导航:首页 > 网络数据 > 广东移动大数据

广东移动大数据

发布时间:2023-01-01 10:51:06

『壹』 大数据时代,客户服务将如何被改变

大数据时代,客户服务将如何被改变_数据分析师考试

最近,“大数据”已经取代了“云技术”,成为了新技术的热门话题,各类“大数据”的书籍层出不穷,文章更是琳琅满目,仿佛你要是不和“大数据”扯上点关系,你就OUT了!笔者对这些文章也略有涉猎,但觉徒挂“大数据”虚名者多,而真知者寡。为了让大家更容易理解大数据的内涵?请允许我先简单地介绍一下大数据的定义和背景。

麦肯锡的报告是这样定义的:大数据是指无法在一定时间内用传统数据库软件工具对其内容进行抓取、管理和处理的数据集合。(Big data refers to datasets whose size is beyond the ability oftypical database software tools to capture, store, manage, and analyze.)

大数据这个概念又是怎么来的呢?2011 年5 月,EMC 举办了一次主题“云计算相遇大数据”的大会,首次抛出了“大数据”(Big Data)概念;6 月,由EMC 赞助,IDC 编制的年度数字宇宙研究报告《从混沌中提取价值》 (Extracting Value from Chaos) 发布;紧接着,IBM、麦肯锡等众多国外机构发布“大数据”相关研究报告,予以积极跟进。

从背景我们可以看到EMC(全球最大的外置存储硬盘供应商)是推动“大数据”这个概念的主谋,他这么做,当然是想多卖点硬盘。这种软广告式炒作不但没引起反感和吐槽,反而被社会各界认可与接收,也是跟其社会背景密不可分。由于近年数据产生成本急速下降,人类产生的数据量正在呈指数级增长,其中80%以上都是传统数据库无法处理的非结构化数据。这些数据到底有多大呢?根据IDC 的监测,全球在2010 年正式进入ZB 时代,预计到2020 年,全球将总共拥有35ZB 的数据量,如果把35ZB 的数据全部刻录到容量为9GB 的光盘上,其叠加的高度相当于在地球与月球之间往返三次……在这么直观的比喻面前,其他语言也要苍白无力了!

也许你会说大数据这种现象不用说,我们早就看出来了,不就是数据大么,能给我们的社会带来什么实质性的影响啊,或者我怎么没看到它的应用?关于大数据的应用,我在这里就不赘述了,市面上各种“大数据”的书已经谈了很多案例了。我只想说“剖析历史可以洞察未来”,几年前说“云技术”还很遥远的那些人,却在将自己的文档、照片、视频上传至“iCloud”,使用着“搜狗云输入法”,登陆Dropbox、Yelp、Zynga等网站(这些网站正托管于亚马逊的"云平台")......那片飘在天上的“云”早已不是“触不可及”。

根据麦肯锡全球研究所的研究报告《Big data: The next frontier for innovation, competition, andproctivity》,大数据将给医疗服务、公共管理、定位服务、零售和制造各个行业带来显著的应用价值,例如,对美国的医疗服务业每年创造价值3000亿美元,约0.7%的年增长率,对美国制造业最高可下降50%的产品研发和装配成本。麦肯锡的这份报告详致地阐明了大数据对各行各业的利好,推荐大家阅读,我这里只谈大数据对客户服务领域的影响。

在云时代,淘宝推出的一种极具“云”特色的客户服务模式——云客服,云客服把社会上喜欢帮助人且有能力帮助人的淘宝人聚集在一起,使客服人员在家里或学校对客户提供远程服务,实现了“HO(Home Office,驻家办公)”,并充分利用了客服人员的零散时间,不仅降低了成本,还提高了效率。当然,这个“云”并不是真正意义上的云技术,只是一种概念和噱头。而在大数据时代,又将会给客户服务带来哪些商业价值呢?

