A. 大数据金融与金融学的区别
大数据是笼统的大量数据,金融专业是经过精心采集具有专业性的。
B. 大数据专业是什么
大数据专业是一个非常典型的交叉学科,在课程体系的设置上通常采用3加N的设置方式,3代表的是3大主干知识体系,涉及到数学、统计学和计算机,而这里面的N则涉及到金融学、经济学、社会学、医学等辅助学科,不同学校会根据自身的教育资源整合情况来进行具体的设置,比如财经类大学通常会更注重金融学和经济学课程的设置。
从大数据专业的课程设置上来看,大数据专业的知识量是比较大的,学生的学习压力也相对大一些,如果没有一个较好的学习规划,也很容易导致学得杂而不精这种情况。从目前大数据领域的岗位划分情况来看,大数据专业的同学可以选择大数据开发方向,也可以选择大数据分析方向。
主攻大数据开发方向的同学要重视三方面内容,其一是程序设计能力的培养,可以重点关注一下Java语言,其二是重视大数据平台的学习,要熟悉常见大数据平台的开发方式,能够基于大数据平台来完成一些具体的开发任务,其三是要重视行业场景知识的学习。
最后,大数据专业的学习除了要重视理论知识的学习以外,还需要重视实践,可以通过参加专业比赛或者参加老师的课题组来积累实践经验。
C. 大数据和金融哪个专业难
都很难。大数据专业要学课程有基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。金融的基础课程有《税收学》、《公司金融学》、《国际金融学》、《金融会计学》、《金融计量学》、《证券经济学》、《金融建模》、《金融衍生产品》、《模拟银行业务》、《银行会计学》,然后根据不同的金融分支科目再学20本科目。所以这两个专业都很难。
D. 大数据金融专业属应用经济大专业吗
金融大数据,金融专业也是属于经济大专业的。
大数据金融是指集合海量非结构化数据,通过对其进行实时分析和挖掘客户的交易和消费信息掌握客户的消费习惯,并准确预测客户行为,提升金融机构在服务、营销和风控方面的能力。
大数据金融的内容
基于大数据的金融服务平台主要指拥有海量数据的电子商务企业开展的金融服务。
大数据的关键是从大量数据中快速获取有用信息的能力,或者是从大数据资产中快速变现的能力,因此,大数据的信息处理往往以云计算为基础。
大数据金融的运营模式
大数据金融分为平台金融和供应链金融两大模式。
平台金融模式中,是平台企业对其长期以来积累的大数据通过互联网、云计算等信息化方式对其数据进行专业化的挖掘和分析。
供应链金融模式,是核心龙头企业依托自身的产业优势地位,通过其对上下游企业现金流、进销存、合同订单等信息的掌控,依托自己资金平台或者合作金融机构对上下游企业提供金融服务的模式。
大数据金融的特征
1.网络化的呈现。在大数据金融时代,大量的金融产品和服务通过网络来展现,包括固定网络和移动网络。
2.基于大数据的风险管理理念和工具。在大数据金融时代,风险管理理念和工具也将调整。
3.信息不对称性大大降低。在大数据金融时代,金融产品和服务的消费者和提供者之间信息不对称程度大大降低。
4.高效率性。大数据金融无疑是高效率的。许多流程和动作都是在线上发起和完成,有些动作是自动实现。
5.金融企业服务边界扩大。首先,就单个金融企业而言,其最合适经营规模扩大了。由于效率提升,其经营成本必随之降低。金融企业的成本曲线形态也会发生变化。
6.产品的可控性、可受性。通过网络化呈现的金融产品,对消费者而言,是可控、可受的。
E. 金融与大数据分析专业好吗
金融与大数据分析专业好。根据查询相关资料信显示,大数据未来的就业前景好,大数据人才主要分布在移动互联网行业,其次是金融互联网、企业服务、游戏、教育等行业。
F. 什么是大数据金融
就是建立在大规模数据信息上的金融行为。例如网络推出大数据炒股理财。
G. 大数据技术在金融行业有哪些应用前景
大数据金融市场前景广阔,深度开发大数据金融工具,或将重构整个金融行业。预计未来5到回10年,金答融大数据产业将迎来黄金增长期,大数据也将成为助推“大众创业、万众创新”浪潮的有力抓手。
据《大数据金融行业市场前瞻与投资分析报告》数据显示,2016年我国大数据金融市场规模为15.84亿元,随着政策逐步实施与落地,以大数据为核心手段、核心驱动力的产业金融,将迈入时代发展正轨成为主流趋势,预计2018年中国金融大数据应用市场会突破100亿元,金融业开始进入了大数据时代快车道。
