导航:首页 > 网络数据 > 大数据议论文1000

大数据议论文1000

发布时间:2022-12-31 11:01:21

大数据时代的治理转型

大数据时代的治理转型

大数据技术在商业领域已经显示出提供“解决方案”的惊人能力,同样可以在国家治理、政府治理、社会治理中运用
国务院通过的《关于促进大数据发展的行动纲要》为未来中国的大数据发展指明了方向。然而,与全球主要发达国家相比,中国仍处于大数据发展的初级阶段。如何构筑大数据时代的国家竞争发展优势将具有深远的战略意义。
大数据时代的国际竞争格局
当前,大数据正焕发出变革的力量,并正在改变各国综合国力增速,重塑未来国际战略格局,主要表现在以下方面。
首先,大数据成为经济社会发展新的驱动力。随着物联网、云计算、移动互联网等网络新技术的应用和发展,社会信息化进程进入数据时代,海量数据的产生与流转成为常态。未来20年,全球50亿人将实现联网,这将使全球数据量呈几何式快速增长。预计到2020年,全球数据使用量将达到约40ZB(1ZB=10亿TB),将成为新的重要驱动力。
其次,大数据将成为重要的战略资源和核心资产。世界各国对数据的依赖快速上升,国家竞争焦点已经从资本、土地、人口、资源的争夺转向了对大数据的争夺,制信(数)权成为继制陆权、制海权、制空权之后的新制权。大数据使得数据强国与数据弱国的区分不再以经济规模和经济实力论英雄,而是决定于一国大数据能力的优劣。
第三,大数据将改变国家治理的架构和模式。大数据不仅是一场技术和经济革命,更是一场国家治理的变革。大数据可以通过对海量、动态、高增长、多元化、多样化数据的高速处理,快速获得有价值信息,提高公共决策能力。另外,数据主权的提出也使政府、企业和个人的角色发生转变,使国家治理结构逐步实现从国家独大的治理结构转向多元共治,从封闭性治理结构转向开放性结构,从政府配置资源模式转向市场配置资源模式的转变,作为基础设施的大数据和作为基础性制度的大数据同时存在。
最后,大数据安全已经成为国家最重要的战略安全之一。借助大数据革命,美国等发达国家全球数据监控能力升级,确保自身在网络空间和数据空间的主导地位。各种国家信息基础设施和重要机构所承载着的庞大数据信息,如由信息网络系统所控制的石油和天然气管道、水、电力、交通、银行、金融、商业和军事等,都有可能成为被攻击的目标,大数据安全已经上升成为国家安全极为关键的组成部分。
主要国家大数据战略在行动
当前,世界各国纷纷利用大数据提升国家竞争能力和战略能力。
1.美国大数据战略的全球领导力。美国政府最先对大数据技术革命做出战略反应,利用大数据提升国家治理水平和国家竞争优势。迄今为止,美国政府在大数据方面实施了三轮政策行动。
第一轮是2012年3月,白宫发布《大数据研究和发展计划》,并成立“大数据高级指导小组”,该计划有两个目标:一是用大数据技术系统改造传统国家治理手段和治理体系;二是形成新的经济增长业态和板块。
第二轮是2013年11月,白宫推出“数据-知识-行动”(Data to Knowledge to Action)计划,进一步细化了利用大数据改造国家治理、促进前沿创新、提振经济增长的路径。这是美国向数字治国、数字经济、数字城市、数字国防转型的重要举措。
第三轮是2014年5月,美国总统办公室提交《大数据:把握机遇,维护价值》政策报告,强调政府部门和私人部门紧密合作,利用大数据最大限度地促进增长和利益,减少风险。
2.欧盟“数据驱动经济战略”框架初显。欧盟在2014年发布了《数据驱动经济战略》,有望近期内成为欧盟经济单列行业,为欧盟恢复经济增长和扩大就业,做出巨大贡献。欧盟在大数据方面的活动主要涉及两方面内容:(1)研究数据价值链战略计划;(2)资助“大数据”和“开放数据”领域的研究和创新活动。数据价值链战略计划包括开放数据、云计算、高性能计算和科学知识开放获取四大战略。主要原则是:高质量数据的广泛获得性,包括公共资助数据的免费获得;作为数字化单一市场的一部分,欧盟内的数据自由流动;寻求个人潜在隐私问题与其数据再利用潜力之间的适当平衡,同时赋予公民以其希望形式使用自己数据的权利。
3.亚太地区国家纷纷抢占大数据战略制高点。亚洲一些国家在大数据发展中紧追其后。日本积极谋划利用大数据改造国家治理体系,对冲经济下行风险。2013年6月,安倍内阁正式公布新IT战略《创建最尖端IT国家宣言》,以开放大数据为核心的IT国家战略,把大数据和云计算衍生出的新兴产业群视为提振经济增长、优化国家治理的重要抓手。
韩国科学技术政策研究院2011年正式提出“大数据中心战略”以及“构建英特尔综合数据库”。同时,韩国社会专职部门制定应对大数据时代计划。2012年,韩国国家科学技术委员会就大数据未来发展环境发布重要战略规划。2013年,在朴槿惠总统“创意经济”的新国家发展战略指引下,韩国未来创造科学部提出“培养大数据、云计算系统相关企业1000个”的国家级大数据发展计划以及《第五次国家信息化基本计划(2013-2017)》等多项大数据发展战略。
总体来看,国外政府大数据政策措施体现出如下明显特征:一是颁布战略规划进行整体布局,抢占大数据先机;二是注重构建配套政策,包括人才培养、产业扶持、资金保障、数据开放共享等,为本国大数据发展构筑良好的生态环境。
中国准备好了吗
大数据对于中国的战略意义毋庸置疑。2013年,中国大数据产业市场规模为34.3亿元,同比增长率超100%。然而,与国外先进国家相比,中国大数据发展却面临非常严峻的风险与挑战。
1.大数据战略储备能力不足,尚缺乏国家顶层设计。从主要发达国家的大数据发展经验看,美国等国持续强化国家战略的顶层设计,重点关注大数据对创新能力、国家安全能力、产业竞争力等国家竞争优势的重构,持续推出大数据国家战略规划。目前,中国明确大数据发展战略的中央部门和政府部门较少,更多是产业界和学术界的探讨,大数据战略的国家顶层设计尚未进入议事日程。此外,大数据治理不是技术问题,而是具有系统性、全局性的战略问题,需要有全面推动大数据战略实施的权力部门和核心决策机构。而这些机制设计,中国都明显缺失和缺位。
2.条块分割体制壁垒和“信息孤岛”,阻碍数据开放和共享。据统计,中国政府掌握着80%以上的数据,政府作为政务信息的采集者、管理者和占有者,具有其他社会组织不可比拟的信息优势。但由于信息技术、条块分割的体制等限制,各级政府部门之间的信息网络往往自成体系、相互割裂,相互之间的数据难以实现互通共享,导致目前政府掌握的数据大都处于割裂和休眠状态。同时,由于政府部门业务管理信息系统开发和建设的“部门化”,政府信息系统出现“系统林立”和分裂状态,政府公共信息资源重复采集现象严重,信息摩擦和治理成本偏高。总体而言,政府开放数据的程度远远落后于世界领先国家。
3.传统治理思维和治理体制在大数据时代出现明显的不适应,并引发新的难题。大数据正在重构政府、市场、社会三者之间关系模式,然而,现有国家治理思维和治理体制已经明显不适应这种大数据时代新趋势的变化。特别是如果经济体制、行政体制和社会管理体制改革不能有效跟进,既得利益主体很可能将大数据技术带来的国家治理契机转化为既得利益的手段和工具,可能引发新的“权力寻租”、新的“数字鸿沟”等问题。
4.法治建设滞后,维护“数据主权”的法律法规标准及配套政策严重缺失。目前,中国大数据法治建设明显滞后,用于规范、界定“数据主权”的相关法律缺失,缺乏有效的大数据法律框架。
一是对于政府、商业组织和社会机构的数据开放、信息公开的相关法律法规尚待进一步完善,尤其缺乏企业和应用程序中关于搜集、存储、分析、应用数据的相关法规。
二是没有对保护本国数据、限制数据跨境流通等做出明确规定。金融、证券、保险等重要行业在华开展业务的外国企业将大量敏感数据传输、存储至其国外的数据中心,存在不可控风险。
三是大数据技术应用与产业发展刚刚起步,缺乏与之相配套的法律法规及政策。
将大数据发展规划上升为全面的国家战略
大数据引发的经济社会革命才刚刚开始,需要全面提升大数据在国家经济发展和治理方面的重要战略地位。
1.完善大数据发展的国家顶层设计。要在“行动纲要”基础上,加快形成大数据国家战略,包括中长期路线图与实施重点、目标、路径。统筹布局,加快大数据发展核心技术研发;推进大数据开放、共享以及安全方面的相关立法与标准制定;抢抓全球科技革命和产业革命战略机遇,重构国家综合竞争优势。
一是把数据主权纳入国家核心利益的战略范畴,加快大数据立法、法律法规和标准的制定。
二是规划重点领域的大数据研究计划,布局关键技术研发方向,强化大数据基础设施建设和人才培养,加强对大数据产业的扶持,做好体制机制、资金、法规标准等方面的保障,为后期专项政策制定、项目规划等提供依据。
三是借鉴国外政府大数据战略经验,制定符合中国国情的大数据配套政策路线图,注重从战略技术能力储备和战略应用实施两个角度,释放大数据发展的潜能。
2.构建国家大数据仓库。应加快G2G(政府与政府之间)、G2B(政府与企业之间)、G2C(政府与公民之间)的大数据开放与共享,盘活大数据资产。
一是加强大数据基础设施建设。全面推进实施“宽带中国”战略,持续支持下一代互联网、第四代移动通信、公共无线网络、电子政务网、行业专网和物联网等网络基础设施建设,建立政府“云平台”,统筹监测数据管理平台、公众民情采集与服务数据管理平台、公共安全与应急管理数据管理平台、政府管理绩效考评数据管理平台、资源统筹与经济预警监测数据管理平台。
二是加强基础数据整合。一方面,整合来自于政府职能部门及业务部门的数据信息资源,推动和规范诚信机构建设,提供完整、准确、及时的企业和个人诚信信息,推进大数据征信体系建设;另一方面,推动国家基础数据开放共享进程,打造透明、智慧政府,推动国家、省、市、县四级大数据交换共享,打通信息横向和纵向的共享渠道,推进跨地区、跨部门信息资源共享和业务协同,并在此基础上最终建成国家大数据仓库。
3.运用大数据,全面提升公共服务水平。从全球领先国家经验看,社会治理体系和公共服务体系是运用大数据进行改造提升的最有潜力领域。
一是将大数据更广泛实践于污染防治、城市规划、交通、医疗健康、教育、国家安全、社会舆情、军事等重要领域,在智能交通、智慧医疗、智慧教育、智慧军工、国防等方面实现重大模式创新。
二是利用大数据加快政府自身革命,制定政府大数据开发与利用的负面清单、权力清单和责任清单。
三是利用大数据实施监管和反腐。大数据给网络问政、网络监督和技术反腐提供了强大的技术支撑,可以利用大数据建立国民满意度指数、腐败指数以及清廉指数等。
4.利用大数据创新政府决策方案。大数据技术在商业领域已经显示出提供“解决方案”的惊人能力,同样可以在国家治理、政府治理、社会治理方面中运用。以通信网、互联网、移动互联网、物联网四张网为支撑,可以提出大数据智慧城市解决方案、大数据新农村建设解决方案、大数据金融解决方案、大数据智能终端解决方案、大数据位置服务解决方案、大数据教育解决方案、大数据文化创意解决方案、大数据环境解决方案、大数据制造解决方案、大数据生物健康解决方案、大数据中小企业数据中心解决方案、大数据服务平台解决方案、大数据信息安全解决方案等,为大数据战略真正落地找到突破口。
5.充分挖掘释放大数据变革、创新经济的潜能。首先,通过大数据实现制造业数字化、智能化及下一代信息技术的深度融合。要做好大数据与工业宽带建设的对接,率先将工业宽带的传输、工业大数据采集、数据中心的计算应用等环节整合起来,建立完善的工业互联网体系和中国的工业4.0体系。
其次,鉴于目前中国的人口要素红利在“退潮”,土地、资源、环境等生产要素日益紧张,要将大数据作为新的战略性生产要素释放出来,建立多元参与的协同创新联盟,增强产学研合作集成研发能力,激励基于大数据资源的创新创业,推动经济实现高质量增长。
再次,利用大数据研判,预测宏观经济形势,开发“经济增长形势判断预测系统”、“物价变化高频判断系统”、“金融市场信心判断系统”、“房地产景气判断系统”等,增强对经济形势判断的科学性、精准性。
6.开展全球大数据交流合作。全球主要国家都已提出本国大数据国家战略,特别是美国、日本等国的数据量非常庞大。中国可通过大数据外交,与之展开国际合作,特别是在应对气候变化、粮食安全、疾病灾害、恐怖主义等领域,以及在“一带一路”战略推进过程中,丰富公共外交领域的大数据建设。
此外,可利用大数据技术掌握全球性数据情报和全球焦点事件发展态势。建议实施中国版“全球脉动”(Global Pusle)项目。联合国于2009年推出“全球脉动”项目,提出大数据是纳米技术和量子计算之后的一个颠覆性变化,用这个技术对Twitter和Facebook等互联网数据和文本信息开展实时分析监测,使用语言解密软件对互联网世界进行“情绪分析”,可以对疾病、动乱、种族冲突提供早期预警。中国可以实施类似的大数据全球情报智能监测项目,对全球重大趋势进行早期预警,切实维护和保障国家安全。

