,另外,要培养自己的真正拥有分析技能的人员,需要学习的内容很多,这无疑是另一个大挑战。
大数据的价值创造
很多大数据的内容都提及了价值创造、竞争优势和生产率的提高。要利用大数据创造价值,主要有以下六种方式。
透明度 :让利益相关人员都可以及时快速访问数据。实验 :启用实验以发现需求,展示不同的变体并提升效果。随着越来越多的交易数据以数字形式存储,企业可以收集更准确、更详细的绩效数据。决策支持 :使用自动化算法替换/支持人类决策,这可以改善决策,减少风险,并发掘被隐藏的但有价值的见解。创新 :大数据有助于企业创造出新的产品和服务,或提升现有的产品和服务,发明新的商业模式或完善原来的商业模式。细分 :更精细的种群细分,可以带来不同的自定义行为。
工业领域的增长 :有了足够的和经过适当培训的人力资源,那些重要的成果才会成为现实并产生价值。
数据分析的机会领域
当“网站分析”发展到“数据智能“,毫无疑问,数据分析人员也工作也应该发生一些转变,过去的工作主要是以网站为中心并制定渠道的具体战术,而在将来则需要负责更具战略性的、面向业务和(大)数据专业知识的工作。
数据分析师的主要关注点不应该是较低层的基础设施和工具开发。以下几点是数据分析的机会领域:
处理:掌握正确的工具以便可以在不同条件下(不同的数据集、不同的业务环境等)进行高效的分析。目前网站分析专家们最常用的工具无疑是各类网站分析工具,大多数人并不熟悉商业智能和统计分析工具如Tableau、SAS、Cognos等的使用。拥有这些工具的专业技能将对数据分析人员的发展大有好处。
NLP:学习非结构化数据分析的专业技能,比如社交媒体、呼叫中心日志和邮件的数据多为非结构化数据。从数据处理的角度来看,在这个行业中我们的目标应该是确定和掌握一些最合适的分析方法和工具,无论是社会化媒体情感分析还是一些更复杂的平台。
可视化 :掌握仪表板的展示技能,或者宽泛点来说,掌握数据可视化的技术是摆在数据分析师面前一个明显的机会(注:不要把数据可视化与现在网络营销中常用的“信息图”infographics相混淆)。
行动计划
在大数时代,其中一个最大的挑战将是满足需求和技术资源的供给。当前的“网站分析”的基础普遍并不足够成熟以支持真正的大数据的使用,填补技能差距,越来越多的“网站分析师”将成长为“数据分析师”。

阅读全文

与大数据wiki相关的资料

热点内容
ios重启app的代码 浏览:565
装了win10文件加锁打不开 浏览:713
苹果电脑怎么新建一个pdf的文件 浏览:379
wps显示word不是一个有效文件 浏览:48
凯立德地图升级工具 浏览:474
linux系统参看log 浏览:416
用手机设置无线密码是多少 浏览:829
销售季度绩效考核怎么体现数据 浏览:335
c盘的文件删除不了 浏览:589
智力app哪个最好用 浏览:203
分析程序的目的 浏览:346
数据线插头用多少度锡丝 浏览:666
怎么用app查看社保卡余额 浏览:374
苹果手机无线网络信号不好 浏览:383
ue4材质中文教程 浏览:689
打开附带文件在图层 浏览:567
mfc怎么删除数据库 浏览:468
在哪里下载的文件找不到 浏览:821
招标文件中应该证明的内容有 浏览:607
工件编程怎么换平面 浏览:25

友情链接