导航:首页 > 网络数据 > 无线数据通信网络技术

无线数据通信网络技术

发布时间:2022-12-30 02:10:29

❶ 无线通信技术分为哪些种类

1、无线通信技术的发展过程

回顾通信发展的历史,我们发现了一个非常有趣有过程:1832年莫尔斯发明了电报,它传送的信息是由众所周知的点划码组成的,即人类最早的通信是采用数字方式进行的。以后贝尔又发明了电话,并由此造就一个电信产业。一个多世纪以来,以电话服务为主的电信业走了一条成功之路,取得了极大的发展。然而随着人类社会的发展,电信业务也从早期的电报、电话发展到今天多种业务并存的局面,通信的规模也发生了翻天覆地的变化。随着科学技术的发展,现代通信又进入了数字时代。20世纪90年代信息革命的浪潮,建设信息高速公路的号角声,信息和知识爆炸式的增长,特别是因特网商用化后的迅猛发展,使传统的电信业受到巨大的震动和冲击。带给我们的启示是,问题的核心在于“信息”。在信息和知识已成为社会和经济发展的战略资源和基本要素的时代中,人们更加需要随时随地获取信息,原来点对点的固定电话通信方式已远不能满足需求了。人类需要宽带的无线通信技术,来满足多媒体化、普及化、多样化、全球化和个性化的信息交流。 无线通信是指采用电磁波进行信息传递的通信方式。早在1897年,马可尼使用800khz中波信号进行了从英国至北美纽芬兰的世界上第一次横跨大西洋的线无电报通信试验,开创了人类无线通信的新纪元。 在无线通信初期,受技术条件的限制,人们大量使用长波及中波进行通信。20世纪20年代初人们发现的短波通信,直到20世纪60年代卫星通信兴起前,它一直是远程国际通信的重要手段,并且目前对应急通信和军用通信依然有一定实用价值。

20世纪40年代到50年代产生了传输频带较宽、性能较稳定的微波通信,成为长距离大容量地面干线无线传输的重要手段。模拟调频传输容量高达2700路,亦可同时传输高质量彩色电视信号;尔号逐步进入中容量至大容量数字微波传输。80年代中期以来,随着频率选择性色散衰落对数字微波传输中断影响的发现及一系列自适应衰落对抗技术与高状态调制与检测技术的发展,使数字微波传输产生了一个革命性变化。特别应该指出的是20世纪80年代到90年代发展起来的一整套高速多状态自适应编码调制解调技术与信息号处理及信号检测技术,对现今卫星通信、移动通信、全数字hdtv传输、通用高速有线/无线接入,乃至高质量磁性记录等诸多领域的信号设计与信号处理及应用,发挥了重要作用。随着国民经济和社会发展的信息化,人们要通信息化开创新的工作方式、管理方式、商贸方式、金融方式、思想交流方式、文化教育方式、医疗保健方式以及消费与生活方式。无线通信也从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段;

第一阶段为20年代初至50年代初,主要用于舰船及军有,采用短波频及电子管技术,至该阶段末期才出现150mhz vhf单工汽车公用移动电话系统mts。

第二阶段为50年代到60年代,此时频段扩展至uhf450mhz,器件技术已向半导体过渡,大都为移动环境中的专用系统,并解决了移动电话与公用电话网的接续问题。

第三阶段为70年代初至80年代初频段扩展至800mhz,美国bell研究所提出了蜂窝系统概念并于70年代末进行了amps试验。

第四阶段为80年代初至90年代中,为第二代数字移动通信兴起与大发展阶段,并逐步向个人通信业务方向迈进;此时出现了d-amps、tacs、etacs、gsm/dcs、cdmaone、pdc、phs、dect、pacs、pcs等各类系统与业务运行,频段扩展至900mhz~1.9ghz,而且除公众蜂窝电话通信系统外,无线寻呼系统、无绳电话系统、集群系统、无中心多信道选址移动通信系统等各类移动通信手段适应用户市场需求同时兴起并各显神通。