⑵ 大数据时代已经到来,什么是大数据

大数据时代已经到来,什么是大数据

大数据时代已经到来,你了解吗?什么是大数据?一、大数据出现的背景进入2012年,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。它已经上过《纽约时报》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的证券公司等写进了投资推荐报告。数据正在迅速膨胀并变大,它决定着企业的未来发展,虽然现在企业可能并没有意识到数据爆炸性增长带来问题的隐患,但是随着时间的推移,人们将越来越多的意识 到数据对企业的重要性。大数据时代对人类的数据驾驭能力提出了新的挑战,也为人们获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。最早提出大数据时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的 挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”“大数据”在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日, 却因为近年来互联网和信息行业的发展而引起人们关注。大数据在互联网行业指的是这样一种现象:互联网公司在日常运营中生成、累积的用户网络行为数据。这些数据的规模是如此庞大,以至于不能用G或T来衡量,大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。二、什么是大数据?信息技术领域原先已经有“海量数据”、“大规模数据”等概念,但这些概念只着眼于数据规模本身,未能充分反映数据爆发背景下的数据处理与应用需求,而“大数据”这一新概念不仅指规模庞大的数据对象,也包含对这些数据对象的处理和应用活动,是数据对象、技术与应用三者的统一。1、大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据对象既可能是实际的、有限的数据集合,如某个政府部门或企业掌握的数据库,也可能是虚拟的、无限的数据集合,如微博、微信、社交网络上的全部信息。大数据是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。从数据的类别上看,“大数据”指的是无法使用传统流程或工具处理或分析的信息。它定义了那些超出正常处理范围和大小、迫使用户采用非传统处理方法的数据集。亚马逊网络服务(AWS)、 大数据科学家JohnRauser提到一个简单的定义:大数据就是任何超过了一台计算机处理能力的庞大数据量。研发小组对大数据的定义:“大数据是最大的 宣传技术、是最时髦的技术,当这种现象出现时,定义就变得很混乱。”Kelly说:“大数据是可能不包含所有的 信息,但我觉得大部分是正确的。对大数据的一部分认知在于,它是如此之大,分析它需要多个工作负载,这是AWS的定义。2、大数据技术,是指从各种各样类型的大数据中,快速获得有价值信息的技术的能力,包括数据采集、存储、管理、分析挖掘、可视化等技术及其集成。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。3、大数据应用,是 指对特定的大数据集合,集成应用大数据技术,获得有价值信息的行为。对于不同领域、不同企业的不同业务,甚至同一领域不同企业的相同业务来说,由于其业务 需求、数据集合和分析挖掘目标存在差异,所运用的大数据技术和大数据信息系统也可能有着相当大的不同。惟有坚持“对象、技术、应用”三位一体同步发展,才 能充分实现大数据的价值。当你的技术达到极限时,也就是数据的极限”。大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。三、大数据的类型和价值挖掘方法1、大数据的类型大致可分为三类:1)传统企业数据(Traditionalenterprisedata):包括 CRM systems的消费者数据,传统的ERP数据,库存数据以及账目数据等。2)机器和传感器数据(Machine-generated/sensor data):包括呼叫记录(CallDetail Records),智能仪表,工业设备传感器,设备日志(通常是Digital exhaust),交易数据等。3)社交数据(Socialdata):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。2、大数据挖掘商业价值的方法主要分为四种:1)客户群体细分,然后为每个群体量定制特别的服务。2)模拟现实环境,发掘新的需求同时提高投资的回报率。3)加强部门联系,提高整条管理链条和产业链条的效率。4)降低服务成本,发现隐藏线索进行产品和服务的创新。四、大数据的特点业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。具体来说,大数据具有4个基本特征:1、是数据体量巨大数据体量(volumes)大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量; 网络资料表明,其新首页导航每天需要提供的数据超过1.5PB(1PB=1024TB),这些数据如果打印出来将超过5千亿张A4纸。有资料证实,到目前 为止,人类生产的所有印刷材料的数据量仅为200PB。2、是数据类别大和类型多样数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化 数据范畴,囊括了半结构化和非结构化数据。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。3、是处理速度快在数据量非常庞大的情况下,也能够做到数据的实时处理。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。4、是价值真实性高和密度低数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。以视频为例,一小时的视频,在不间断的监控过程中,可能有用的数据仅仅只有一两秒。五、大数据的作用1、对大数据的处理分析正成为新一代信息技术融合应用的结点移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。大数据具有催生社会变革的能量。但释放这种能量,需要严谨的数据治理、富有洞见的数据分析和激发管理创新的环境(Ramayya Krishnan,卡内基·梅隆大学海因兹学院院长)。2、大数据是信息产业持续高速增长的新引擎面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。3、大数据利用将成为提高核心竞争力的关键因素各 行各业的决策正在从“业务驱动” 转变“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费 者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作 用。4、大数据时代科学研究的方法手段将发生重大改变例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。六、大数据的商业价值1、对顾客群体细分“大数据”可以对顾客群体细分,然后对每个群体量体裁衣般的采取独特的行动。瞄准特定的顾客群体来进行营销和服务是商家一直以来的追求。云存储的海量数据和“大数据”的分析技术使得对消费者的实时和极端的细分有了成本效率极高的可能。2、模拟实境运用“大数据”模拟实境,发掘新的需求和提高投入的回报率。现在越来越多的产品中都装有传感器,汽车和智能手机的普及使得可收集数据呈现爆炸性增长。Blog、Twitter、Facebook和微博等社交网络也在产生着海量的数据。云计算和“大数据”分析技术使得商家可以在成本效率较高的情况下,实时地把这些数据连同交易行为的数据进行储存和分析。交易过程、产品使用和人类行为都可以 数据化。“大数据”技术可以把这些数据整合起来进行数据挖掘,从而在某些情况下通过模型模拟来判断不同变量(比如不同地区不同促销方案)的情况下何种方案 投入回报最高。3、提高投入回报率提高“大数据”成果在各相关部门的分享程度,提高整个管理链条和产业链条的投入回报率。“大数据”能力强的部门可以通过云计算、互联网和内部搜索引擎把”大数据”成果和“大数据”能力比较薄弱的部门分享,帮助他们利用“大数据”创造商业价值。4、数据存储空间出租企业和个人有着海量信息存储的需求,只有将数据妥善存储,才有可能进一步挖掘其潜在价值。具体而言,这块业务模式又可以细分为针对个人文件存储和针对企业用 户两大类。主要是通过易于使用的API,用户可以方便地将各种数据对象放在云端,然后再像使用水、电一样按用量收费。目前已有多个公司推出相应服务,如亚 马逊、网易、诺基亚等。运营商也推出了相应的服务,如中国移动的彩云业务。5、管理客户关系客户管理应用的目的是根据客户的属性(包括自然属性和行为属性),从不同角度深层次分析客户、了解客户,以此增加新的客户、提高客户的忠诚度、降低客户流失 率、提高客户消费等。对中小客户来说,专门的CRM显然大而贵。不少中小商家将飞信作为初级CRM来使用。比如把老客户加到飞信群里,在群朋友圈里发布新 产品预告、特价销售通知,完成售前售后服务等。6、个性化精准推荐在运营商内部,根据用户喜好推荐各类业务或应用是常见的,比如应用商店软件推荐、IPTV视频节目推荐等,而通过关联算法、文本摘要抽取、情感分析等智能分 析算法后,可以将之延伸到商用化服务,利用数据挖掘技术帮助客户进行精准营销,今后盈利可以来自于客户增值部分的分成。以日常的“垃圾短信”为例,信息并不都是“垃圾”,因为收到的人并不需要而被视为垃圾。通过用户行为数据进行分析后,可以给需要的人发送需要的信息,这样“垃圾短信”就成了有价值的信息。在日本的麦当劳,用户在手机上下载优惠券,再去餐厅用运营商DoCoMo的手机钱包优惠支付。运营商和麦当劳搜集相关消费信息,例如经常买什么汉堡,去哪个店消费,消费频次多少,然后精准推送优惠券给用户。7、数据搜索数据搜索是一个并不新鲜的应用,随着“大数据”时代的到来,实时性、全范围搜索的需求也就变得越来越强烈。我们需要能搜索各种社交网络、用户行为等数据。其商业应用价值是将实时的数据处理与分析和广告联系起来,即实时广告业务和应用内移动广告的社交服务。运营商掌握的用户网上行为信息,使得所获取的数据“具备更全面维度”,更具商业价值。典型应用如中国移动的“盘古搜索”。七、大数据对经济社会的重要影响1、能够推动实现巨大经济效益比如对中国零售业净利润增长的贡献,降低制造业产品开发、组装成本等。预计2013年全球大数据直接和间接拉动信息技术支出将达1200亿美元。2、能够推动增强社会管理水平大数据在公共服务领域的应用,可有效推动相关工作开展,提高相关部门的决策水平、服务效率和社会管理水平,产生巨大社会价值。欧洲多个城市通过分析实时采集的交通流量数据,指导驾车出行者选择最佳路径,从而改善城市交通状况。3、如果没有高性能的分析工具,大数据的价值就得不到释放对大数据应用必须保持清醒认识,既不能迷信其分析结果,也不能因为其不完全准确而否定其重要作用。1) 由于各种原因,所分析处理的数据对象中不可避免地会包括各种错误数据、无用数据,加之作为大数据技术核心的数据分析、人工智能等技术尚未完全成熟,所以对 计算机完成的大数据分析处理的结果,无法要求其完全准确。例如,谷歌通过分析亿万用户搜索内容能够比专业机构更快地预测流感暴发,但由于微博上无用信息的 干扰,这种预测也曾多次出现不准确的情况。2)必须清楚定位的是,大数据作用与价值的重点在于能够引导和启发大数据应用者的创新思维,辅助决策。简单而言,若是处理一个问题,通常人能够想到一种方法,而大数据能够提供十种参考方法,哪怕其中只有三种可行,也将解决问题的思路拓展了三倍。所以,客观认识和发挥大数据的作用,不夸大、不缩小,是准确认知和应用大数据的前提。八、总结不管大数据的核心价值是不是预测,但是基于大数据形成决策的模式已经为不少的企业带来了盈利和声誉。1、从大数据的价值链条来分析,存在三种模式:1)手握大数据,但是没有利用好;比较典型的是金融机构,电信行业,政府机构等。2)没有数据,但是知道如何帮助有数据的人利用它;比较典型的是IT咨询和服务企业,比如,埃森哲,IBM,Oracle等。3)既有数据,又有大数据思维;比较典型的是Google,Amazon,Mastercard等。2、未来在大数据领域最具有价值的是两种事物:1)拥有大数据思维的人,这种人可以将大数据的潜在价值转化为实际利益;2)还未有被大数据触及过的业务领域。这些是还未被挖掘的油井,金矿,是所谓的蓝海。大 数据是信息技术与专业技术、信息技术产业与各行业领域紧密融合的典型领域,有着旺盛的应用需求、广阔的应用前景。为把握这一新兴领域带来的新机遇,需要不 断跟踪研究大数据,不断提升对大数据的认知和理解,坚持技术创新与应用创新的协同共进,加快经济社会各领域的大数据开发与利用,推动国家、行业、企业对于 数据的应用需求和应用水平进入新的阶段。

