导航:首页 > 网络数据 > 基于大数据的数据挖掘

基于大数据的数据挖掘

发布时间:2022-12-30 07:00:55

大数据和「数据挖掘」是何关系

数据挖掘是一个动作,是研究数据内在的规律,并且通过各种机器学习专、统计学习、模属型算法进行研究。
大数据其实是一种数据的状态,数据多而大,大到超出了人类的数据处理软件的极限。因此,他俩的关系就容易看出来了。
有了大数据,数据挖掘就有了原材料,也就是有米下锅。有了数据挖掘的应用,数据就有了用武之地,有了生命力,有了生产力,而不是流散在世界各地的硬盘中。

⑵ 什么是大数据,什么又是数据挖掘

大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中,大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法)大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、veracity(真实性)。大数据需要特殊的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。

大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等。第三,数据的来源,直接导致分析结果的准确性和真实性。若数据来源是完整的并且真实,最终的分析结果以及决定将更加准确。第四,处理速度快,1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”
从某种程度上说,大数据是数据分析的前沿技术。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。

搜索下各种网络,上面都有。说白了,就是数据量非常庞大。这确实是近几年的热点问题。

⑶ 云南北大青鸟java培训告诉你大数据挖掘是什么

数据挖掘(DataMining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

数据挖掘对象

根据信息存储格式,北大青鸟丽江计算机学院http://www.kmbdqn.cn/认为用于挖掘的对象有关系数据库、面向对象数据库、数据仓库、文本数据源、多媒体数据库、空间数据库、时态数据库、异质数据库以及Internet等。

数据挖掘流程

定义问题:清晰地定义出业务问题,确定数据挖掘的目的。

数据准备:数据准备包括:选择数据_在大型数据库和数据仓库目标中提取数据挖掘的目标数据集;数据预处理_进行数据再加工,包括检查数据的完整性及数据的一致性、去噪声,填补丢失的域,删除无效数据等。

数据挖掘:根据数据功能的类型和和数据的特点选择相应的算法,在净化和转换过的数据集上进行数据挖掘。

结果分析:对数据挖掘的结果进行解释和评价,转换成为能够最终被用户理解的知识。

数据挖掘分类

直接数据挖掘:目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。

间接数据挖掘:目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系。

数据挖掘的方法

神经网络方法

神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。

遗传算法

遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。

决策树方法

决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。


⑷ 大数据挖掘方法有哪些

谢邀。

大数据挖掘的方法:

神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。


遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。


决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。


粗集理论是一种研究不精确、不确定知识的数学工具。粗集方法有几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。粗集处理的对象是类似二维关系表的信息表。


它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。首先在正例集合中任选一个种子,到反例集合中逐个比较。与字段取值构成的选择子相容则舍去,相反则保留。按此思想循环所有正例种子,将得到正例的规则(选择子的合取式)。


在数据库字段项之间存在两种关系:函数关系和相关关系,对它们的分析可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。可进行常用统计、回归分析、相关分析、差异分析等。


即利用模糊集合理论对实际问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。系统的复杂性越高,模糊性越强,一般模糊集合理论是用隶属度来刻画模糊事物的亦此亦彼性的。

⑸ 大数据掘金——数据挖掘过程

1.商业问题理解

全面了解管理对新知识的需求以及对企业目标的明确认识。

进行项目规划,明确负责收集数据、分析数据、汇报结果的人员。在这一早期阶段,还应当对进行研究的经费预算,至少要给出预算上限和大致数据。

2.数据理解

将商业问题与使用数据完美匹配。

定量数据:用数值来衡量,可以是离散的,也可以使连续的。也成为分类数据包括定序和定类两种,定序数据有有限多个可排序的取值(差、好、极好),定类数据具有有限不可排序的取值(男、女)。定量数据可以由几组概率分布来表示。概率分布显示了数据是如何分布的

定性数据:可以进行编码,通过频率分布表示。

3.数据准备

数据处理。真实世界的数据通常都是不完全的(缺乏属性值、特殊性或只有总数)、杂乱的(包含错误或异常值)、不连续的(编码或名字中存在矛盾)。由于数据来自不同的数据源,它们之间具有不同的格式,如选取的数据可能来自平面文件、音频、图片或网页,必须转化为持续统一的格式。