第五阶段为90年代中至今,随着数据通信与多媒体业务需求的发展,适应移动数据、移动计算及移动多媒体运作需要的第三代移动通信开始兴起,其全球标准化及相应融合工作与样机研制和现场试验工作在快速推进,包括从第二代至第三代移动通信的平滑过渡问题在内。对于第三代移动tmt-2000纷纷参与标准的制定,经多次融合努力在1999年10月25日至11月5日芬兰赫尔辛基召开的itu-r tg8/1第18次会议上5类rtt技术标准共6种方案成为最终结果。中国的td-scdma方案也已成为其中之一。应该指出,utrawcdma ds及tia cdma2000mc的相应起步样机已经诞生,包括以gsm、csmaone后向兼容为基础的第二代半过渡设备(g)edge、cdma is-95b hdr(2.4mbit/s峰值速率,64qam调制)及cdma2000-1x等亦已推出。

此外,为接续internet移动游览应用的无线应用协议(wap)与无线连接技术蓝牙(blue tooth)已经产生。从网络的角度来看,接入网可分成有线接入网和无线接入网、光缆同轴混合接入网、铜线电缆、对绞线、电话(一般为铜线)接入网等等;无线接入技术是近些年迅速发展起来的新技术领域,它从概念上产生了一个重大的飞跃,即不需要缆线类物理传输媒质而采用无线传播手段来代替部分接入网甚至入网的全部,从而达到降低成本、提高灵活性和扩展传输距离的目的。无线接入网品种繁多,如移动卫生系统,蜂窝移动通信系统,集群通信系统,一点到多点微波通信系统,微波蜂窝的无线本地接入系统(phs、pas、pacs、dect)等。短距离之内的接入技术主要有蓝牙(blue tooth)、红外线、dect、ieee802.11和共享无线接入协议(swap)/homerf等系统。继广域网(wan、wind、area network或城域网,man,metropolitan area network)、局域网(lan,local area network)之后,最近人们又提出了“无线个域网”(wpan、wireless personal area network)。这一新概念将小范围应用提升至网络理论的高度。在短短的时间,wpan成为一个受人瞩目的新热点,wpan的研究组成立不到1上,就演变为ieee的专门工作组ieee802.5(即wpan working group,于1999年3月成立),可见其受重视的程度。

比较而言,blue tooth系统更具有代表性,它正根据wpan的概念向前发展。事实上,blue tooth和wpan的概念相辅相成,blue tooth已经是wpan的一个雏形。从它最初由ericsson,ibm,inter,nokia和toshiba公司作为原始发起组织而推出,1年多时间已吸引了近2000个国际上有影响的公司参与。1999年底,美国的4家公司3com,lucent,microsoft和motorola,与上述5公司一样作为blue tooth的发起组织,使它在与swap、ieee802.11等类似应用标准的竞争中脱颖而出,发展前景更加明朗。为了推动blue tooth的发展,blue tooth的标准是非专利的,blue tooth已成为目前通信领域的一个新热点,预计不远的将来就可成为小范围无线多媒体通信的国际标准。总之,无线通信技术前景一片光明。

2、我国无线通信技术的发展

当前,中国是世界各国通信技术运营商和设备制造商关注的焦点,大家都希望在中国的市场上占有自己的发展空间和市场份额。移动通信在中国发展十分迅速,中国移动通信的走向一直为世人所瞩目。1987年11月,我国广东正式开通了第一个tacs制式模拟蜂窝移动通信系统,实现了移动电话用户“零”的突破。1994年底,广东又首先开通了gsm数字蜂窝移动通信系统,至1995年,全国已15个省、市也相继开通了gsm移动通信网。迄今为止,全国各省、自治区、直辖市面上都建设了gsm网,实现了国内和国际的全自动温游。目前我国正在积极准备在21世纪初期开展第三代移动通信的商用试验。