我认为,大数据将对客户服务带来一次变革,给客户服务带来极大的想象空间和无限的发展前景。甚至可以使客服部门从原来的成本中心(高成本、低价值)转型为利润中心(提升品牌价值,创造收入)。在这里我举三个例子跟大家探讨一下,展望一下客户服务的未来。

一、智能语音客服

目前,通信运营商等在客服领域比较先进的企业已经实现了智能文字客服,通过文字识别技术和智能匹配算法对通过短信和网站文字客服提出的服务诉求智能匹配答案,不需人工判断。要实现智能语音客服,也要通过识别和匹配这两关。

我们先说说识别吧。早在Siri之前,就已经有很多语音识别工具问世,最早的基于电子计算机的语音识别系统是由AT&T贝尔实验室开发的Audrey语音识别系统,它能够识别10个英文数字,现在AT&T的语音系统 Watson已经可以实现在线德语和英语的实时口译。以现在的技术,语音的识别依然比较困难,主要面临的难点有2个:

1.算法

算法是软件的核心,目前的语音识别算法使用的语言模型仍是一种概率模型,还未发展成以语言学为基础的文法模型,算法不突破,效果无法取得突飞猛进的进展。算法的优化不是一朝一夕的事情,需要慢慢不断地进行,尤其语音这种非结构化数据(不便用数据库二维逻辑表来表现的数据),但随着大数据分析技术(用于非结构化数据的管理分析)的发展,也会对新算法开发带来福音。一些核心算法如特征提取、搜索算法和自适应算法也都在一步步改进,且随着数据源的不断丰富,算法的识别效果也就越来越精准。

2.适应性

由于方言、语气、环境和音色等因素的影响,限制了语音识别算法的效果,这就需要语言识别系统具有一定的自适应性,不同口音、方言的识别都需要以一个庞大的语音数据库为基础,对这些非结构化数据的管理分析就更加指望大数据技术了。至于排除环境噪音、音色等因素,个人感觉要依赖半导体传感技术的进步,留待硬件领域的专家进一步探讨。

接下来就说到匹配了。目前,匹配的算法已经相对比较成熟了,也许和大数据技术没有直接联系,不过其准确性也有赖于数据源的丰富程度,同时要在不断产生的“交互数据”中动态地调整匹配结果。

综上所诉,随着数据源越来越多,大数据技术的不断进步,语音识别系统也在持续地完善之中,说到底,算法依然是核心,而数据则是基础,对于这类非结构化数据,也许传统的数据库技术Handle不住,但大数据技术却大有可为。相信不久,语音识别的技术的突破不仅可以实现智能语音客服,还将变革人与物之间的交互方式。

二、语音文本转换

因为这个功能的核心也是语音识别,所以大数据技术对的转换准确度的保障支撑就不用再说了。之所以单列出来谈呢,是因为其对客户服务别有一番作用。

对于呼叫中心而言,客服人员与用户的通话都是要录音备份的,这些语音数据可真的不小哦,仅以广东移动为例,广东移动客服中心每年就要新增约60T的数据存储,这个体量对于一般的企业来说已经是“大数据”了。据悉,这些数据是用磁带来保存的,而且这些要保存几十年不能销毁,想想到时候光这些磁带所占用的房间租金就是不少钱啊,更何况是其他成本。而如果能将这些语音准确地转换成文本之后,文本存储所占用的空间就小的多(一个移动硬盘都可以存储一个图书馆的数据量了),存储成本简直就是直线下降,不仅实现了低成本高效,对自然环境也是一种利好。

有人会质疑这些录音是为了便于追溯留证的,不是原始的录音记录,客户不认账怎么办?当然,我要声明不是所有的录音都要转换成文本,对于客户投诉或办理业务的来电,仍然保留录音记录,一则便于企业对客服人员的服务态度(说话语气什么的还真要靠语言才能判断)和质量进行抽检,二则备份留证。而对于更多的咨询或查询类来电,通常不必留证,将这些语音转成文本之后,不仅减少了存储空间,这些文本数据还可用于后续的信息挖掘,用来改进服务或发现商机,毕竟文本的信息分析要比语音的容易得多。