大数据金融作为一个综合性的概念,在未来的发展中,企业坐拥数据将不再局限于单一业务,第三方支付、信息化金融机构以及互联网金融门户都将融入到大数据金融服务平台中,大数据金融服务将在各家机构各显神通的基础上,实现多元业务的融合。
伴随互联网金融纵深发展,大数据优势越加凸显。作为互联网金融创新的驱动力,大数据金融带来的方式革新,未来走向精细化和专业化。今后大数据金融行业的努力方向,应该是以完备的大数据为基础,基于用户需求提供智能化一站式产品购买及定制化服务,以及数据挖掘、数据整合、数据产品、数据应用及解决方案等。
H. 大数据金融是什么
大数据金融是指集合海量非结构化数据,通过对其进行实时分析,可以为互联网金融机构提供客户全方位信息,通过分析和挖掘客户的交易和消费信息掌握客户的消费习惯,并准确预测客户行为,使金融机构和金融服务平台在营销和风控方面有的放矢。
大数据金融的内容:基于大数据的金融服务平台主要指拥有海量数据的电子商务企业开展的金融服务。大数据的关键是从大量数据中快速获取有用信息的能力,或者是从大数据资产中快速变现的能力,因此,大数据的信息处理往往以云计算为基础。
(8)大数据金融专业扩展阅读:
大数据金融的弊端:
1、大数据对个人信息的大量获取导致了隐私和安全问题。
随着个人所在或行经位置、购买偏好、健康和财务情况的海量数据被收集,再加上金融交易习惯、持有资产分布、以及信用状况以更细致的方式被储存和分析,机构投资者和金融消费者能获得更低的价格、更符合需要的金融服务,从而提高市场配置金融资源的能力。
但同时,金融市场乃至整个社会管理的信息基础设施将变得越来越一体化和外向型,对隐私、数据安全和知识产权构成更大风险。就个人隐私而言,大数据的隐私问题远远超出了常规的身份确认风险的范畴。
2、大数据技术不能代替人类价值判断和逻辑思考。
大数据是人类设计的产物,大数据的工具(如Hadoop软件)并不能使人们摆脱曲解、隔阂和成见,数据之间相关性也不等同于因果关系,大数据还存在选择性覆盖问题。
例如,社交媒体是大数据分析的重要信息源,但其中年轻人和城市人的比例偏多,还存在大量由程序控制的“机器人”账号或“半机器人”账号。波
士顿的 StreetBump应用程序为统计城市路面坑洼情况,从驾驶员的智能手机上收集数据,可能少计年老和贫困市民较多区域的情况;“谷歌流感趋势”曾高估了 2012年流感发病率。这说明依赖有缺陷的大数据可能给政府决策造成负面影响,还可能加剧社会不公。
3、基于大数据开发的金融产品和交易工具对金融监管提出挑战。
大数据的使用正在改变金融市场,也需要改变监管市场的方式,以保证市场参与者负责地使用大数据。
例如,2010年5月的“闪电暴跌”(flashcrash)令道琼斯工业平均指数 突然大跌,美国监管部门认为是高频交易造成了快速抛售引发的更多抛售。大数据中的一个数据点出错就能导致“无厘头暴跌”。
监管机构限制大数据技术的使用,或是对其使用进行直接干预,其潜在风险是巨大的,应鼓励业界对更复杂的技术乃至更大数据的利用。
I. 大数据金融专业就业前景怎么样
就目前的市场发展趋势,和热度来看,建议你可以学习一下大数据。我们可以从两个方面来看一下大数据的发展趋势。
J. 大数据金融前景
一、大数据金融的含义
大数据金融指的是将巨量非结构化数据通过互联网和云计算等方式进行挖掘和处理后与传统金融服务相结合的一种新的金融模式,它是一种相比于传统金融更加透明、参与度更加广泛、体验更好、效率更高的新兴金融模式。
广义的大数据金融包括整个互联网金融在内的所有需要依靠发掘和处理海量信息的线上金融服务。也就是说,我们所提到的不管是P2P还是众筹等互联网金融行为,其核心都是大数据金融,因为互联网金融如果没有大数据的支撑,就成了一个单纯意义上的平台。而互联网金融得以在互联网诞生之日起,到今天人类社会进入“PB(1024TB)”时代,历年来数据信息的记录与积累,以及云计算技术的不断成熟,使得大数据金融在互联网诞生数十年后终于可以一展风采。持续高增长的电子交易数量和网络零售服务,使得依赖于商务需求的金融体系能够在线上寻求到数据支撑。