4.建立模型

需要利用多种模型,经过多次实验和测量,找出解决某个实际问题的最佳方案。甚至对于单个模型或公式而言,也是需要对参数进行标准化才能得到最优结果。某些方法对数据格式有特殊要求,因此还需要退回到数据准备阶段重新处理。

数据挖掘建模的标准流程是将大规模未经处理数据分为小组,以进行测试或检验。然后分析师就可以根据一部分数据(实验组)建立模型(可以使用任何建模方法或公式),用另一部分数据(测试组)测试建立起来的模型。

5.检验和评估

对建立起来的模型进行测量和评估,确定其准确性和一般性。在实际环境中测试模型是否符合时间和财务的要求。这一发现过程的成功与否取决于数据分析师、商业分析师和决策者(如企业管理者)的互动。为了更好地解读数据,我们通常使用表格或可视化技术(如数据透视表、交叉表分析、饼图、柱状图、箱线图和散点图等)。

6.部署

数据部署这一步可能仅仅是给出一份报告,但也有可能要将整个数据挖掘过程在全公司重复一遍。

⑹ 大数据挖掘技术涉及哪些内容

大数据挖掘技术涉及的主要内容有:模式跟踪,数据清理和准备,基于分类的数据挖掘技术,异常值检测,关联,聚类。
基于大环境下的数据特点,挖掘技术与对应:
1.数据来源多, 大数据挖掘的研究对象往往不只涉及一个业务系统, 肯定是多个系统的融合分析, 因此,需要强大的ETL技术, 将多个系统的数据整合到一起, 并且, 多个系统的数据可能标准不同, 需要清洗。
2.数据的维度高, 整合起来的数据就不只传统数据挖掘的那一些维度了, 可能成百上千维, 这需要降维技术了。
3.大数据量的计算, 在单台服务器上是计算不了的, 这就需要用分布式计算, 所以要掌握各种分布式计算框架, 像hadoop, spark之类, 需要掌握机器学习算法的分布式实现。
数据挖掘:目前,还需要改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。

想了解更多大数据挖掘技术,请关注CDA数据分析课程。CDA(Certified Data Analyst),即“CDA 数据分析”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证,旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。国家发展战略的要求,岗位人才的缺口以及市场规模的带动,都从不同方面体现了数据分析师职业的重要性。大数据挖掘技术的学习,有利于提高人在职场的信誉度,增加职场竞争力,提高自己的经济地位。点击预约免费试听课。

⑺ 大数据挖掘主要涉及哪些技术

1、数据科学与大数据技术
本科专业,简称数据科学或大数据。
2、大数据技术与应用回
高职院校专业。
相关专业名答称:大数据管理与应用、大数据采集与应用等。
大数据专业强调交叉学科特点,以大数据分析为核心,以统计学、计算机科学和数学为三大基础支撑性学科,培养面向多层次应用需求的复合型人才。