三、客户信息挖掘

在互联网时代,除了用户数、营业额等,数据已经被认为是未来的核心资源。我记得马云曾说过类似这样的话“你知道全国哪个省份的女人胸围最大么?你知道哪个城市的男人最喜欢用什么牌子的衣服、香水么?你们都不知道,淘宝知道。”每年有多少企业关注《淘宝用户行为报告》,以图挖掘出一些数据来提升自己的销量,从这里,数据的价值可见一斑。

而客服部门作为企业前端的客户直接接触窗口,每天都可以从客户身上获取大量的信息,甚至可以在客户比较满意的时候,主动获取一些爱好、职业等信息,积少成多,某些时候,这些数据将为企业巨大的价值。当然,这些数据的录入也不能仅靠人工,其中更涉及客户视图和标签的问题,待下文再进行剖析思考。对客户信息挖掘的应用,我在此举两个简单的例子。比如,通过数据的挖掘,可以发现哪些用户是高尔夫球爱好者,进行精准营销,避免盲目营销导致的客户反感及投诉。再如,随着定位技术成为了手机的标配,个人位置信息已经成了客户服务领域待被开采的金矿,国外运营商已经开始分析这些个人位置信息的数据,并将洞察结果面向政企客户提供,这些位置信息可以为企业的实体店、营业厅选址提供依据。

以上是小编为大家分享的关于大数据时代,客户服务将如何被改变的相关内容,更多信息可以关注环球青藤分享更多干货

『贰』 乾坤大数据是广东移动的吗

乾坤大数据不是广东移动的。乾坤大数据是基于中国移动大数据,面向金融、政务行业客户提供的数据产品。产品利用脱敏的数据应用于风险管控、精准营销以及失联用户触达等业务领域,助力行业客户完善风险防控手段,提升企业存量用户保有率,提高精细化运营能力,并不是属于广东移动的。

『叁』 为什么移动公司提醒谨慎接听高频电话

高频的意思是:频繁打出。

比如,每小时打20个电话,平均3分钟打出一个电话高频呼出的电话,通常是用来电话营销,也可能是骗子在频繁呼叫用户移动公司不能窃听电话内容,因此不能判断是合法的电话营销还是非法的骗子。只能提醒用户,谨慎接听。


而使用像广东移动的这一服务不需要额外安装手机软件,即便是最普通的非智能手机也可以使用。但这一功能仅限于提醒,无法识别诈骗电话并进行关停。

『肆』 为什么老是说深圳的房价会下降是真的吗

说句不好听的话,那些说深圳房价会下降的人,基本上都是吃不到葡萄说葡萄酸的人。对于那些没有来得及买房的人来说,他们当然希望房价下跌,这样大家买房的机会就更大一些,然而看着深圳的房价一直没下跌,甚至二手房还在一直上涨,所以很多人就产生了不平衡的心理,因此就觉得深圳的房价会下降,而且他们也希望房价下降,这样他们就可以看到那些在高位买房的人资产缩水,这样他们就可以暗暗的高兴。

而目前持有这种心态的人并不在少数,很多人自己没能力买房,却天天在喊房价出现下降,但喊了很多年也没见房价下跌下来。

对深圳这种城市来说,房价在未来很长一段时间之内都不可能出现下降,甚至还有可能出现小幅上涨的趋势,而支撑深圳房价稳定甚至小幅上涨的理由如下:

第一、庞大的人口基数

根据深圳官方数据统计,目前深圳的常住人口只有1300万左右,但这个人口数量明显不能反映深圳真实的人口。2017年广东移动大数据应用创新中心基于移动大数据的深圳市人口统计研究报告显示,深圳的实际管理人口大概是在2500万左右。