从1987年至今,我国移动电话用户数的增长很快,尤其是gsm网更是以人们始料不及的速度在迅猛发展。这主要是因为gsm系统在技术和经济方面均比tacs系统有较大的优势,更重要的是我国在gsm运营领域引入了竞争机制,促进了gsm网的发展。我国的移动通信用户已超过了8000万,位居世界第二。

近10年来,我国在移动通信领域的科研、设备生产等方面也取得了可喜的进步。国产移动通信设备—交换系统、基站和手机等都已经投入生产,并陆续投放市场,第三代移动通信系统的开发和研究也正与世界同步。可见,中国无线通信在运营业与制造业上已取得了第一阶段的成功。

3、今后无线通信技术的趋势

21世纪的电信技术正进主一个关键的转折时期、未来十年将是技术发展最为活跃的时期。信息化社会的到来以及ip技术的兴起,正深刻的改变着电信网络的面貌以及未来技术发展的走向。未来无线通信技术发展的主要趋势是宽带化、分组化、综合经、个人化、主要特点体现为以上几个方面:

(1)宽带化是通信信息技术发展的重要方向之一。随着光纤传输技术以及高通透量网络节点的进一步发展,有线网络的宽带化正在世界范围内全面展开,而无线通信技术也正在朝着无线接入宽带化的方向演进,无线传输速率将从第二代系统的9.6kbit/s向第三代移动通信系统的最高速率2mbit/s发展。

(2)核心网络综合化,接入网络多样化。未来信息网络的结构模式将向核心网/接入网转变,网络的分组化和宽带化,使在同一核心网络上综合传送多种业务信息成为可能,网络的综合化以及管制的逐步开放和市场竞争的需要,将进一步推动传统的电信网络与新兴的计算机网络的融合。接入网是通信信息网络中最具开发潜力的部分,未来网络可通过固定接入、移动蜂窝接入、无线本地环路入等不同的接入设备,接入核心网实现用户所需的各种业务。在技术上实现固定和移动通信等不同业务的相互融合,尤其是无线应用协议(wap)的问世,将极大地推动无线数据业务的开展,进一步促进移动业务与ip业务的融合。

(3)信息个人化是下世纪初信息业进一步发展的主要方向之一。而移动ip正是实现未来信息个人化的重要技术手段,在手机上实现各种ip应用以及移动ip技术正逐步成为人们关注的焦点之一。移动智能网技术与ip技术的组合将进一步推动全球个人通信的趋势。

(4)移动通信网络结构正在经历一场深刻的变革,随着网络中数据业务量主导地位的形成,现有电路交换网络向ip网络过渡的趋势已不可阻挡,ip技术将成为未来网络的核心关键技术,ip协议将成为电信网的主导通信协议。随着移动通信通用分组无线业务(gprs)的引入,用户将在端到端分组传输模式下发送和接收数据,打破传统的数据接入接式。以ip为基础组网,开始了移动骨干网ip应用的实践。

4、无线通信技术在数字社区中的应用

无线通信技术的发展为实现数字化社区提供了有力的保证,数字化社区提供了有力的保证。数字化社区的特点是信息的交流非常的广泛和方便,无论是实验室、办公室还是家庭,计算机及其外设的应用越来越普及,社区中的设备也都有电脑控制。如果它们之间的通信仍然采用有线方式的话,这将给使用带来很大的不便。blue tooth技术为我们建立一个全无线的工作环境和生活环境,blue tooth标准已制定了和计算机以及与internet、pstn、isdn(integrated services digital network)、lan、wan、xdsl (xdigital subscriber loop)等网络的接口协议,其目标是用单一的blue tooth标准来建立起和众多国际标准的连接。目前它用1mb/s的速率已完全可以胜认这些工作,将来根据ieee802.15的发展计划,可以将速率提高到20mb/s以上。我们可以使用无线电缆来连接办公室和家庭中的电子设备,甚至包括键盘、鼠标等也采用无线传输。我们拥有一个无线公务包,以便携计算机和掌上计算机为代表,采用无线方式和其他设备或网络相连接,使我们拥有一个可流动的办公室。