⑶ 一千字作文电子商务如何改变生活

生活悄然改变
其实,大数据已经开始悄然改变着我们的生活。
网络购物正在成为消费者喜爱的购物方式,2012年的“双十一”大战,令众多网友沉迷于网购中不能自拔。或许你不知道,其实,依靠大数据分析预测能力,一些精明的零售商正在从目标客户更加个性化和直接的层面上,特别是在重要的节日需求上,收集和挖掘消费大数据。
大数据可以处理一个庞大的范围内的广泛活动,包括有效的营销活动,就可以针对顾客在网上的购买行为,投其喜好进行销售与推广,实现社交电子商务和库存优化。
例如,大数据分析软件有可能使零售商进行直接相关的促销和营销活动,激励消费者网购,并跟踪由此产生的销售交易。而同时,大数据作为一个结果,零售商可以监视和实时的调整促销活动,最大限度地提高消费,提高盈利能力,在关键时期短时间产生最大收益。
“以往决策更多采用基于调查基础上的经验性决策,而借助大数据分析则能够对于对象进行数量化的分析从而使决策更为科学。”中国电子信息产业发展研究院分析师韩耀强表示,目前淘宝就已经建立了云计算中心,利用大数据可以更好的处理消费者的消费习惯、随季节的变化等,从而更精准的制定自己的营销策略、库存调配等,从而使决策更加理性化。
Trident Marketing是一家直复营销企业,其客户包括DIRECTV等品牌。通过IBM大数据分析软件帮助,他们甚至可以预计客户最佳联系时间以及客户是否会取消服务。其营收在短短4年增长了10倍,产品部署后头两个月销售额增长10%,而且其客户流失率降低了50%。
大数据还可以当医生!曾经参加美国智力游戏Jeopardy!(危险边缘)的IBM超级计算机Watson已经可以用来协助医生听诊。目前,有些美国的医疗机构为了避免医生的疏失,开始与IBM合作,现在Watson会陪同医生听诊,听诊完它会透过病征列出可能患的疾病是哪些,医生可能问诊完想到的病征可能只有三五个,可是Watson会跟从海量数据分析的角度帮他列出高达20个病征选项,这大大的可以减少医生疏忽的机会,医生看了Watson的分析报告以后就可知道,可以再多问病人什么问题来缩小看诊判断误差。
大数据将使商业维护更加便捷。肖冰以某金融企业为例告诉我们,以往的分立的、传统的数据处理的方式,每天的维护人员需要24小时3班倒,现在上线了PureData之后,则只需要6个人就足够了,会带来更大的便捷、降低更大的成本从而提升竞争力。
谈到大数据可能对生活带来的变革,韩耀强说:“大数据会从个人、社会生活、商业、法律、道德等多个方面对整个社会产生全方位的、深刻的影响,此外还有更多变化我们是无法预测的,但毫无疑问,大数据对于生活的剧变性影响已经是不可抗拒的事实。”

⑷ 大数据的特征

大数据的四大特征如下:

第一,数据容量大

从TB级别,跃升到PB级别。

第二,数据类型繁多

相对于以往便于存储的以文本为主的结构化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等,这些多类型的数据对数据的处理能力提出了更高要求。

第三,商业价值高

价值密度的高低与数据总量的大小成反比。以视频为例,一部1小时的视频,在连续不间断的监控中,有用数据可能仅有一二秒。如何通过强大的机器算法更迅速地完成数据的价值“提纯”成为目前大数据背景下亟待解决的难题。

第四,处理速度快

这是大数据区分于传统数据挖掘的最显著特征。根据IDC的“数字宇宙”的报告,预计到2020年,全球数据使用量将达到35.2ZB。在如此海量的数据面前,处理数据的效率就是企业的生命。

大数据的作用

1、提供个性服务

很多人觉得大数据好像离我们很远,其实我们在日常所使用的智能设备,就需要大数据的帮助。比如说我们运动时候戴的运动手表或者是运动手环,就可以在我们平时运动的时候,帮助我们采集运动数据及热量消耗情况。进入睡眠时,还可以帮助监控我们的睡眠,从而对这些数据进行分析,对未来阶段进行规划。

2、帮助企业

有了大数据企业就可以更便捷的收集到客户的爱好,从而帮助分析客户的需求。再根据每个客户的需要来提出应对方案,推测客户喜爱什么样的产品,对企业起到很大的帮助,也节省了很多时间和精力。同时大数据可以收集到市场上的各种产品数据,对未来市场走向进行预测,并对企业当前情况进行分析,为接下来的走向提供一个参考依据。

⑸ 大数据时代什么最重要

随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。《著云台》的分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。 大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质
的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。 物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式 著云台
例子包括网络日志,RFID,传感器网络,社会网络,社会数据(由于数据革命的社会),互联网文本和文件;互联网搜索索引;呼叫详细记录,天文学,大气科学,基因组学,生物地球化学,生物,和其他复杂和/或跨学科的科研,军事侦察,医疗记录;摄影档案馆视频档案;和大规模的电子商务。
大的数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
一些但不是所有的MPP的关系数据库的PB的数据存储和管理的能力。隐含的负载,监控,备份和优化大型数据表的使用在RDBMS的。
斯隆数字巡天收集在其最初的几个星期,比在天文学的历史,早在2000年的整个数据收集更多的数据。自那时以来,它已经积累了140兆兆 字节的信息。这个望远镜的继任者,大天气巡天望远镜,将于2016年在网上和将获得的数据,每5天沃尔玛处理超过100万客户的交易每隔一小时,反过来进口量数据库估计超过2.5 PB的是相当于167次,在美国国会图书馆的书籍 。
FACEBOOK处理400亿张照片,从它的用户群。解码最初的人类基因组花了10年来处理时,现在可以在一个星期内实现。
“大数据”的影响,增加了对信息管理专家的需求,甲骨文,IBM,微软和SAP花了超过15亿美元的在软件智能数据管理和分析的专业公司。这个行业自身价值超过1000亿美元,增长近10%,每年两次,这大概是作为一个整体的软件业务的快速。 大数据已经出现,因为我们生活在一个社会中有更多的东西。有46亿全球移动电话用户有1亿美元和20亿人访问互联网。
基本上,人们比以往任何时候都与数据或信息交互。 1990年至2005年,全球超过1亿人进入中产阶级,这意味着越来越多的人,谁收益的这笔钱将成为反过来导致更多的识字信息的增长。思科公司预计,到2013年,在互联网上流动的交通量将达到每年667艾字节。
最早提出“大数据”时代已经到来的机构是全球知名咨询公司麦肯锡。麦肯锡在研究报告中指出,数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素;而人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。
“麦肯锡的报告发布后,大数据迅速成为了计算机行业争相传诵的热门概念,也引起了金融界的高度关注。”随着互联网技术的不断发展,数据本身是资产,这一点在业界已经形成共识。“如果说云计算为数据资产提供了保管、访问的场所和渠道,那么如何盘活数据资产,使其为国家治理、企业决策乃至个人生活服务,则是大数据的核心议题,也是云计算内在的灵魂和必然的升级方向。”
事实上,全球互联网巨头都已意识到了“大数据”时代,数据的重要意义。包括EMC、惠普(微博)、IBM、微软(微博)在内的全球IT 巨头纷纷通过收购“大数据”相关厂商来实现技术整合,亦可见其对“大数据”的重视。
“大数据”作为一个较新的概念,目前尚未直接以专有名词被我国政府提出来给予政策支持。不过,在12月8日工信部发布的物联网“十二五”规划上,把信息处理技术作为4项关键技术创新工程之一被提出来,其中包括了海量数据存储、数据挖掘、图像视频智能分析,这都是大数据的重要组成部分。而另外3项关键技术创新工程,包括信息感知技术、信息传输技术、信息安全技术,也都与“大数据”密切相关。