⑻ “大数据时代”的数据挖掘

“大数据时代”的数据挖掘
大数据是什么?有何神奇之处?
大数据是指一切都数据化了,我们平常上网浏览的数据,我们的医疗、交通、购物数据,统统都被记录下来,这就是大数据的起源。在这个时候,我们每个人都成了一个数据产生者,数据贡献者。大数据的神奇之处在哪里?从某种意义上来讲,你们可能只是安装了一个游戏并允许它提取你的GPS位置,但这就把你是不是一个同性恋,是不是一个高消费者,之类的信息暴露给了研究机构。通过大数据的分析,我们甚至能够在很大层次上精确地知道你是谁。
您之前也提到了大数据时代已经到来,所以企业、商家对数据的挖掘也在深化。那么什么样程度的数据挖掘才不算是过度挖掘呢?
其实没有什么办法能够防止数据的过度挖掘。任何一个企业都需要挖掘到更多的内容。我们能做的,只是通过政府和行业的监管,使得但凡侵犯用户隐私,并且给用户造成恶意伤害的企业,受到很严重的惩罚。要求一个用户,用自己的方法去保护自己的隐私,是不现实也是不公平的。
您现在另一个身份是百分点科技的首席科学家,那能不能谈谈百分点网是怎样挖掘数据的呢?
百分点科技把用户在电子商务网站上的浏览、购买、收藏数据,以及在资讯网站上的浏览数据聚合在一起。分析用户自身的喜好,预测用户的意图,再利用这些喜好和意图,对用户进行更精准的资讯或者购物的推荐。
很多人现在听到数据挖掘就觉得很害怕,怕自己的隐私会泄露出去,那么有没有方法可以防止自己的个人数据被人挖掘呢?
就像我们没有办法利用自己的能力去鉴别假食品、假商品一样,我们不需要要求用户去保护自己的隐私。因为这种东西实际上是无能为力的。比如说你带着你的手机,我们通过传感器就能知道你在哪里。你没办法回避这个事实。所以,这就要回到刚才的那个回答,我们只能够通过去惩罚那些恶意使用个人隐私数据,谋取不正当利益的公司,来回避这个问题。
什么样的方式属于恶意使用个人隐私呢?能否举例说明?
销售一个人的手机号码、一个人的家庭地址,或者在网上通过一些不正当的公开数据使得一个人的隐私——比如你上了什么网站、买了什么东西、上了什么交友网站、看过什么图片等等,被其他人得知。这些都属于不正当的使用。
那么是否有一些切实可行的方法可以避免自己的隐私被恶意使用呢?
表面上用户在上网的时候不停地清除cookie,可以避免自己的隐私泄露,但实际上很多后台的软件还是可以获取你上网的记录。尤其是一些防病毒的软件,它本质上既可以在某种意义上保护你的隐私,也拿到你更全面的隐私数据。从技术层面上来讲,用户保护自己的隐私还是很困难的,并且用户体验很差——我们的注意力要从提高用户水平转移到严厉要求企业上面。
现在智能手机普及,很多人手机里有黑名单,可以把推销的短信、电话都加进去防止骚扰,这算不算是一种隐私保护呢?
如果你觉得一个电话是恶意的,那只能说明它的定位不太精准。我估计可能只是你(的电话)出现在某个名单中,而对方的客服挨个儿地打电话。但它的确会对你的生活产生一些干扰。我们现在没有什么办法可以完全防止这些干扰,虽然也可以通过很多手段去除掉一些垃圾短信。

⑼ 大数据时代的数据怎么挖掘

3月13日下午,南京邮电大学计算机学院、软件学院院长、教授李涛在CIO时代微讲座栏目作了题为《大数据时代的数据挖掘》的主题分享,深度诠释了大数据及大数据时代下的数据挖掘。

