导航:首页 > 网络数据 > 大数据采集etl

大数据采集etl

发布时间:2022-12-31 12:52:42

1. 常见的大数据采集工具有哪些

1、离线搜集工具:ETL


在数据仓库的语境下,ETL基本上便是数据搜集的代表,包括数据的提取(Extract)、转换(Transform)和加载(Load)。在转换的过程中,需求针对具体的事务场景对数据进行治理,例如进行不合法数据监测与过滤、格式转换与数据规范化、数据替换、确保数据完整性等。


2、实时搜集工具:Flume/Kafka


实时搜集首要用在考虑流处理的事务场景,比方,用于记录数据源的履行的各种操作活动,比方网络监控的流量办理、金融运用的股票记账和 web 服务器记录的用户访问行为。在流处理场景,数据搜集会成为Kafka的顾客,就像一个水坝一般将上游源源不断的数据拦截住,然后依据事务场景做对应的处理(例如去重、去噪、中心核算等),之后再写入到对应的数据存储中。


3、互联网搜集工具:Crawler, DPI等


Scribe是Facebook开发的数据(日志)搜集体系。又被称为网页蜘蛛,网络机器人,是一种按照一定的规矩,自动地抓取万维网信息的程序或者脚本,它支持图片、音频、视频等文件或附件的搜集。


除了网络中包含的内容之外,关于网络流量的搜集能够运用DPI或DFI等带宽办理技术进行处理。

2. 什么是大数据采集平台

大数据采集是大数据的基础,通过采集的数据在平台上汇总和分析,最终形成一套完整的数据系统。海鳗云旅游大数据平台,就是专业做旅游大数据的公司,拥有自己的旅游大数据平台。

3. 大数据方面核心技术有哪些

大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式回存储、数据库、答数据仓库、机器学习、并行计算、可视化等。

1、数据采集与预处理:

Flume NG实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据;

Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。

2、数据存储:

Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。

HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。

3、数据清洗:MapRece作为Hadoop的查询引擎,用于大规模数据集的并行计算

4、数据查询分析:

Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。

Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。

5、数据可视化:对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。

4. 大数据etl是干嘛的

大数据是巨量数据的合集,ETL则是处理这些数据并且发掘其价值的手段。
我们都知道,大数据的价值不在于大量的数据,而在于分析这些数据并从中找出企业所需的有价值数据,助力企业发展。

5. 在做大数据的准备中,ETL流程是什么意思

ETL是指获取原始大数据流,然后对其进行解析,并产生可用输出数据集的过程专。从数据源属中提取(E)数据,然后经过各种聚合、函数、组合等转换(T),使其变为可用数据。最终,数据会被加载(L)到对它进行具体分析的环境中。这就是ETL流程。

6. 大数据是什么

作者:李丽
链接:https://www.hu.com/question/23896161/answer/28624675
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。
"大数据"是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。从数据的类别上看,"大数据"指的是无法使用传统流程或工具处理或分析的信息。它定义了那些超出正常处理范围和大小、迫使用户采用非传统处理方法的数据集。
亚马逊网络服务(AWS)、大数据科学家JohnRauser提到一个简单的定义:大数据就是任何超过了一台计算机处理能力的庞大数据量。
研发小组对大数据的定义:"大数据是最大的宣传技术、是最时髦的技术,当这种现象出现时,定义就变得很混乱。" Kelly说:"大数据是可能不包含所有的信息,但我觉得大部分是正确的。对大数据的一部分认知在于,它是如此之大,分析它需要多个工作负载,这是AWS的定义。当你的技术达到极限时,也就是数据的极限"。 大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。
二、大数据分析
从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?
1、可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了
2、数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3、预测性分析能力
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4、数据质量和数据管理
大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
三、大数据技术
1、数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
2、数据存取:关系数据库、NOSQL、SQL等。
3、基础架构:云存储、分布式文件存储等。
4、数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机"理解"自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage Understanding),也称为计算语言学(Computational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。
5、统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
6、数据挖掘:分类
(Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or
association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text,
Web ,图形图像,视频,音频等)
7、模型预测:预测模型、机器学习、建模仿真。
8、结果呈现:云计算、标签云、关系图等。
四、大数据特点
要理解大数据这一概念,首先要从"大"入手,"大"是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Vol-ume、Variety、Value和Veloc-ity),即体量大、多样性、价值密度低、速度快。
1、
数据体量巨大。从TB级别,跃升到PB级别。
2、
数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。
3、
价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
4、
处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。
大数据技术是指从各种各样类型的巨量数据中,快速获得有价值信息的技术。解决大数据问题的核心是大数据技术。目前所说的"大数据"不仅指数据本身的规模,也包括采集数据的工具、平台和数据分析系统。大数据研发目的是发展大数据技术并将其应用到相关领域,通过解决巨量数据处理问题促进其突破性发展。因此,大数据时代带来的挑战不仅体现在如何处理巨量数据从中获取有价值的信息,也体现在如何加强大数据技术研发,抢占时代发展的前沿。
五、大数据处理
大数据处理之一:采集
大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。
大数据处理之二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
大数据处理之三:统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
大数据处理之四:挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理
六、大数据应用与案例分析
大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。以下是关于各行各业,不同的组织机构在大数据方面的应用的案例,在此申明,以下案例均来源于网络,本文仅作引用,并在此基础上作简单的梳理和分类。
大数据应用案例之:医疗行业
[1] Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。
[2] 在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
[3] 它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。
大数据应用案例之:能源行业
[1] 智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。