⑹ 大数据时代读后感1000字

大数据时代读后感1000字(精选7篇)

当品味完一本著作后,大家心中一定有很多感想,现在就让我们写一篇走心的读后感吧。怎样写读后感才能避免写成“流水账”呢?下面是我精心整理的大数据时代读后感1000字,仅供参考,大家一起来看看吧。

大数据时代读后感1000字 篇1

如今说起新媒体和互联网,必提大数据,似乎不这样说就OUT了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作——舍恩佰格的《大数据时代》。维克托·迈尔——舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和IBM等全球顶级企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,如果能做足功课又具备相应的理论功底,就能与之进行一场思想上的对话。

舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:一、更多:不是随机样本,而是全体数据;二、更杂:不是精确性,而是混杂性;三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。

我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。

世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出”不是因果关系,而是相关关系。“这一论断时,他在书中还说道:”在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。“[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。

大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可”量化“,大数据的定量分析有力地回答”是什么“这一问题,但仍然无法完全回答”为什么“。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。在风险社会中信息安全问题日趋凸显,数据独裁与隐私保护成为一对矛盾。如何摆脱大数据的困境?舍恩伯格在最后一节”掌控“中试图回答,但基本上属于老生常谈。我想,或许凯文·凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:”大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。“谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考答案。

此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。

大数据时代读后感1000字 篇2

我们不再热衷于寻找因果关系,而应该寻找事物之间的相关关系。这个命题是我读这本书最大的感触。个人认为也是这本书最核心的思想。从头说起吧,首先,书提出一个颠覆我以前认知的命题--”并非原子而是信息才是一切的本源“,将世界看做信息,看做可以理解的数据的海洋,为我们提供了一个从未有过的审视下是的视角。它是一种可以渗透到所有生活领域的世界观。这个命题是在书的最后一部分中的某一段中描写的。我之所以把它放在最前面来讲,因为我觉得,这是谈数据化世界的前提,自然也是谈论大数据的前提啦。书的中间部分有一节讲到数据化和数字化的区别。经过我自己脑子的整理,把数据化世界这个命题列为大数据思维的第二步。写到这里,我不由得反省下,我是不是有领悟到书的精髓所在(我认为的精髓),就是第一句话。因为回顾我整个思路,还是按照旧模式的因果关系思考模式思考问题。书中另一个吸引我的地方就是,有很多观点的论述,会从哲学的高度论述。虽然,自己肚子没多少墨水,但是读这些描述的时候,就会发现自己会更好的理解作者提出的命题。比如书中有一段文字

当我们说人类是通过因果关系了解世界时,我们指的是我们再理解和解释世界各种现象时使用的两种基本方法:一种是通过快速、虚幻的因果关系,还有一种就是通过缓慢、有条不紊的因果关系。大数据会改变这两种基本方法在我们认识世界时所扮演的角色。

在附上一些事例的时候,用作者提供的”本质“去看待时,很容易理解,确实是这么回事。好了,那么大数据到底改变了我们什么呢,作者给出3点,

大数据的精髓在于我们分析信息时的三个转变,这些转变讲改变我们理解和组建社会的方法。

第一个转变就是,在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样(样本=总体)

第二个转变就是,研究数据如此之多,以至于我们不再热衷于追求精确度

第三个转变因前两个转变而促成,即我们不再热衷于寻找因果关系,而应该寻找事物之间的相关关系。大数据告诉我们”是什么“而不是”为什么“。在大数据时代,我们不必知道现象背后的原因,我们只要让数据自己发声。,出处:短美文,否则追究其责任,谢谢你的支持,我们会给做得更好!

正如大家所知道的那样,人类的大脑具备这样的功能,它会把新输入的刺激或信息与”过去的经验或积累的部分知识“相对照,然后进行调整并接受下来。如果眼前新的现实与大脑中储存的固有信息无法协调,便会在无意识中拒绝接受新的现实(当作没有看见);或者通过自己一知半解的知识任意推测,使自己认识到的情况偏离实际(产生错觉)。这是人的一种本能,目的在于使自己保持冷静。

所以作者称之为revolution。

讲了这么多,那么大数据到底给我们带来什么。在这里,我只想谈我感触最深的,其他的有兴趣的可以自己去了解。当然,书中提了很多,最多的就是,XXX公司或者个人利用大数据创造了多大的财富了,抛开这些表面的不说,最让我动心亦或者是害怕的是,预测。这是大数据带来最核心的东西,动心的理由无须赘述,计算机会告诉你什么时候买什么双色球可以中头奖,想想心里是不是有一点小激动咧。当然这只是我打的一个比较夸张的比喻。至于害怕呢,书中有段话我很喜欢

公平正义的基础是人只有做了某事才需要对它负责,毕竟,想做而未做不是犯罪,社会关系于个人责任的基本信条是,人为其选择的行为承担责任。如果大数据分析完全准确,那么我们的未来会被精准的预测,因此在未来,我们不仅会失去选择的权利,而且会按照预测去行动。如果精准的预测成为现实的话,我们也就失去了自由意志,失去了自由选择的权利。既然我们别无选择,那么我们也就不需要承担责任。这不是很讽刺吗。

扯到这里,顺便扯一下,书中另一段关于自由意志的描述

在哲学界,关于因果关系是否存在的争论已经持续了几个世纪。毕竟,如果凡事皆有因果的话,那么我们就没有决定任何事的自由了。如果说我们做的每一个决定或者每一个想法都是其他事情的结果。而这个结果又是由其他原因导致的。以此循环往复,那么就不存在人的自由意志这一说了。——所有的生命轨迹都只是受因果关系的控制了。因此,对于因果关系在世间所扮演的角色,哲学家们争论不休,有时他们认为,这是与自由意志相对立。

书中举了个例子,举了部电影《少数派报告》,当我看到这里的时候,”哎哟,我居然看过这部电影,想想心里还是有点小激动“,有兴趣的可以去看下,大概就是讲警察通过预测来提前抓捕犯人,不过不是通过大数据,是通过超人类的方式。当你什么举动都可以被预测,相当于你完全暴露在太阳光下,换成你,你害怕不。

最后,附上两段结语,一段是书中的一段话,另一段是我自己瞎编的。

大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。

大数据终将会影响到我们,也像其他技术一样会是一把双刃剑,用得好,动心,滥用,害怕。如同核技术一样,用的话,造福地球,滥用,给个金刚石地球你,照样爆。我相信,未来的大数据的发展会如作者所说的,是一场生活、工作与思维的革命。

大数据时代读后感1000字 篇3

“大数据”一词不知何时在我们的生活悄然出现,为了一探究竟,我便选择了《大数据时代》一书。

作者先从全局简单地描述大数据对我们的生活、工作与思维的影响,再从三方面具体地用上百个学术和商业的实例展开写作。样本=总体、追求精确性和相关关系等大数据时代具体特点一一现出。在同时,作者也从个人、企业等多角度分析大数据中的隐忧。

书中内容繁多,在此不能各方面概括。此书中虽有许多专有名词,但作者以其通俗的语言以及许多实例让我嗅到大数据时代中一抹清新之气。

为什么是清新的呢?因为书中的内容仿佛向我打开了一个既有点熟悉又有点陌生的世界。我们现在已处于网络时代 ,在我们日常简单的操作中大量数据产生,然而起初我们仅用众多技术在解决手头上的问题,那些大数据像沙子中的金子,价值不被发现。到目前,每当我们网上购书时总会看到“猜你喜欢”的栏目、出现谷歌搜索与流感预测、Farecast与飞机票价预测系统等,这些事情的达成全来自于那些曾被忽略的大数据同时也在证明“预测,大数据的核心”这句话,为我们的生活创造了前所未有的可量化的维度。看到书中这部分内容时,我不禁感受到自己的生活已在享大数据带来的福利,就像“猜你喜欢”栏目让我触到更多合我口味的书,让我看到了以前无法发现的细节。拥有大量数据的公司巨头如谷歌、亚马逊大力开发有关大数据的新型产业和研究相关项目。借网络时代的便利大数据成为了如今最有商业价值的事物,使一切可量化的趋势也开始出现。“本质上世界是由信息构成的”,面对这句话时,大数据时代仿佛就在眼前。

在感受惊叹着大数据能为我们做到以往无法想象的事和它巨大的价值时,我认同大数据能极大优化我们的生活,但又不禁为这时代感到担忧。一旦大数据时代来临,不仅我们的隐私可能不再是隐私,就如书中所言“我们时刻暴露在‘第三只眼’下:亚马逊监视着我们的购物习惯,谷歌监视着我们的购物习惯,而微博似乎什么都知道”,而且利用大数据我们可以预测许多事情并且十分高效,一旦人们依赖大数据极少运用人类自身的创新等能力被数据束缚住,世界只会沦落为一个极少活力的机械环境。而我认为最大的忧患,是大数据时代对人类自身思维、思想、信仰等精神领域的冲击。如今我们都生活在数据中,大数据时代说不定在几年后就会逐步来临,这使我不禁发问:我们一直坚信着信仰着的究竟是什么?我觉得世界说变就变实在令我想不通这个问题。事情都有好坏,我也不知道自己是否杞人忧天。

于是我继续去探索作者对这问题的思考。“更大的数据在于人本身”,作者还说“我们是在创造更好的未来”,也说“在一个预测的时代里,人类的.自由意志不可侵犯,这一点不可轻视。我们在使用大数据时,应当怀有谦恭之心,铭记人性之本”。人类学家克利福德吉尔兹曾说:“努力在可以应用、可以拓展的地方,应用它、拓展它;在不能应用、不能拓展的地方,就停下来。”这些话语仿佛是阳光,驱散我心中对大数据时代的担忧以及内心对其的恐惧。我认为,在坚守我们内心和自由意志下,大数据才会造福我们人类世界,发挥出它背后对人温暖的光芒。