这个政策的出台让深圳如虎添翼,如果这个政策能够得到落实,那么未来深圳的发展将是不可限量的。

与此同时,该文件还提出了推进在深圳工作和生活的港澳居民民生方面享有“市民待遇”,建立和完善房地产市场平稳健康发展长效机制,这样意味着以后港澳居民只要在深圳工作就可以自由在深圳买房,所以预计未来会有更多的港澳人士到深圳就业以及居住。但是深圳目前的房价相对港澳的房价来说还是比较低的,一旦这个政策放开了之后,深圳和港澳之间的房价差距肯定会不断的缩小。

所以从各方面来分析,我认为未来深圳的房价不可能出现下跌,总体上升的概率反而比较大。

『伍』 广东移动大数据品牌推出时间

广东移动大数据品牌推出时间是2016年上半年。推出“蜂巢”大数据品牌以及“和信用”、“城市热力图”、“岭南优品”等一系列产品。

『陆』 为何说大数据精准广告并不靠谱

为何说大数据精准广告并不靠谱
一、大数据精准广告内涵
大数据目前已经成为整个IT界(包含Internet Technology 以及Information Technology)最热的词汇之一,似乎任何一个话题,只要提到大数据,瞬间变得高大上。一夜之间,大数据已经代替主观的理性思考,成为智慧洞察的代名词。
但是当我们走过对大数据的顶礼膜拜阶段,揭开大数据实际应用的面纱,反而逐渐对充斥着话语世界的大数据进行反思。因为大数据在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。
以大数据的广告应用为例,精准广告投放应该是大数据最早的也是最容易产生直接收益的应用,如今少有广告公司没有宣称自己是大数据科技公司。大数据精准广告的核心内涵是什么?一言以蔽之,那就是程序化定向投放。其中定向是核心,程序化是手段。
微信朋友圈为例,不定向区域,年初的公开价格CPM(每千次曝光成本,朋友圈广告价格远超一般媒体)40元,定向核心城市140元,定向重点城市90元,如果叠加定向性别,附加10%,再叠加H5外链(流量引导效果更好),再附加20%。就像进口化妆品一样,先按一定比例征收关税,后按含税价格再征收增值税,再按含税价格征收消费税。
对于微信来说,客户地域、性别虽然也需要数据分析解读,但确认相对比较容易。对于其它数据公司来说,地域依然可以通过IP或手机终端GPS获取,但性别更可能就是一个数据分析出的可能属性。当然大数据并不仅仅分析如此简单的标签,对于媒体联盟而言,媒体选择项目众多,还会分析客户媒体偏好标签,还有时间段、人群属性、设备类型、偏好类型等多种定向组合方式。
好了,上面对于精准广告有了一个粗浅的介绍。那么大数据精准广告能带来什么样的价值?通常如下的故事是大数据广告公司经常提及的。
假如一个网站的广告位,每小时有1万人来浏览,则一小时曝光量为1万,之前的CPM为5元,那么一个手机广告主投放一小时广告,成本50元。这是传统广告投放的结果。现在有个大数据公司,来帮助该广告媒体更好的运营。该公司宣称它能够精准识别浏览客户的属性,告诉手机广告主,虽然1万人浏览该广告位,但真正适合投放手机的只有6千人次,剩下4千人次的曝光为无效曝光,因为剩下的人群只对服装感兴趣。
大数据公司建议广告主按照程序化投放,过滤掉不适合投放手机的4千人,仅对适合投放手机的6千人付费,假如单价不变,那么在保证相同效果的前提下,成本降低至30元。剩下的4千人大数据公司将其销售给服装广告主,成本为20元。由此,在相同的效果情况下,大数据广告大幅降低广告主的成本。当然事实上,由于RTB(实时竞价)机制的存在,当价格(效果相同)低到一定程度,不同手机广告主的相互竞价,使得真实价格一般高于30元,但肯定介于30元到原有预期成本50元之间,由此形成多方共同获益的理想局面。
这样的案例看上去Perfect,无懈可击。因为它解决了传统广告的低效问题,比如看起来有用,但又说不清楚到底有用在哪里,这个正是各公司财务总监所深恶痛绝的。是的,通过大数据广告,让一切花在广告上的钱更有依据,可以在线评估一条广告到底造成多少的印象(Impressions),甚至多少点击,多少因此而下载使用,多少因此产生交易。
有问题吗?没问题。有问题吗?你什么意思,难道你要怀疑真理?
二、大数据精准广告没有看上去那么美好