众所周知,大数据时代的大数据挖掘已成为各行各业的一大热点。
一、数据挖掘
在大数据时代,数据的产生和收集是基础,数据挖掘是关键,数据挖掘可以说是大数据最关键也是最基本的工作。通常而言,数据挖掘也称为DataMining,或知识发现Knowledge Discovery from Data,泛指从大量数据中挖掘出隐含的、先前未知但潜在的有用信息和模式的一个工程化和系统化的过程。
不同的学者对数据挖掘有着不同的理解,但个人认为,数据挖掘的特性主要有以下四个方面:
1.应用性(A Combination of Theory and Application):数据挖掘是理论算法和应用实践的完美结合。数据挖掘源于实际生产生活中应用的需求,挖掘的数据来自于具体应用,同时通过数据挖掘发现的知识又要运用到实践中去,辅助实际决策。所以,数据挖掘来自于应用实践,同时也服务于应用实践,数据是根本,数据挖掘应以数据为导向,其中涉及到算法的设计与开发都需考虑到实际应用的需求,对问题进行抽象和泛化,将好的算法应用于实际中,并在实际中得到检验。
2.工程性(An Engineering Process):数据挖掘是一个由多个步骤组成的工程化过程。数据挖掘的应用特性决定了数据挖掘不仅仅是算法分析和应用,而是一个包含数据准备和管理、数据预处理和转换、挖掘算法开发和应用、结果展示和验证以及知识积累和使用的完整过程。而且在实际应用中,典型的数据挖掘过程还是一个交互和循环的过程。
3.集合性(A Collection of Functionalities):数据挖掘是多种功能的集合。常用的数据挖掘功能包括数据探索分析、关联规则挖掘、时间序列模式挖掘、分类预测、聚类分析、异常检测、数据可视化和链接分析等。一个具体的应用案例往往涉及多个不同的功能。不同的功能通常有不同的理论和技术基础,而且每一个功能都有不同的算法支撑。
4.交叉性(An Interdisciplinary Field):数据挖掘是一门交叉学科,它利用了来自统计分析、模式识别、机器学习、人工智能、信息检索、数据库等诸多不同领域的研究成果和学术思想。同时一些其他领域如随机算法、信息论、可视化、分布式计算和最优化也对数据挖掘的发展起到重要的作用。数据挖掘与这些相关领域的区别可以由前面提到的数据挖掘的3个特性来总结,最重要的是它更侧重于应用。
综上所述,应用性是数据挖掘的一个重要特性,是其区别于其他学科的关键,同时,其应用特性与其他特性相辅相成,这些特性在一定程度上决定了数据挖掘的研究与发展,同时,也为如何学习和掌握数据挖掘提出了指导性意见。如从研究发展来看,实际应用的需求是数据挖掘领域很多方法提出和发展的根源。从最开始的顾客交易数据分析(market basket analysis)、多媒体数据挖掘(multimedia data mining)、隐私保护数据挖掘(privacy-preserving data mining)到文本数据挖掘(text mining)和Web挖掘(Web mining),再到社交媒体挖掘(social media mining)都是由应用推动的。工程性和集合性决定了数据挖掘研究内容和方向的广泛性。其中,工程性使得整个研究过程里的不同步骤都属于数据挖掘的研究范畴。而集合性使得数据挖掘有多种不同的功能,而如何将多种功能联系和结合起来,从一定程度上影响了数据挖掘研究方法的发展。比如,20世纪90年代中期,数据挖掘的研究主要集中在关联规则和时间序列模式的挖掘。到20世纪90年代末,研究人员开始研究基于关联规则和时间序列模式的分类算法(如classification based on association),将两种不同的数据挖掘功能有机地结合起来。21世纪初,一个研究的热点是半监督学习(semi-supervised learning)和半监督聚类(semi-supervised clustering),也是将分类和聚类这两种功能有机结合起来。近年来的一些其他研究方向如子空间聚类(subspace clustering)(特征抽取和聚类的结合)和图分类(graph classification)(图挖掘和分类的结合)也是将多种功能联系和结合在一起。最后,交叉性导致了研究思路和方法设计的多样化。
前面提到的是数据挖掘的特性对研究发展及研究方法的影响,另外,数据挖掘的这些特性对如何学习和掌握数据挖掘提出了指导性的意见,对培养研究生、本科生均有一些指导意见,如应用性在指导数据挖掘时,应熟悉应用的业务和需求,需求才是数据挖掘的目的,业务和算法、技术的紧密结合非常重要,了解业务、把握需求才能有针对性地对数据进行分析,挖掘其价值。因此,在实际应用中需要的是一种既懂业务,又懂数据挖掘算法的人才。工程性决定了要掌握数据挖掘需有一定的工程能力,一个好的数据额挖掘人员首先是一名工程师,有很强大的处理大规模数据和开发原型系统的能力,这相当于在培养数据挖掘工程师时,对数据的处理能力和编程能力很重要。集合性使得在具体应用数据挖掘时,要做好底层不同功能和多种算法积累。交叉性决定了在学习数据挖掘时要主动了解和学习相关领域的思想和技术。