面对时代的变革,我会为坚守内心深处的自由意志而努力并“拥抱大数据”。

大数据时代读后感1000字 篇4

世界的本质就是数据,当你掌握了数据,你便掌控了世界—你可以轻而易举地通过数据中的相关关系预测事物的发展,将一切不利因素扼杀于摇篮之中—这远胜于"防患于未然"。

《大数据时代》一书,让我们在观念上有了三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。全书介绍了 "大数据"时代三种大的变革:思维变革,商业变革和管理变革。在这些巨大变革如洪水一般的"冲击"之下,现代社会的运作方式必将有重大的改变,若不顺应这种变革的潮流,就像古中国固步自封,最终被坚船利炮打开国门而自己还用着长钩铁戟抗争一样,不可避免被掠夺,被落于世界进程之后,所以我们必须转变我们的思想。

"我们不再热衷于寻找因果关系,而应该寻找事物间的相关关系",我想这句话是本书的核心思想。大数据时代,信息与数据已成为了一切的本源,我们生活在各种数据构成的海洋之中,如果从另一种视角看,就好像无数条"看不见的线"将我们与这些数据联系到一起,这是我们以前从未有过、从未想过的。大数据改变了我们以前的通过因果关系了解世界的方法,而提供了几种新的途径,因为,在大数据时代,我们可以分析更多数据,有时甚至可以处理和某个特别现象相关的所有数据,也就是:样本=总体;而且,当研究数据如此之多时,我们已不热衷于"精确",而是"混乱",若不接受"混乱",那么有95%的非结构化数据无法利用,这将无法使我们构建完整的数据世界,在分析更多、更全面的数据之后,我们就可以从这些数据之中发掘它们的相关关系,即以"是什么"而不是"为什么"的角度看待数据,不用管其从何而来,只要分析其如何影响其他事物既可,即"让数据自己发声",这些,彻底推翻了人类以前探索数据的方法,展现了一个全新的世界。

这种观念以惊人的力量给现知识状况带来了巨大的冲击,通过对海量数据的分析,获得巨大价值的产品和服务,或深刻的洞见。比如谷歌公司,2009年h1n1流行之时,通过检测检索词条,处理34。5亿个不同的数据模型,通过预测并与2007、2008年的美国疾控中心记录的实际流感病例进行对比后,确定了45条检索词条组合,并将其用于一个特定的数学模型后,预测结果与官方数据相关系数高达97%,这种大数据技术,以前所未有的方式,通过海量数据分析得出流感所传播的范围,为预测流感提供了一种更快速、高效的工具。

同时,虽然大数据可为人类造福、对抗病症,但这仅限于掌握这门技术而言,若不重视这种技术,当我们的对手早于我们一步构建这种数据网络之时,便是我们的灾难,想想,大数据虽核心的在于预测,当敌人通过这种手段预测我方下一步的行动,将是可怕的—比如你的导弹将从何处发射,将飞往哪,你的军队动向、目标,总之所有一切"未来"将掌控于敌手,敌方甚至可以借此发现那些将来有"大作为"的人,从而进行渗透或扼杀,这对我们的发展无疑是致命的,所以,尽快加速大数据系统的构建进程是必须的。

对于我们国防生,也必须顺应这种发展趋势,未来的时代必将是数据极易获取,数据网络共享化的时代,通过这些数据,建立数据模型,可以准确分析并给出适合每一个人的计划,如运动量、训练强度,可以"先知、先觉",及时发现一个人的负面情绪前及时疏导,这些必将成为现实,我们必须跟进时代,做好准备,去应对大数据时代的一切!

大数据时代读后感1000字 篇5

“除了上帝,任何人都必须用数据来说话。”——这是《大数据》中出现的让人印象深刻的一句话,也是全书力图传递的信息。在数字信息时代,数据和空气一样遍布生活,对于有些人来说,数据无意义,而对于有些人来说,数据,即真相。

美国是《大数据》的主角,全书通过讲述美国半个多世纪信息开放、技术创新的历史,公共财政透明的曲折、《数据质量法》背后的隐情、全民医改法案的波澜、统一身份证的百年纠结、街头警察的创新传奇、美国矿难的悲情历史、商务智能的前世今生、数据开放运动的全球兴起,Web3·0与下一代互联网的未来图景等等,为读者一一细解数据创新给公民、政府、社会带来的种种挑战和变革。

透过全书,一个立体的美国及美国人民的思想呈现在我们面前——美国人民执著于个人隐私的保护,却又不遗余力地推动着政府信息的透明与公开。

读完此书,对生活中的数据及数据处理突然有了很大的兴趣。如果有一天,处处以数据说话,那么,政治、制度、生活将更加清明,事故、将降到最低点。

作为信息技术教师,是有必要阅读此书的!有慧根的教师将能从书中挖掘出信息技术特有的文化以及能用于教学的鲜活案例。

每天能用来阅读的时间很少,总是要等到夜深疲倦时才有空打开书本,总是在眼睛极不舒服的情况下坚持阅读,《大数据》就这样在坚持中溶入我的思想……

大数据时代读后感1000字 篇6

读完《大数据》,我才意识到这并不是一本枯燥无味的书籍。作者运用案例和讲故事的方式,把美国数据开放、收集、使用背后的立法故事、公民故事、技术故事、商业故事娓娓道来,引人入胜,令我大开眼界。

我在想,大数据概念对于教育来说会产生什么样的实用价值呢?一直以来,中国教育在研究教育的数字化,比如数字化校园,这个思路就是把我们教育的内容进行数字化,其结果指向的就是电子教材的研发或者是教学过程的数字化。美其名曰,这是教育技术的重要内涵。在教学过程中,学生的行为表现都可以被数据化,而这项研究不是任何一个专业可以深入下去的,它的专业性太强,所以我才会想到,所谓教育技术与其研究教育的数字化,不如研究教育的数据化来得实在,来的有意义。长期以来,我们并不了解教育对一个人的影响具体会如何表现,我们有的只是一个轮廓,我们也并不确定一个教师的行为对学生具体产生了哪些影响。所以,人们对教育一直有一个深深的质疑,它是不是科学的?大数据概念至少提出了关注“是什么”比“为什么”要有实际意义得多。而我们的教育恰好需要把注意力从“为什么”转移到“是什么”上面来,只有如此,才能把教育从为什么发展成“可能成为什么”上来,这会是一次思想上的革命。而对于现在地位岌岌可危的教育技术来说,把研究的重点从数字化转移到数据化上面,这才是它的出路。

如何将数据融入教学,教育者首先通过标准化全科教学处方,实现了教师授课模板和教学内容的标准化,保证每个教学过程和内容是可控的,然后结合每天的教学内容,处理好面对的数据,处理好数据,自然也就处理好了课堂的反馈,最终形成了既注重教学体验又以教学结果为导向的教学体系。

与此同时,不仅要注重课上的学生资源,在课后还要对这些资源进行跟踪处理。这与过去的教育教学显然是不同的,面对大数据时代的到来,教学有所改变是必然的。所以,无论环境怎么变换,数据如何复杂,我们都不能不去改变自己的教学去迎合将来的这个大数据时代。

大数据时代读后感1000字 篇7

舍恩伯格的《大数据时代》,让我重新审视了"大数据"这个在信息时代异军突起的热点词汇,作为信息安全专业的我,对大数据这个词本身有着更多的热忱。

在网络上搜索到的解释是:"大数据",或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。特点:数量、速度、品种、真实性。

而舍恩伯格认为,大数据并不能定义一个确切的概念。他提到"大数据是人们获得新的认知,创造新的价值的源泉;大数据还是改变市场、组织机构,以及政府和公民关系的方法。"这是一种更具有人文色彩和社会意义的诠释。

本书中,主要从三个方面论述,即思维变革、商业变革和管理变革。而舍恩伯格更是着重阐明三大观点:

一、更多:不是随机样本,而是全体数据。

二、更杂:不是精确性,而是混杂性。

三、更好:不是因果关系,而是相关关系。

对于观点一,我不敢苟同,毕竟大数据的实现需要一定的技术支持,而显然,现在这种技术还不够成熟,同时一些简单的事情运用大数据反倒是问题更加复杂化,因此这种大叔据的繁杂处理方式更适用于一些特定的情况,比如商业预测,人类dna的研究等。

而对第二种观点,我是十分赞同舍恩伯格所说的"大数据的简单算法比小数据的简单算法有效"。在计算机行业迅速发展中,一种新的简单可行的算法的出现,远没有计算机在运算速度和存储容量的发展快,而大数据算法似乎更能迎合这种大趋势。

观点三中提到的相关关系在大数据中可是重量级的,它能较快找到事物规律和对应的解决措施,当然,也不能完全忽视因果关系,毕竟人们在思维上更能够接受因果关系分析出的结果,而大数据预测的需要人们慢慢的适应才能接受。当我们完成相关关系的分析而又不满足于只知道"是什么"的时候,我们就可以转而研究"为什么"了,毕竟问题的根本在于因果。而舍恩伯格的全体数据和相关关系是大数据时代下的一种捷径。

但是在信息时代,信息安全问题的日趋凸显,数据独裁与隐私保护之间的矛盾更是立于风口浪尖,成为众矢之的,舍恩伯格在本书的最后章节曾试图寻找一种解决方式来摆脱这一种困境,但最终没能做到,但是他提出"大数据并不是一个充斥着算法的和机器的冰冷世界,人类的作用仍无法被完全代替。"这里表明人在数据时代同样的重要,数据是为人类服务的,也就该人类驱使下完成相应的目的。

在这样的大环境下,常引起我更多的思考和担忧。

大数据时代对于我们同是机遇与挑战,一些国家已开始步入大数据时代的行列,并在各个领域开始研究和使用。而对于我国庞大的人口,以及较大的领土面积,都可以在大数据时代为我们提供数据的保障,而能否面临挑战,在大国之间的新一轮角色角逐间崭露头角,我们更需要解决技术等方面的问题,更应在政策上逐步开放各领域的数据,保证数据来源、权限等问题得到解决,不断学习先进的计算机技术,缩小与其他国家的差距。

工业化、信息化,我们都向世界交出了一份让世界不能小觑的答案;

大数据时代的数据化我们又将怎样在新的风暴中所向披靡,如果大数据时代是一种必然趋势,那这就是我们这一代人的责任,是我们新的战场!