本着证伪的原则,真理只有被证明为谬误的时候(理解其应用的局限及条件),才算真理。因此我们必须先回答一个问题,广告是用来做什么的?
按照以前的共识,广告被视为品牌用来向那些无法面对面沟通的消费者去传达品牌的特性。因此广告虽然对销售有促进作用,但通常时候,广告的内容并不直接说服消费者去购买,就如中国移动曾经的获奖广告“沟通从心开始”一样。2010年出版的《品牌如何增长》(How Brands Grow)一书(说明,笔者未读过,希望将来能读到),作者南澳大利亚大学教授拜伦在书中指出,广告要达到最好的效果,往往不需要去说服或灌输,只要让人在购买的时候回想起品牌的名字就可以了。市场研究机构Milward Brown创始人高登(Gordon Brown)就指出,广告的功能就是让一个摆在货架上的品牌变得“有趣”。
好吧,再回到大数据精准广告案例,其中一个最为关键的问题在于,大数据如何分析出这6千个浏览用户适合投放手机广告?对于这个问题,广告公司早有准备,给出如下的种种答案。
第一,从历史记录中寻找曾经使用过同类产品的客户进行匹配。通常使用的算法叫“协同过滤”,即由某些经验的相关性,找到潜在的适合用户。比如你玩过某款游戏,因此可认为你对该类型的其它游戏也有相同的需求。笔者并不否认该算法对某些领域确实有作用,比如游戏付费用户基本就是之前重度游戏使用用户。
但是抛开这些特殊领域,该算法内涵思想“品牌依靠忠诚的消费者发展壮大”与拜伦的理论完全矛盾。拜伦通过对销售数据进行统计学分析,他指出在所有成功的的品牌当中,大量的销售来自“轻顾客”(Light buyer):也就是购买产品相对不那么频繁的顾客。可口可乐的生意并非依靠每天都喝可乐的人,而是数百万每年喝一次或两次的顾客。这种消费者模式在各个品牌、商品品类国家和时期都适用。无论是牙刷还是电脑,法国汽车或是澳大利亚银行,品牌依靠的是大规模人口——换句话说,大众——那些偶尔购买他们的人。
这个理论意义十分深远。这意味着你永远无法通过精准营销现有顾客来增加品牌的市场份额。而对现有顾客的精准营销,正是数字媒体所擅长的。
本着批判的精神来看待新出现未经检验的思想,笔者希望引用一下广东移动最近公布的用户换机特征数据。广东移动对旗下用户的终端迁移分析表明,使用苹果的用户升级终端,继续使用苹果手机的占比64%,忠诚度最高。但除苹果以外,其余忠诚度表现最好的华为、小米手机,更换4G后持续使用同品牌的占比不到30%。
这说明,你向苹果4或5用户推广苹果6是可行的,果粉效应推翻拜伦的理论,证实在部分领域依靠忠诚的消费者发展壮大是可行的。但除此以外,你向任何一个当前品牌的用户推广同品牌的手机终端都是不合时宜的。
因此,希望通过历史的电商数据分析推断用户下一步可能需要是无效的。就如向曾经购买过服装的用户推广服装,或许不如推广一卷纸或一桶油更为有效。
相反,成功的品牌需要找到一种方式来到达目标市场之外的群体。品牌的广告一定要用某种方式获得这部分人的兴趣——只有这样,当他们在准备购买的时候,该品牌才能自动出现在消费者的脑海中。
第二,如果“协同过滤”存在局限,广告公司会告诉你还有第二种算法,并不基于客户的历史行为记录,而是客户本身特征相似性,来找到与种子客户最为相似的客户群体。简称“Lookalike”。先需要广告主提供本则广告起到作用的典型用户,以手机为例,受广告影响感兴趣点击浏览或预购某手机的用户,大约几百或几千个。大数据公司通过Lookalike算法(专业的术语更可能是稀疏矩阵),寻找与这几百/千个用户高度相似的其它数十万/百万客户群进行投放。
这类算法真正考验大数据平台的计算能力,因为并不是经验性的协同过滤,而是利用数十数百甚至上千个变量进行回归计算。最后按照相似性的概率打分,按照由高到低选择合适的用户群。
该模型的内涵其实很简单,就是广告要传达给应该传达的客户。比如奶粉广告目标用户就是养育0-3岁孩子的父母。如果知道要到达用户的具体身份,一切问题迎刃而解。但是对于网站或APP应用来说,并不清楚用户身份,唯一清楚的是客户的历史行为数据。而且由于数据本身的分割,有的专注于运营商,有的专注于APP联盟采集,有的专注于电商,有的专注于银行,要从分割的数据中推断出客户的身份信息,Lookalike就是不可避免的手段。