狭义上的大数据金融指的是依靠对商家和企业在网络上历史数据的分析,对其进行线上资金融通和信用评估的行为。我们可以很直观地看到,最初在互联网平台上寻求到金融服务的商家和企业,一类是在互联网平台上留下了一定数量的历史信用信息的商家或企业,另一类是在相关产业之内积累了相当程度的历史信用的商家或企业。而从未在线上或实际交易中产生过信息的全新商家和企业在没有建立足够的交易基础之前是不太容易通过单纯的信用方式进行这种融资的。无论是广义还是狭义的定义,大数据金融的核心内容都是对商家和客户的海量数据进行收集、储存、发掘和整理归纳,使得互联网金融机构能够得到客户的全方位信息,掌握客户的消费习惯并准确预测客户行为。这样的做法不管是作为评级认定标准,还是作为目标客户进行营销宣传的理由,都能够使互联网金融机构对自己的风险进行控制,对自己的发展策略进行更详尽的规划。作为大数据的使用者,互联网金融机构必须为数据的采集和使用付出成本,如果不是同时作为数据的收集方,进行原始数据的采集和整理,那就要向数据来源的第三方支付使用费用。
二、大数据金融的发展机遇
1.互联网企业自身转型需要。随着电商竞争愈演愈烈,最初的零售领域与支付领域的竞争已逐渐延伸到了整个供应链的其他环节,包括物流、仓储,自然也包含了最重要的金融服务。尽快发展自身原有业务引申出来的大数据金融服务,有利于建立用户黏性。积极地进行专业化、个性化定制金融服务对未来电商领域的全方位竞争有着十分重要的意义。
2.实体产业需要大数据金融的支持。大数据金融通过各种方式给市场带来了活性,整个产业链的效率提升、资源配置优化是有目共睹的,虚拟经济与实体产业的下一步发展,必定都离不开大数据金融的支持。打通上下游环节,使资金更有效率,无论是对电商的未来发展还是对传统金融的突破都大有益处。
三、大数据金融面临的挑战
大数据使得互联网金融得到空前的发展,同时也带来了一系列的问题。原来的互联网非金融机构从事类金融服务,给传统的金融体系带来了一定的冲击,如何协调和处理好这两者之间的关系,成了未来大数据金融发展至关重要的环节。未来,大数据金融的发展必将基于传统金融行业与互联网大数据技术的进一步融入和整合,这就要求金融服务与互联网及大数据的关联程度必须不断加强。
1.必须推进金融服务与社交网络的进一步融合。使金融业的数据来源能够脱离早期呆板滞后的提交、审批、尽职调查等来源方式。要使金融信息的获取渠道能够直接深入金融服务本身,就要利用互联网、社交媒体等新的数据来源,从多渠道获取实时客户信息和市场信息,充分了解自标客户的需求和资质情况,建立更高效的客户关系与更完整的客户视图,并利用社交网络对忠实客户和潜在客户进行精准营销和定制化金融服务的方案。
2.传统金融机构要进行互联网、大数据金融的转型,必须要处理好与数据服务商的竞争、合作关系。目(下转80页)(上接76页)前,线上互联网企业由于占据极大的平台优势,垄断从交易发生到交易结算的各个环节以及这其中产生的各项数据信息,使传统金融企业想要介入十分困难。要想在实际过程中重新组建自己的数据平台,从时间方面来看,已经处于劣势。因此,传统金融机构与数据服务商开展战略合作是比较现实的选择。
四、大数据金融的发展趋势
大数据技术还远未成熟,而大数据金融带给我们的变化已足以让人惊讶,大数据金融的未来也是一片光明。未来,随着大数据技术的不断成熟,大数据金融的发展也必将进一步改变人们的生活生产方式。
1.大数据金融跨界发展。由于互联网技术的开放性,信息不对称将显著减少,金融在日后也许就不是少数传统的金融从业者的专属领域了。从供应链要求的技术来看,互联网企业、软件企业都纷纷加入大数据金融的开发中,大数据进入跨界发展的趋势越来越明显,金融业的竞争也将由于未来力量的冲击变得更加激烈。这也可能导致将来金融业内部混业经营的进一步发展,银行金融与非银行金融的界限、证券公司与非证券公司之间的界限都可能变得非常模糊。
2.大数据金融服务多样化。大数据金融从电商平台发展出来以后,不断地整合发展传统产业,从零售的日用百货发展到电子产品,再到汽车,甚至是大宗商品交易,未来也会发展到房地产、医疗等方面,日常的金融服务也将不断地扩展,综合化、社会化、日常化。
3.大数据金融服务专业化。随着涉足领域越来越广泛,大数据金融必将产生专业化趋势,产生更明确的产业链分工,根据不同的环节或者是不同的行业,其服务内容都将产生一系列的变化。同时随着发展水平的提高,必定会有高要求的定制化服务、个性化服务要求,未来的大数据金融企业必将以客户为中心,高度精准与定位客户需求来制定专业的个性化服务。总而言之,大数据金融凭借高度数据化的管理和运作模式,在互联网发展的今天有着不可替代的地位,将来大数据金融必将是金融业发展的中流砥柱,它将进一步渗透到各行各业的每一个角落,不断地促进金融生态的发展。在不久的将来,每个人都将能够切身体会到大数据金融带来的变化,都能从大数据金融的发展中获得益处。