[2] 维斯塔斯风力系统,依靠的是BigInsights软件和IBM超级计算机,然后对气象数据进行分析,找出安装风力涡轮机和整个风电场最佳的地点。利用大数据,以往需要数周的分析工作,现在仅需要不足1小时便可完成。
大数据应用案例之:通信行业
[1] XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取措施,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。
[2] 电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。
[3] 中国移动通过大数据分析,对企业运营的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。
[4] NTT docomo把手机位置信息和互联网上的信息结合起来,为顾客提供附近的餐饮店信息,接近末班车时间时,提供末班车信息服务。

7. 大数据etl工具有哪些

ETL是数据仓库中的非常重要的一环,是承前启后的必要的一步。ETL负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。

下面给大家介绍一下什么是ETL以及ETL常用的三种工具——Datastage,Informatica,Kettle。

一、什么是ETL?
ETL,Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。

数据仓库结构
通俗的说法就是从数据源抽取数据出来,进行清洗加工转换,然后加载到定义好的数据仓库模型中去。目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据。

ETL是BI项目重要的一个环节,其设计的好坏影响生成数据的质量,直接关系到BI项目的成败。

二、为什么要用ETL工具?
在数据处理的时候,我们有时会遇到这些问题:

▶ 当数据来自不同的物理主机,这时候如使用SQL语句去处理的话,就显得比较吃力且开销也更大。

▶ 数据来源可以是各种不同的数据库或者文件,这时候需要先把他们整理成统一的格式后才可以进行数据的处理,这一过程用代码实现显然有些麻烦。

▶ 在数据库中我们当然可以使用存储过程去处理数据,但是处理海量数据的时候存储过程显然比较吃力,而且会占用较多数据库的资源,这可能会导致数据资源不足,进而影响数据库的性能。

而上述遇到的问题,我们用ETL工具就可以解决。ETL工具具有以下几点优势:

1、支持多种异构数据源的连接。(部分)

2、图形化的界面操作十分方便。

3、处理海量数据速度快、流程更清晰等。

三、ETL工具介绍
1、Datastage

IBM公司的商业软件,最专业的ETL工具,但同时价格不菲,适合大规模的ETL应用。

使用难度:★★★★

2、Informatica

商业软件,相当专业的ETL工具。价格上比Datastage便宜一点,也适合大规模的ETL应用。

使用难度:★★

3、Kettle

免费,最著名的开源产品,是用纯java编写的ETL工具,只需要JVM环境即可部署,可跨平台,扩展性好。

使用难度:★★

四、三种ETL工具的对比
Datastage、Informatica、Kettle三个ETL工具的特点和差异介绍:

1、操作

这三种ETL工具都是属于比较简单易用的,主要看开发人员对于工具的熟练程度。

Informatica有四个开发管理组件,开发的时候我们需要打开其中三个进行开发,Informatica没有ctrl+z的功能,如果对job作了改变之后,想要撤销,返回到改变前是不可能的。相比Kettle跟Datastage在测试调试的时候不太方便。Datastage全部的操作在同一个界面中,不用切换界面,能够看到数据的来源,整个job的情况,在找bug的时候会比Informatica方便。