唯一的问题是,如果由几百个种子用户推断出新的几百个目标用户,准确性可能高达9成,但如果如某广告公司宣称,对康师傅辣味面进行移动DSP投放时,根据历史投放数据分析挖掘,形成样本库,再通过Lookalike技术进行人群放大,找到与目标受众相似度最高的潜在客户,扩展人群1367万,实际投放受众ID2089万。广告效果投放是最大化了,那么效果呢?在此,请允许我杜撰一个数字,很可能点击率由0.2%上升至0.3%,精准度提升50%。有意义吗?或许有,但绝对没有想象的那么明显。
第三,如果你们持续怀疑我们算法的有效性,那么我们可以就效果来谈合作,你们可以按照点击量(CPC)或者激活量(CPA)付费,如果达不到既定效果,我们会补量。这是大数据广告的终极武器。
终极武器一出,意味着广告的投放彻底沦陷为做点击、做激活的渠道,广告的“沟通消费者”初衷早被抛弃得一干二净。
通常一般消费决策遵行S(Solution)、I(Information)、V(Value)、A(Access)规则,意思是当用户产生一个需求,内心先就满足这个需求形成一个解决方案。比如说3G手机不好用,速度很慢覆盖不好,需要换一个4G终端就成为一个Solution。那么4G终端有哪些,重点考虑那些终端?消费者还是搜集信息,并非从网上搜索,而是根据以往的经历、品牌效应、周边朋友口碑自动回想那些品牌、哪些款式。传统广告的最重要功效应该就是这个阶段,当用户需要的时候,自动进入到用户视线。然后从多维度比较选择,确定首选购买品牌。最后就是去哪儿买,搜索哪儿有促销活动,哪里优惠力度最大。
根据SIVA模型,真正的以效果为导向的广告本质解决的是Access问题,最后的临门一脚。在这方面,搜索广告是真正的效果导向广告,比如淘宝的每一款商品后面都有超过1万家商户提供,到底用户去哪里购买,得付钱打广告,这就是效果广告。曾有报告对比过,搜索广告点击率高达40%以上。想一想网络、阿里靠什么为生,临门一脚的广告价格自然高到没边,据说一些医院购买网络性病、人流之类的搜索广告,单次流量价格高达数十或数百元。
搜索广告只有少数垄断接入公司才有的生意,大部分广告仍为展示类广告。如果展示类广告也朝效果类靠拢,从商业规律上属于本末倒置。
最后结果是,一方面,广告的内容充满人性的贪婪(优惠/便宜)与色欲(大胸美女),被改造得不伦不类,上过一次当后,在沟通消费者方面反而起到负面作用。另一方面,广告公司沦落为做流量、做点击的公司,与北京望京、中关村著名的刷流量一条街没有本质的差异,最后谁真正点击了这些有效流量?曾有大数据公司分析过某款高端理财软件的阶段性用户群,与刷机、贪图小便宜的极低端用户高度相似。
三、多用靠谱的身份识别可能更有利于提升广告效果
写了这么多,大数据精准广告一无是处吗?不,怀疑真理是为了更好的应用真理。大数据广告的核心“程序化”与“定向投放”没有错,这代表移动互联网发展的趋势,也与满足特定市场、特定用户群的商品或服务广告传播需求完全匹配。问题在于目前的大数据实际能力与宣称的雄心还有巨大的差距。也就是说没有看上去的那么好。
所以,我们更应该回归广告的本来目的——更好的沟通消费者,来看待精准投放,而不是迷信大数据精准投放这样的噱头。那么什么最重要?显然不是不靠谱的协同过滤规则,也不是根本不知道原因的Lookalike,既然最重要的就是到达目标消费者,那么靠谱的身份识别应该就是精准广告的核心。
什么是靠谱的身份识别?对微信而言,判断重点活动城市是靠谱的,分析性别也相对靠谱,但如果微信告诉你说能够通过社交判断该用户是中产白领还是乡村农民,那一定是不靠谱的。因为朋友圈里宣称正在法国酒庄旅游的优雅女人或许正在出门买油条豆浆。
有时候用户使用的媒体本身就透露客户的身份特征。比如经常使用理财软件的在支付能力上较为靠谱,而使用孕宝APP的80%以上应该就是准妈妈,经常使用蜜芽的一定是宝宝出生不久的妈妈。有大数据公司给出过案例,对媒体本身进行定向和综合分析定向的效果相差无几,这就说明媒体定向是有效的,但是其它需求定向都等同于随机选择。
由于大数据本身就是不关注因果,只关注相关性,如果经过大数据洞察证实的协同规则,也可以算作靠谱的规则。比如游戏付费用户群基本上可以确定为一两千万ID的重度使用用户。
而要准确识别客户身份,多数据源的汇集与综合不可避免,围绕客户身份的各种洞察、相关性分析也是能力提升的必修功课,这或许更应该是大数据广告公司应持续修炼的核心能力。