;

⑺ 详细解读你所不了解的“大数据”

详细解读你所不了解的“大数据”
进入2012年,大数据(bigdata)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。它已经上过《》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的证券公司等写进了投资推荐报告。
一、大数据出现的背景
进入2012年,大数据(bigdata)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。它已经上过《》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的证券公司等写进了投资推荐报告。
数据正在迅速膨胀并变大,它决定着企业的未来发展,虽然现在企业可能并没有意识到数据爆炸性增长带来问题的隐患,但是随着时间的推移,人们将越来越多的意识到数据对企业的重要性。大数据时代对人类的数据驾驭能力提出了新的挑战,也为人们获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。
最早提出大数据时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”“大数据”在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。
大数据在互联网行业指的是这样一种现象:互联网公司在日常运营中生成、累积的用户网络行为数据。这些数据的规模是如此庞大,以至于不能用G或T来衡量,大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。

二、什么是大数据?
信息技术领域原先已经有“海量数据”、“大规模数据”等概念,但这些概念只着眼于数据规模本身,未能充分反映数据爆发背景下的数据处理与应用需求,而“大数据”这一新概念不仅指规模庞大的数据对象,也包含对这些数据对象的处理和应用活动,是数据对象、技术与应用三者的统一。
1、大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据对象既可能是实际的、有限的数据集合,如某个政府部门或企业掌握的数据库,也可能是虚拟的、无限的数据集合,如微博、微信、社交网络上的全部信息。
大数据是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。从数据的类别上看,“大数据”指的是无法使用传统流程或工具处理或分析的信息。它定义了那些超出正常处理范围和大小、迫使用户采用非传统处理方法的数据集。
亚马逊网络服务(AWS)、大数据科学家JohnRauser提到一个简单的定义:大数据就是任何超过了一台计算机处理能力的庞大数据量。研发小组对大数据的定义:“大数据是最大的宣传技术、是最时髦的技术,当这种现象出现时,定义就变得很混乱。”Kelly说:“大数据是可能不包含所有的信息,但我觉得大部分是正确的。对大数据的一部分认知在于,它是如此之大,分析它需要多个工作负载,这是AWS的定义。
2、大数据技术,是指从各种各样类型的大数据中,快速获得有价值信息的技术的能力,包括数据采集、存储、管理、分析挖掘、可视化等技术及其集成。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
3、大数据应用,是指对特定的大数据集合,集成应用大数据技术,获得有价值信息的行为。对于不同领域、不同企业的不同业务,甚至同一领域不同企业的相同业务来说,由于其业务需求、数据集合和分析挖掘目标存在差异,所运用的大数据技术和大数据信息系统也可能有着相当大的不同。惟有坚持“对象、技术、应用”三位一体同步发展,才能充分实现大数据的价值。
当你的技术达到极限时,也就是数据的极限”。大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。

三、大数据的类型和价值挖掘方法
1、大数据的类型大致可分为三类:
1)传统企业数据(Traditionalenterprisedata):包括 CRMsystems的消费者数据,传统的ERP数据,库存数据以及账目数据等。
2)机器和传感器数据(Machine-generated/sensor data):包括呼叫记录(CallDetailRecords),智能仪表,工业设备传感器,设备日志(通常是Digital exhaust),交易数据等。
3)社交数据(Socialdata):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。
2、大数据挖掘商业价值的方法主要分为四种:
1)客户群体细分,然后为每个群体量定制特别的服务。
2)模拟现实环境,发掘新的需求同时提高投资的回报率。
3)加强部门联系,提高整条管理链条和产业链条的效率。
4)降低服务成本,发现隐藏线索进行产品和服务的创新。
四、大数据的特点
业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。具体来说,大数据具有4个基本特征:
1、是数据体量巨大
数据体量(volumes)大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;网络资料表明,其新首页导航每天需要提供的数据超过1.5PB(1PB=1024TB),这些数据如果打印出来将超过5千亿张A4纸。有资料证实,到目前为止,人类生产的所有印刷材料的数据量仅为200PB。
2、是数据类别大和类型多样
数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。
3、是处理速度快
在数据量非常庞大的情况下,也能够做到数据的实时处理。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。
4、是价值真实性高和密度低
数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。以视频为例,一小时的视频,在不间断的监控过程中,可能有用的数据仅仅只有一两秒。

五、大数据的作用
1、对大数据的处理分析正成为新一代信息技术融合应用的结点
移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。
大数据具有催生社会变革的能量。但释放这种能量,需要严谨的数据治理、富有洞见的数据分析和激发管理创新的环境(RamayyaKrishnan,卡内基·梅隆大学海因兹学院院长)。
2、大数据是信息产业持续高速增长的新引擎
面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。
3、大数据利用将成为提高核心竞争力的关键因素
各 行各业的决策正在从“业务驱动”转变“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。
4、大数据时代科学研究的方法手段将发生重大改变
例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。

六、大数据的商业价值
1、对顾客群体细分
“大数据”可以对顾客群体细分,然后对每个群体量体裁衣般的采取独特的行动。瞄准特定的顾客群体来进行营销和服务是商家一直以来的追求。云存储的海量数据和“大数据”的分析技术使得对消费者的实时和极端的细分有了成本效率极高的可能。
2、模拟实境
运用“大数据”模拟实境,发掘新的需求和提高投入的回报率。现在越来越多的产品中都装有传感器,汽车和智能手机的普及使得可收集数据呈现爆炸性增长。Blog、Twitter、Facebook和微博等社交网络也在产生着海量的数据。
云计算和“大数据”分析技术使得商家可以在成本效率较高的情况下,实时地把这些数据连同交易行为的数据进行储存和分析。交易过程、产品使用和人类行为都可以数据化。“大数据”技术可以把这些数据整合起来进行数据挖掘,从而在某些情况下通过模型模拟来判断不同变量(比如不同地区不同促销方案)的情况下何种方案投入回报最高。
3、提高投入回报率
提高“大数据”成果在各相关部门的分享程度,提高整个管理链条和产业链条的投入回报率。“大数据”能力强的部门可以通过云计算、互联网和内部搜索引擎把”大数据”成果和“大数据”能力比较薄弱的部门分享,帮助他们利用“大数据”创造商业价值。
4、数据存储空间出租
企业和个人有着海量信息存储的需求,只有将数据妥善存储,才有可能进一步挖掘其潜在价值。具体而言,这块业务模式又可以细分为针对个人文件存储和针对企业用户两大类。主要是通过易于使用的API,用户可以方便地将各种数据对象放在云端,然后再像使用水、电一样按用量收费。目前已有多个公司推出相应服务,如亚马逊、网易、诺基亚等。运营商也推出了相应的服务,如中国移动的彩云业务。
5、管理客户关系
客户管理应用的目的是根据客户的属性(包括自然属性和行为属性),从不同角度深层次分析客户、了解客户,以此增加新的客户、提高客户的忠诚度、降低客户流失率、提高客户消费等。对中小客户来说,专门的CRM显然大而贵。不少中小商家将飞信作为初级CRM来使用。比如把老客户加到飞信群里,在群朋友圈里发布新产品预告、特价销售通知,完成售前售后服务等。
6、个性化精准推荐
在运营商内部,根据用户喜好推荐各类业务或应用是常见的,比如应用商店软件推荐、IPTV视频节目推荐等,而通过关联算法、文本摘要抽取、情感分析等智能分析算法后,可以将之延伸到商用化服务,利用数据挖掘技术帮助客户进行精准营销,今后盈利可以来自于客户增值部分的分成。
以日常的“垃圾短信”为例,信息并不都是“垃圾”,因为收到的人并不需要而被视为垃圾。通过用户行为数据进行分析后,可以给需要的人发送需要的信息,这样“垃圾短信”就成了有价值的信息。在日本的麦当劳,用户在手机上下载优惠券,再去餐厅用运营商DoCoMo的手机钱包优惠支付。运营商和麦当劳搜集相关消费信息,例如经常买什么汉堡,去哪个店消费,消费频次多少,然后精准推送优惠券给用户。
7、数据搜索
数据搜索是一个并不新鲜的应用,随着“大数据”时代的到来,实时性、全范围搜索的需求也就变得越来越强烈。我们需要能搜索各种社交网络、用户行为等数据。其商业应用价值是将实时的数据处理与分析和广告联系起来,即实时广告业务和应用内移动广告的社交服务。
运营商掌握的用户网上行为信息,使得所获取的数据“具备更全面维度”,更具商业价值。典型应用如中国移动的“盘古搜索”。

七、大数据对经济社会的重要影响
1、能够推动实现巨大经济效益
比如对中国零售业净利润增长的贡献,降低制造业产品开发、组装成本等。预计2013年全球大数据直接和间接拉动信息技术支出将达1200亿美元。
2、能够推动增强社会管理水平
大数据在公共服务领域的应用,可有效推动相关工作开展,提高相关部门的决策水平、服务效率和社会管理水平,产生巨大社会价值。欧洲多个城市通过分析实时采集的交通流量数据,指导驾车出行者选择最佳路径,从而改善城市交通状况。
3、如果没有高性能的分析工具,大数据的价值就得不到释放
对大数据应用必须保持清醒认识,既不能迷信其分析结果,也不能因为其不完全准确而否定其重要作用。
1)由于各种原因,所分析处理的数据对象中不可避免地会包括各种错误数据、无用数据,加之作为大数据技术核心的数据分析、人工智能等技术尚未完全成熟,所以对计算机完成的大数据分析处理的结果,无法要求其完全准确。例如,谷歌通过分析亿万用户搜索内容能够比专业机构更快地预测流感暴发,但由于微博上无用信息的干扰,这种预测也曾多次出现不准确的情况。
2)必须清楚定位的是,大数据作用与价值的重点在于能够引导和启发大数据应用者的创新思维,辅助决策。简单而言,若是处理一个问题,通常人能够想到一种方法,而大数据能够提供十种参考方法,哪怕其中只有三种可行,也将解决问题的思路拓展了三倍。
所以,客观认识和发挥大数据的作用,不夸大、不缩小,是准确认知和应用大数据的前提。

八、总结
不管大数据的核心价值是不是预测,但是基于大数据形成决策的模式已经为不少的企业带来了盈利和声誉。
1、从大数据的价值链条来分析,存在三种模式:
1)手握大数据,但是没有利用好;比较典型的是金融机构,电信行业,政府机构等。
2)没有数据,但是知道如何帮助有数据的人利用它;比较典型的是IT咨询和服务企业,比如,埃森哲,IBM,Oracle等。
3)既有数据,又有大数据思维;比较典型的是Google,Amazon,Mastercard等。
2、未来在大数据领域最具有价值的是两种事物:
1)拥有大数据思维的人,这种人可以将大数据的潜在价值转化为实际利益;
2)还未有被大数据触及过的业务领域。这些是还未被挖掘的油井,金矿,是所谓的蓝海。
大数据是信息技术与专业技术、信息技术产业与各行业领域紧密融合的典型领域,有着旺盛的应用需求、广阔的应用前景。为把握这一新兴领域带来的新机遇,需要不断跟踪研究大数据,不断提升对大数据的认知和理解,坚持技术创新与应用创新的协同共进,加快经济社会各领域的大数据开发与利用,推动国家、行业、企业对于数据的应用需求和应用水平进入新的阶段。