因此,这些特性均是数据挖掘的特点,通过这四个特性可总结和学习数据挖掘。
二、大数据的特征
大数据(bigdata)一词经常被用以描述和指代信息爆炸时代产生的海量信息。研究大数据的意义在于发现和理解信息内容及信息与信息之间的联系。研究大数据首先要理清和了解大数据的特点及基本概念,进而理解和认识大数据。
研究大数据首先要理解大数据的特征和基本概念。业界普遍认为,大数据具有标准的“4V”特征:
1.Volume(大量):数据体量巨大,从TB级别跃升到PB级别。
2.Variety(多样):数据类型繁多,如网络日志、视频、图片、地理位置信息等。
3.Velocity(高速):处理速度快,实时分析,这也是和传统的数据挖掘技术有着本质的不同。
4.Value(价值):价值密度低,蕴含有效价值高,合理利用低密度价值的数据并对其进行正确、准确的分析,将会带来巨大的商业和社会价值。
上述“4V”特点描述了大数据与以往部分抽样的“小数据”的主要区别。然而,实践是大数据的最终价值体现的唯一途径。从实际应用和大数据处理的复杂性看,大数据还具有如下新的“4V”特点:
5.Variability(变化):在不同的场景、不同的研究目标下数据的结构和意义可能会发生变化,因此,在实际研究中要考虑具体的上下文场景(Context)。
6.Veracity(真实性):获取真实、可靠的数据是保证分析结果准确、有效的前提。只有真实而准确的数据才能获取真正有意义的结果。
7.Volatility(波动性)/Variance(差异):由于数据本身含有噪音及分析流程的不规范性,导致采用不同的算法或不同分析过程与手段会得到不稳定的分析结果。
8.Visualization(可视化):在大数据环境下,通过数据可视化可以更加直观地阐释数据的意义,帮助理解数据,解释结果。
综上所述,以上“8V”特征在大数据分析与数据挖掘中具有很强的指导意义。
三、大数据时代下的数据挖掘
在大数据时代,数据挖掘需考虑以下四个问题:
大数据挖掘的核心和本质是应用、算法、数据和平台4个要素的有机结合。
因为数据挖掘是应用驱动的,来源于实践,海量数据产生于应用之中。需用具体的应用数据作为驱动,以算法、工具和平台作为支撑,最终将发现的知识和信息应用到实践中去,从而提供量化的、合理的、可行的、且能产生巨大价值的信息。
挖掘大数据中隐含的有用信息需设计和开发相应的数据挖掘和学习算法。算法的设计和开发需以具体的应用数据作为驱动,同时在实际问题中得到应用和验证,而算法的实现和应用需要高效的处理平台,这个处理平台可以解决波动性问题。高效的处理平台需要有效分析海量数据,及时对多元数据进行集成,同时有力支持数据化对算法及数据可视化的执行,并对数据分析的流程进行规范。
总之,应用、算法、数据、平台这四个方面相结合的思想,是对大数据时代的数据挖掘理解与认识的综合提炼,体现了大数据时代数据挖掘的本质与核心。这四个方面也是对相应研究方面的集成和架构,这四个架构具体从以下四个层面展开:
应用层(Application):关心的是数据的收集与算法验证,关键问题是理解与应用相关的语义和领域知识。
数据层(Data):数据的管理、存储、访问与安全,关心的是如何进行高效的数据使用。
算法层(Algorithm):主要是数据挖掘、机器学习、近似算法等算法的设计与实现。
平台层(Infrastructure):数据的访问和计算,计算平台处理分布式大规模的数据。
综上所述,数据挖掘的算法分为多个层次,在不同的层面有不同的研究内容,可以看到目前在做数据挖掘时的主要研究方向,如利用数据融合技术预处理稀疏、异构、不确定、不完整以及多来源数据;挖掘复杂动态变化的数据;测试通过局部学习和模型融合所得到的全局知识,并反馈相关信息给预处理阶段;对数据并行分布化,达到有效使用的目的。
四、大数据挖掘系统的开发
1.背景目标
大数据时代的来临使得数据的规模和复杂性都出现爆炸式的增长,促使不同应用领域的数据分析人员利用数据挖掘技术对数据进行分析。在应用领域中,如医疗保健、高端制造、金融等,一个典型的数据挖掘任务往往需要复杂的子任务配置,整合多种不同类型的挖掘算法以及在分布式计算环境中高效运行。因此,在大数据时代进行数据挖掘应用的一个当务之急是要开发和建立计算平台和工具,支持应用领域的数据分析人员能够有效地执行数据分析任务。
之前提到一个数据挖掘有多种任务、多种功能及不同的挖掘算法,同时,需要一个高效的平台。因此,大数据时代的数据挖掘和应用的当务之急,便是开发和建立计算平台和工具,支持应用领域的数据分析人员能够有效地执行数据分析任务。
2.相关产品
现有的数据挖掘工具
有Weka、SPSS和SQLServer,它们提供了友好的界面,方便用户进行分析,然而这些工具并不适合进行大规模的数据分析,同时,在使用这些工具时用户很难添加新的算法程序
流行的数据挖掘算法库