『柒』 为什么要开展广东移动粤东区域生产中心IDC项目呢

是为了一系列的精神:为深入贯彻党的“十八大”精神,积极应对新时期复杂多变的专国际、国内网络属安全挑战,维护国家网络空间安全,国家计算机网络应急技术处理协调中心依托自身在网络安全领域的权威技术优势和全国联动的监测、预警、处置一体化业务优势,积极推进与地方的网络安全合作;为贯彻落实国家“十二五”有关发展战略性新兴产业和海峡西岸经济区建设的战略决策,汕头市人民政府依托汕头市的产业优势、政策优势和区位优势,积极建设具有高等级网络安全防护水平的、以汕头数据特区为核心的服务外包和云计算产业;为加快提升大数据业务网络安全能力,促进粤东区域数据服务核心竞争力,持续提升区域信息化发展水平,中国移动通信集团广东有限公司已在汕头市投资建设广东移动粤东区域生产中心。
我也是在别处看来的,楼主求给分啊!!

阅读全文

与广东移动大数据相关的资料

热点内容
销售季度绩效考核怎么体现数据 浏览:335
c盘的文件删除不了 浏览:589
智力app哪个最好用 浏览:203
分析程序的目的 浏览:346
数据线插头用多少度锡丝 浏览:666
怎么用app查看社保卡余额 浏览:374
苹果手机无线网络信号不好 浏览:383
ue4材质中文教程 浏览:689
打开附带文件在图层 浏览:567
mfc怎么删除数据库 浏览:468
在哪里下载的文件找不到 浏览:821
招标文件中应该证明的内容有 浏览:607
工件编程怎么换平面 浏览:25
明珠三国官方版本 浏览:758
jspop换行 浏览:319
如何用网络画图 浏览:52
dxf编程如何修刀 浏览:344
js音频控制 浏览:112
苹果6p微信发送语音会自己中断 浏览:644
win10拷贝文件到u盘速度慢 浏览:396

友情链接