Kettle介于两者之间。

2、部署

Kettle只需要JVM环境,Informatica需要服务器和客户端安装,而Datastage的部署比较耗费时间,有一点难度。

3、数据处理的速度

大数据量下Informatica与Datastage的处理速度是比较快的,比较稳定。Kettle的处理速度相比之下稍慢。

4、服务

Informatica与Datastage有很好的商业化的技术支持,而Kettle则没有。商业软件的售后服务上会比免费的开源软件好很多。

5、风险

风险与成本成反比,也与技术能力成正比。

6、扩展

Kettle的扩展性无疑是最好,因为是开源代码,可以自己开发拓展它的功能,而Informatica和Datastage由于是商业软件,基本上没有。

7、Job的监控

三者都有监控和日志工具。

在数据的监控上,个人觉得Datastage的实时监控做的更加好,可以直观看到数据抽取的情况,运行到哪一个控件上。这对于调优来说,我们可以更快的定位到处理速度太慢的控件并进行处理,而informatica也有相应的功能,但是并不直观,需要通过两个界面的对比才可以定位到处理速度缓慢的控件。有时候还需要通过一些方法去查找。

8、网上的技术文档

Datastage < Informatica < kettle,相对来说,Datastage跟Informatica在遇到问题去网上找到解决方法的概率比较低,kettle则比较多。

五、项目经验分享
在项目中,很多时候我们都需要同步生产库的表到数据仓库中。一百多张表同步、重复的操作,对开发人员来说是细心和耐心的考验。在这种情况下,开发人员最喜欢的工具无疑是kettle,多个表的同步都可以用同一个程序运行,不必每一张表的同步都建一个程序,而informatica虽然有提供工具去批量设计,但还是需要生成多个程序进行一一配置,而datastage在这方面就显得比较笨拙。

在做增量表的时候,每次运行后都需要把将最新的一条数据操作时间存到数据库中,下次运行我们就取大于这个时间的数据。Kettle有控件可以直接读取数据库中的这个时间置为变量;对于没有类似功能控件的informatica,我们的做法是先读取的数据库中的这个时间存到文件,然后主程序运行的时候指定这个文件为参数文件,也可以得到同样的效果

8. 大数据ETL工程师待遇如何

在IT技术领域,ETL工程师是长期存在需求的岗位之一,而到了大数据时代,数据的采集和处理过程中,ETL工程师更是不可或缺。关于薪资方面,分地域,一线15K到20K,二线8K到15K。

9. ETL工程师的发展前景怎么样

ETL工程师的发展前景非常不错。

在IT技术领域,ETL工程师是长期存在需求的岗位之一,而到了大数据时代,数据的采集和处理过程中,ETL工程师更是不可或缺。

在大数据背景下,越来越多的企业开始涉足大数据,ETL作为企业搞大数据的重要技术平台,确实是需要重视的,也需要技术实力足够的ETL工程师来支持企业大数据平台的建设和运营。所以,只要大数据的前景一直向好,那么ETL工程师的发展前景也是不必担心的。

主要工作

从业务角度讲,随着数据应用的日益丰富,不同平台、系统的相互大批量数据交互成常态,仅仅满足于采集数据已经不适应业务需要,还需要能够为数据的目的端落地提供支撑,ETL工程师需要一个端到端的更适应业务需要的数据交换系统。

从技术角度讲,ETL做一定的扩展可以升级为兼具交换能力,两者有传承,可以实现平滑过渡,但交换却要考虑用另一个工具实现,同时未来大数据平台组件将异常丰富,相互之间的数据交换将是常态,必要要有更高级别的交换工具满足这些需求。

大数据时代的ETL工程师,除了从事传统的系统编程、数据库编程与设计,还需要熟悉主流数据库技术,如oracle、Sql server、PostgeSQL等,并且得会数据etl开发工具,如Datastage,Congos,Kettle等。

10. 大数据的采集与分析专业学后能做什么工作

互联网数据公司,比如说,网络,每天的数据采集量是我们们平常人想像不到的

阅读全文

与大数据采集etl相关的资料

热点内容
245倒角编程怎么计算 浏览:599
可以买生活用品的app有哪些 浏览:175
cad在c盘产生的文件夹 浏览:541
联想手机解锁工具 浏览:696
瑞银3887win10 浏览:833
学网络编程哪个好 浏览:805
手机vmos导入的文件在哪里 浏览:115
苹果手机可以把文件传到华为吗 浏览:63
海川化工下载的文件默认到哪里 浏览:343
学唱粤语歌app 浏览:975
qq游戏生死狙击玩不了 浏览:120
win10邮件不显示图片 浏览:922
口袋妖怪所有版本下载 浏览:504
我们身边都有哪些大数据例子 浏览:25
震旦adc307扫描的文件在哪里 浏览:999
图片打开变成文件 浏览:194
松下微单电脑传文件软件 浏览:574
苹果蓝牙键盘surface 浏览:170
mindmaplinux 浏览:733
oppo手机怎么连接电脑传输数据 浏览:624

友情链接