⑻ 大数据时代读后感1000字(2)

大数据时代读后感1000字(精选7篇)

舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:一、更多:不是随机样本,而是全体数据;二、更杂:不是精确性,而是混杂性;三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。

我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。

世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出”不是因果关系,而是相关关系。“这一论断时,他在书中还说道:”在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。“[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。

大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可”量化“,大数据的定量分析有力地回答”是什么“这一问题,但仍然无法完全回答”为什么“。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。在风险社会中信息安全问题日趋凸显,数据独裁与隐私保护成为一对矛盾。如何摆脱大数据的困境?舍恩伯格在最后一节”掌控“中试图回答,但基本上属于老生常谈。我想,或许凯文·凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:”大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。“谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考答案。

此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。

大数据时代读后感1000字 篇2

我们不再热衷于寻找因果关系,而应该寻找事物之间的相关关系。这个命题是我读这本书最大的感触。个人认为也是这本书最核心的思想。从头说起吧,首先,书提出一个颠覆我以前认知的命题--”并非原子而是信息才是一切的本源“,将世界看做信息,看做可以理解的数据的海洋,为我们提供了一个从未有过的审视下是的视角。它是一种可以渗透到所有生活领域的世界观。这个命题是在书的最后一部分中的某一段中描写的。我之所以把它放在最前面来讲,因为我觉得,这是谈数据化世界的前提,自然也是谈论大数据的前提啦。书的中间部分有一节讲到数据化和数字化的区别。经过我自己脑子的整理,把数据化世界这个命题列为大数据思维的第二步。写到这里,我不由得反省下,我是不是有领悟到书的精髓所在(我认为的精髓),就是第一句话。因为回顾我整个思路,还是按照旧模式的因果关系思考模式思考问题。书中另一个吸引我的地方就是,有很多观点的论述,会从哲学的高度论述。虽然,自己肚子没多少墨水,但是读这些描述的时候,就会发现自己会更好的理解作者提出的命题。比如书中有一段文字

当我们说人类是通过因果关系了解世界时,我们指的是我们再理解和解释世界各种现象时使用的两种基本方法:一种是通过快速、虚幻的因果关系,还有一种就是通过缓慢、有条不紊的因果关系。大数据会改变这两种基本方法在我们认识世界时所扮演的角色。

在附上一些事例的时候,用作者提供的”本质“去看待时,很容易理解,确实是这么回事。好了,那么大数据到底改变了我们什么呢,作者给出3点,

大数据的精髓在于我们分析信息时的三个转变,这些转变讲改变我们理解和组建社会的方法。

第一个转变就是,在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样(样本=总体)

第二个转变就是,研究数据如此之多,以至于我们不再热衷于追求精确度

第三个转变因前两个转变而促成,即我们不再热衷于寻找因果关系,而应该寻找事物之间的相关关系。大数据告诉我们”是什么“而不是”为什么“。在大数据时代,我们不必知道现象背后的原因,我们只要让数据自己发声。,出处:短美文,否则追究其责任,谢谢你的支持,我们会给做得更好!

正如大家所知道的那样,人类的大脑具备这样的功能,它会把新输入的刺激或信息与”过去的经验或积累的部分知识“相对照,然后进行调整并接受下来。如果眼前新的现实与大脑中储存的固有信息无法协调,便会在无意识中拒绝接受新的现实(当作没有看见);或者通过自己一知半解的知识任意推测,使自己认识到的情况偏离实际(产生错觉)。这是人的一种本能,目的在于使自己保持冷静。

所以作者称之为revolution。

讲了这么多,那么大数据到底给我们带来什么。在这里,我只想谈我感触最深的,其他的有兴趣的可以自己去了解。当然,书中提了很多,最多的就是,XXX公司或者个人利用大数据创造了多大的财富了,抛开这些表面的不说,最让我动心亦或者是害怕的是,预测。这是大数据带来最核心的东西,动心的理由无须赘述,计算机会告诉你什么时候买什么双色球可以中头奖,想想心里是不是有一点小激动咧。当然这只是我打的一个比较夸张的比喻。至于害怕呢,书中有段话我很喜欢

公平正义的基础是人只有做了某事才需要对它负责,毕竟,想做而未做不是犯罪,社会关系于个人责任的基本信条是,人为其选择的行为承担责任。如果大数据分析完全准确,那么我们的未来会被精准的预测,因此在未来,我们不仅会失去选择的权利,而且会按照预测去行动。如果精准的预测成为现实的话,我们也就失去了自由意志,失去了自由选择的权利。既然我们别无选择,那么我们也就不需要承担责任。这不是很讽刺吗。

扯到这里,顺便扯一下,书中另一段关于自由意志的描述

在哲学界,关于因果关系是否存在的争论已经持续了几个世纪。毕竟,如果凡事皆有因果的话,那么我们就没有决定任何事的自由了。如果说我们做的每一个决定或者每一个想法都是其他事情的结果。而这个结果又是由其他原因导致的。以此循环往复,那么就不存在人的自由意志这一说了。——所有的生命轨迹都只是受因果关系的控制了。因此,对于因果关系在世间所扮演的角色,哲学家们争论不休,有时他们认为,这是与自由意志相对立。

书中举了个例子,举了部电影《少数派报告》,当我看到这里的时候,”哎哟,我居然看过这部电影,想想心里还是有点小激动“,有兴趣的可以去看下,大概就是讲警察通过预测来提前抓捕犯人,不过不是通过大数据,是通过超人类的方式。当你什么举动都可以被预测,相当于你完全暴露在太阳光下,换成你,你害怕不。

最后,附上两段结语,一段是书中的一段话,另一段是我自己瞎编的。

大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。

大数据终将会影响到我们,也像其他技术一样会是一把双刃剑,用得好,动心,滥用,害怕。如同核技术一样,用的话,造福地球,滥用,给个金刚石地球你,照样爆。我相信,未来的大数据的发展会如作者所说的,是一场生活、工作与思维的革命。

大数据时代读后感1000字 篇3

“大数据”一词不知何时在我们的生活悄然出现,为了一探究竟,我便选择了《大数据时代》一书。

作者先从全局简单地描述大数据对我们的生活、工作与思维的影响,再从三方面具体地用上百个学术和商业的实例展开写作。样本=总体、追求精确性和相关关系等大数据时代具体特点一一现出。在同时,作者也从个人、企业等多角度分析大数据中的隐忧。

书中内容繁多,在此不能各方面概括。此书中虽有许多专有名词,但作者以其通俗的语言以及许多实例让我嗅到大数据时代中一抹清新之气。

为什么是清新的呢?因为书中的内容仿佛向我打开了一个既有点熟悉又有点陌生的世界。我们现在已处于网络时代 ,在我们日常简单的操作中大量数据产生,然而起初我们仅用众多技术在解决手头上的问题,那些大数据像沙子中的金子,价值不被发现。到目前,每当我们网上购书时总会看到“猜你喜欢”的栏目、出现谷歌搜索与流感预测、Farecast与飞机票价预测系统等,这些事情的达成全来自于那些曾被忽略的大数据同时也在证明“预测,大数据的核心”这句话,为我们的生活创造了前所未有的可量化的维度。看到书中这部分内容时,我不禁感受到自己的生活已在享大数据带来的福利,就像“猜你喜欢”栏目让我触到更多合我口味的书,让我看到了以前无法发现的细节。拥有大量数据的公司巨头如谷歌、亚马逊大力开发有关大数据的新型产业和研究相关项目。借网络时代的便利大数据成为了如今最有商业价值的事物,使一切可量化的趋势也开始出现。“本质上世界是由信息构成的”,面对这句话时,大数据时代仿佛就在眼前。

在感受惊叹着大数据能为我们做到以往无法想象的事和它巨大的价值时,我认同大数据能极大优化我们的生活,但又不禁为这时代感到担忧。一旦大数据时代来临,不仅我们的隐私可能不再是隐私,就如书中所言“我们时刻暴露在‘第三只眼’下:亚马逊监视着我们的购物习惯,谷歌监视着我们的购物习惯,而微博似乎什么都知道”,而且利用大数据我们可以预测许多事情并且十分高效,一旦人们依赖大数据极少运用人类自身的创新等能力被数据束缚住,世界只会沦落为一个极少活力的机械环境。而我认为最大的忧患,是大数据时代对人类自身思维、思想、信仰等精神领域的冲击。如今我们都生活在数据中,大数据时代说不定在几年后就会逐步来临,这使我不禁发问:我们一直坚信着信仰着的究竟是什么?我觉得世界说变就变实在令我想不通这个问题。事情都有好坏,我也不知道自己是否杞人忧天。

于是我继续去探索作者对这问题的思考。“更大的数据在于人本身”,作者还说“我们是在创造更好的未来”,也说“在一个预测的时代里,人类的自由意志不可侵犯,这一点不可轻视。我们在使用大数据时,应当怀有谦恭之心,铭记人性之本”。人类学家克利福德吉尔兹曾说:“努力在可以应用、可以拓展的地方,应用它、拓展它;在不能应用、不能拓展的地方,就停下来。”这些话语仿佛是阳光,驱散我心中对大数据时代的担忧以及内心对其的恐惧。我认为,在坚守我们内心和自由意志下,大数据才会造福我们人类世界,发挥出它背后对人温暖的光芒。

面对时代的变革,我会为坚守内心深处的自由意志而努力并“拥抱大数据”。

大数据时代读后感1000字 篇4

世界的本质就是数据,当你掌握了数据,你便掌控了世界—你可以轻而易举地通过数据中的相关关系预测事物的发展,将一切不利因素扼杀于摇篮之中—这远胜于"防患于未然"。

《大数据时代》一书,让我们在观念上有了三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。全书介绍了 "大数据"时代三种大的变革:思维变革,商业变革和管理变革。在这些巨大变革如洪水一般的"冲击"之下,现代社会的运作方式必将有重大的改变,若不顺应这种变革的潮流,就像古中国固步自封,最终被坚船利炮打开国门而自己还用着长钩铁戟抗争一样,不可避免被掠夺,被落于世界进程之后,所以我们必须转变我们的思想。