如Mahout、MLC++和MILK,这些算法库提供了大量的数据挖掘算法。但这些算法库需要有高级编程技能才能进行任务配置和算法集成。
最近出现的一些集成的数据挖掘产品
如Radoop和BC-PDM,它们提供友好的用户界面来快速配置数据挖掘任务。但这些产品是基于Hadoop框架的,对非Hadoop算法程序的支持非常有限。没有明确地解决在多用户和多任务情况下的资源分配。
3.FIU-Miner
为解决现有工具和产品在大数据挖掘中的局限性,我们团队开发了一个新的平台——FIU-Miner,它代表了A Fast,Integrated,and User-Friendly System for Data Miningin Distributed Environment。它是一个用户友好并支持在分布式环境中进行高效率计算和快速集成的数据挖掘系统。与现有数据挖掘平台相比,FIU-Miner提供了一组新的功能,能够帮助数据分析人员方便并有效地开展各项复杂的数据挖掘任务。
与传统的数据挖掘平台相比,它提供了一些新的功能,主要有以下几个方面:
A.用户友好、人性化、快速的数据挖掘任务配置。基于“软件即服务”这一模式,FIU-Miner隐藏了与数据分析任务无关的低端细节。通过FIU-Miner提供的人性化用户界面,用户可以通过将现有算法直接组装成工作流,轻松完成一个复杂数据挖掘问题的任务配置,而不需要编写任何代码
B.灵活的多语言程序集成。允许用户将目前最先进的数据挖掘算法直接导入系统算法库中,以此对分析工具集合进行扩充和管理。同时,由于FIU-Miner能够正确地将任务分配到有合适运行环境的计算节点上,所以对这些导入的算法没有实现语言的限制。
C.异构环境中有效的资源管理。FIU-Miner支持在异构的计算环境中(包括图形工作站、单个计算机、和服务器等)运行数据挖掘任务。FIU-Miner综合考虑各种因素(包括算法实现、服务器负载平衡和数据位置)来优化计算资源的利用率。
D.有效的程序调度和执行。
应用架构上包括用户界面层、任务和系统管理层、逻辑资源层、异构的物理资源层。这种分层架构充分考虑了海量数据的分布式存储、不同数据挖掘算法的集成、多重任务的配置及系统用户的交付功能。一个典型的数据挖掘任务在应用之中需要复杂的主任务配置,整合多种不同类型的挖掘算法。因此,开发和建立这样的计算平台和工具,支持应用领域的数据分析人员进行有效的分析是大数据挖掘中的一个重要任务。
FIU-Miner系统用在了不同方面:如高端制造业、仓库智能管理、空间数据处理等,TerraFly GeoCloud是建立在TerraFly系统之上的、支持多种在线空间数据分析的一个平台。提供了一种类SQL语句的空间数据查询与挖掘语言MapQL。它不但支持类SQL语句,更重要的是可根据用户的不同要求,进行空间数据挖掘,渲染和画图查询得到空间数据。通过构建空间数据分析的工作流来优化分析流程,提高分析效率。
制造业是指大规模地把原材料加工成成品的工业生产过程。高端制造业是指制造业中新出现的具有高技术含量、高附加值、强竞争力的产业。典型的高端制造业包括电子半导体生产、精密仪器制造、生物制药等。这些制造领域往往涉及严密的工程设计、复杂的装配生产线、大量的控制加工设备与工艺参数、精确的过程控制和材料的严格规范。产量和品质极大地依赖流程管控和优化决策。因此,制造企业不遗余力地采用各种措施优化生产流程、调优控制参数、提高产品品质和产量,从而提高企业的竞争力。
在空间数据处理方面,TerraFly GeoCloud对多种在线空间数据分析。对传统数据分析而言,其难点在于MapQL语句比较难写,任务之间的关系比较复杂,顺序执行之间空间数据分许效率较低。而FIU-Miner可有效解决以上三个难点。
总结而言,大数据的复杂特征对数据挖掘在理论和算法研究方面提出了新的要求和挑战。大数据是现象,核心是挖掘数据中蕴含的潜在信息,并使它们发挥价值。数据挖掘是理论技术和实际应用的完美结合。数据挖掘是理论和实践相结合的一个例子。

阅读全文

与基于大数据的数据挖掘相关的资料

热点内容
word删除尾注分隔符 浏览:773
公告质疑需要哪些文件 浏览:608
数据库模型是干什么的 浏览:404
win10的驱动怎么安装驱动 浏览:320
word文件水印怎么取消 浏览:443
rhel6的镜像文件在哪里下载 浏览:571
成功正能量微信头像 浏览:848
wps表格如何恢复数据 浏览:264
linuxc静态库创建 浏览:838
u盘有微信文件但微信恢复不了 浏览:585
苹果的网站数据是什么 浏览:22
ps滚字教程 浏览:237
win7网络邻居如何保存ftp 浏览:186
安卓客户端代理服务器 浏览:572
编程用苹果 浏览:659
51虚拟机的文件管理在哪里 浏览:13
win10系统有没有便签 浏览:722
java引用传递和值传递 浏览:109
oracle下载安装教程 浏览:854
php筛选数据库 浏览:830

友情链接