"我们不再热衷于寻找因果关系,而应该寻找事物间的相关关系",我想这句话是本书的核心思想。大数据时代,信息与数据已成为了一切的本源,我们生活在各种数据构成的海洋之中,如果从另一种视角看,就好像无数条"看不见的线"将我们与这些数据联系到一起,这是我们以前从未有过、从未想过的。大数据改变了我们以前的通过因果关系了解世界的方法,而提供了几种新的途径,因为,在大数据时代,我们可以分析更多数据,有时甚至可以处理和某个特别现象相关的所有数据,也就是:样本=总体;而且,当研究数据如此之多时,我们已不热衷于"精确",而是"混乱",若不接受"混乱",那么有95%的非结构化数据无法利用,这将无法使我们构建完整的数据世界,在分析更多、更全面的数据之后,我们就可以从这些数据之中发掘它们的相关关系,即以"是什么"而不是"为什么"的角度看待数据,不用管其从何而来,只要分析其如何影响其他事物既可,即"让数据自己发声",这些,彻底推翻了人类以前探索数据的方法,展现了一个全新的世界。

这种观念以惊人的力量给现知识状况带来了巨大的冲击,通过对海量数据的分析,获得巨大价值的产品和服务,或深刻的洞见。比如谷歌公司,2009年h1n1流行之时,通过检测检索词条,处理34。5亿个不同的数据模型,通过预测并与2007、2008年的美国疾控中心记录的实际流感病例进行对比后,确定了45条检索词条组合,并将其用于一个特定的数学模型后,预测结果与官方数据相关系数高达97%,这种大数据技术,以前所未有的方式,通过海量数据分析得出流感所传播的范围,为预测流感提供了一种更快速、高效的工具。

同时,虽然大数据可为人类造福、对抗病症,但这仅限于掌握这门技术而言,若不重视这种技术,当我们的对手早于我们一步构建这种数据网络之时,便是我们的灾难,想想,大数据虽核心的在于预测,当敌人通过这种手段预测我方下一步的行动,将是可怕的—比如你的.导弹将从何处发射,将飞往哪,你的军队动向、目标,总之所有一切"未来"将掌控于敌手,敌方甚至可以借此发现那些将来有"大作为"的人,从而进行渗透或扼杀,这对我们的发展无疑是致命的,所以,尽快加速大数据系统的构建进程是必须的。

对于我们国防生,也必须顺应这种发展趋势,未来的时代必将是数据极易获取,数据网络共享化的时代,通过这些数据,建立数据模型,可以准确分析并给出适合每一个人的计划,如运动量、训练强度,可以"先知、先觉",及时发现一个人的负面情绪前及时疏导,这些必将成为现实,我们必须跟进时代,做好准备,去应对大数据时代的一切!

大数据时代读后感1000字 篇5

“除了上帝,任何人都必须用数据来说话。”——这是《大数据》中出现的让人印象深刻的一句话,也是全书力图传递的信息。在数字信息时代,数据和空气一样遍布生活,对于有些人来说,数据无意义,而对于有些人来说,数据,即真相。

美国是《大数据》的主角,全书通过讲述美国半个多世纪信息开放、技术创新的历史,公共财政透明的曲折、《数据质量法》背后的隐情、全民医改法案的波澜、统一身份证的百年纠结、街头警察的创新传奇、美国矿难的悲情历史、商务智能的前世今生、数据开放运动的全球兴起,Web3·0与下一代互联网的未来图景等等,为读者一一细解数据创新给公民、政府、社会带来的种种挑战和变革。

透过全书,一个立体的美国及美国人民的思想呈现在我们面前——美国人民执著于个人隐私的保护,却又不遗余力地推动着政府信息的透明与公开。

读完此书,对生活中的数据及数据处理突然有了很大的兴趣。如果有一天,处处以数据说话,那么,政治、制度、生活将更加清明,事故、将降到最低点。

作为信息技术教师,是有必要阅读此书的!有慧根的教师将能从书中挖掘出信息技术特有的文化以及能用于教学的鲜活案例。

每天能用来阅读的时间很少,总是要等到夜深疲倦时才有空打开书本,总是在眼睛极不舒服的情况下坚持阅读,《大数据》就这样在坚持中溶入我的思想……

大数据时代读后感1000字 篇6

读完《大数据》,我才意识到这并不是一本枯燥无味的书籍。作者运用案例和讲故事的方式,把美国数据开放、收集、使用背后的立法故事、公民故事、技术故事、商业故事娓娓道来,引人入胜,令我大开眼界。

我在想,大数据概念对于教育来说会产生什么样的实用价值呢?一直以来,中国教育在研究教育的数字化,比如数字化校园,这个思路就是把我们教育的内容进行数字化,其结果指向的就是电子教材的研发或者是教学过程的数字化。美其名曰,这是教育技术的重要内涵。在教学过程中,学生的行为表现都可以被数据化,而这项研究不是任何一个专业可以深入下去的,它的专业性太强,所以我才会想到,所谓教育技术与其研究教育的数字化,不如研究教育的数据化来得实在,来的有意义。长期以来,我们并不了解教育对一个人的影响具体会如何表现,我们有的只是一个轮廓,我们也并不确定一个教师的行为对学生具体产生了哪些影响。所以,人们对教育一直有一个深深的质疑,它是不是科学的?大数据概念至少提出了关注“是什么”比“为什么”要有实际意义得多。而我们的教育恰好需要把注意力从“为什么”转移到“是什么”上面来,只有如此,才能把教育从为什么发展成“可能成为什么”上来,这会是一次思想上的革命。而对于现在地位岌岌可危的教育技术来说,把研究的重点从数字化转移到数据化上面,这才是它的出路。

如何将数据融入教学,教育者首先通过标准化全科教学处方,实现了教师授课模板和教学内容的标准化,保证每个教学过程和内容是可控的,然后结合每天的教学内容,处理好面对的数据,处理好数据,自然也就处理好了课堂的反馈,最终形成了既注重教学体验又以教学结果为导向的教学体系。

与此同时,不仅要注重课上的学生资源,在课后还要对这些资源进行跟踪处理。这与过去的教育教学显然是不同的,面对大数据时代的到来,教学有所改变是必然的。所以,无论环境怎么变换,数据如何复杂,我们都不能不去改变自己的教学去迎合将来的这个大数据时代。

大数据时代读后感1000字 篇7

舍恩伯格的《大数据时代》,让我重新审视了"大数据"这个在信息时代异军突起的热点词汇,作为信息安全专业的我,对大数据这个词本身有着更多的热忱。

在网络上搜索到的解释是:"大数据",或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。特点:数量、速度、品种、真实性。

而舍恩伯格认为,大数据并不能定义一个确切的概念。他提到"大数据是人们获得新的认知,创造新的价值的源泉;大数据还是改变市场、组织机构,以及政府和公民关系的方法。"这是一种更具有人文色彩和社会意义的诠释。

本书中,主要从三个方面论述,即思维变革、商业变革和管理变革。而舍恩伯格更是着重阐明三大观点:

一、更多:不是随机样本,而是全体数据。

二、更杂:不是精确性,而是混杂性。

三、更好:不是因果关系,而是相关关系。

对于观点一,我不敢苟同,毕竟大数据的实现需要一定的技术支持,而显然,现在这种技术还不够成熟,同时一些简单的事情运用大数据反倒是问题更加复杂化,因此这种大叔据的繁杂处理方式更适用于一些特定的情况,比如商业预测,人类dna的研究等。

而对第二种观点,我是十分赞同舍恩伯格所说的"大数据的简单算法比小数据的简单算法有效"。在计算机行业迅速发展中,一种新的简单可行的算法的出现,远没有计算机在运算速度和存储容量的发展快,而大数据算法似乎更能迎合这种大趋势。

观点三中提到的相关关系在大数据中可是重量级的,它能较快找到事物规律和对应的解决措施,当然,也不能完全忽视因果关系,毕竟人们在思维上更能够接受因果关系分析出的结果,而大数据预测的需要人们慢慢的适应才能接受。当我们完成相关关系的分析而又不满足于只知道"是什么"的时候,我们就可以转而研究"为什么"了,毕竟问题的根本在于因果。而舍恩伯格的全体数据和相关关系是大数据时代下的一种捷径。

但是在信息时代,信息安全问题的日趋凸显,数据独裁与隐私保护之间的矛盾更是立于风口浪尖,成为众矢之的,舍恩伯格在本书的最后章节曾试图寻找一种解决方式来摆脱这一种困境,但最终没能做到,但是他提出"大数据并不是一个充斥着算法的和机器的冰冷世界,人类的作用仍无法被完全代替。"这里表明人在数据时代同样的重要,数据是为人类服务的,也就该人类驱使下完成相应的目的。

在这样的大环境下,常引起我更多的思考和担忧。

大数据时代对于我们同是机遇与挑战,一些国家已开始步入大数据时代的行列,并在各个领域开始研究和使用。而对于我国庞大的人口,以及较大的领土面积,都可以在大数据时代为我们提供数据的保障,而能否面临挑战,在大国之间的新一轮角色角逐间崭露头角,我们更需要解决技术等方面的问题,更应在政策上逐步开放各领域的数据,保证数据来源、权限等问题得到解决,不断学习先进的计算机技术,缩小与其他国家的差距。

工业化、信息化,我们都向世界交出了一份让世界不能小觑的答案;

大数据时代的数据化我们又将怎样在新的风暴中所向披靡,如果大数据时代是一种必然趋势,那这就是我们这一代人的责任,是我们新的战场!

;

⑼ 与大数据相关的议论文1000字

大数据是造福人类的

阅读全文

与大数据议论文1000相关的资料

热点内容
w7系统下载32位教程 浏览:618
pcb文件包括哪些内容 浏览:598
g00文件 浏览:607
用bat程序删除程序 浏览:516
dnf鬼泣90版本打安图恩 浏览:668
245倒角编程怎么计算 浏览:599
可以买生活用品的app有哪些 浏览:175
cad在c盘产生的文件夹 浏览:541
联想手机解锁工具 浏览:696
瑞银3887win10 浏览:833
学网络编程哪个好 浏览:805
手机vmos导入的文件在哪里 浏览:115
苹果手机可以把文件传到华为吗 浏览:63
海川化工下载的文件默认到哪里 浏览:343
学唱粤语歌app 浏览:975
qq游戏生死狙击玩不了 浏览:120
win10邮件不显示图片 浏览:922
口袋妖怪所有版本下载 浏览:504
我们身边都有哪些大数据例子 浏览:25
震旦adc307扫描的文件在哪里 浏览:999

友情链接