internet和移动通信的迅速发展,使人们对电脑以外的各种数据源和网络服务的需求日益增长。数字照相机、数字摄像机等设备装上blue tooth系统,既可免去使用电缆的不便,又不可不受内存溢出的困扰,随时随地可将所摄图片或影像通过同样装上blue tooth系统的手机或其他设备传回指定的计算机中。pda(personal digital assistant)装上blue tooth系统后,采用无线方式收、发e-mail甚至浏览网页将更为方便。blue tooth的硬件电路可以做到微型化,在headset上应用非常合适。装上blue tooth系统的headset可以使它和手机进行无线连接,也可以使人在小范围内自由走动地打电话、收听音乐,在较大的范围内召开电话会议。微型化、低功耗和低成本的特性给blue tooth在人们日常生活中的应用开拓了近乎无限的空间。例如,blue tooth构成的无线电电子锁比其它非接触式电子锁或ic锁具有更高的安全性和适用性,各种无线电遥控器(特别是汽车防盗和遥控)比红外线遥控器的功能更强大,在餐馆酒楼用膳时菜单的双向无线传输或招呼服务员提供指定的服务(如添茶、加饮料等)将更为方便等。利用蓝牙做出来的传感器可以随时监视家庭中的冰箱存量的变化,从而随时反映出用户所需要的物品,如果再连接到internet上的话,可以实现网上购物。

未来的信息家电将以internet和家庭网络为基础、以无线连接实现双向传输,是具有一定智能的3c(computer、communication和consumer)相融合的信息产品。以蓝牙技术设计的数字手机、家庭及办公室电话、小型pbx等电话系统,实现了真正意义上的个人通信。蓝牙提供了低成本、低功耗的无线接入式,顺应了现代通信技术和应用的发展潮流,在信息家电和移动通信等方面具有巨大的发展潜力。蓝牙技术自提出以来,在短短的2年内已风靡全球。根据市场调查和预测,1999年蓝牙技术的产品全球销量几乎为零,2000年猛增到3670万美元,2001年将在到1.26亿美元,2006年可达到到6.99亿美元;2002年,全球使用蓝牙技术的计算机外围设备将达到1.5亿台,使用蓝牙技术笔记本电脑将达到2500万部;2003年全球90%以上的笔记本电脑将使用蓝牙技术,2006年全球将推出6.7亿台使用蓝牙技术的信息家电。

回顾无线通信的发展历程,个人通信的移动性与无缝隙覆盖多媒体综合业务需求将愈来愈突出。频谱延伸至毫米波、亚毫米波的电磁“无线光纤”乃至激光与粒子通信范畴的无线通信将有愈来愈广阔的活动舞台及光明的发展前景。市场是发展的驱动力。尽管我国的移动通信和互联网发展十分迅速,但我国目前的移动电话和网络用户普及率还很低,面对我国12亿人口,我国在网络规模和容量方面有很大的发展空间。同时,竞争局面的形成,促使运营企业积极拓展新业务、新应用,向用户提供丰富的选择,以满足用户多方面、多层次的需求。因此,在移动通信和互联网上的应用开发也有很大的发展潜力。我们要积极促进无线领域的科技进步、技术创新,为实现科教兴国战略,增强中华民族的综合国力,为全球信息化及经济全球化环境下的国际社会与全人类的发展而积极贡献力量。

❷ 无线通信网络如何分类

无线根据国际上所采用的通信技术种类可将无线传感器网络划分为无线广域网(WWAN)、无线城域网(WMAN)、无线局域网(WLAN)、无线个域网(WPAN)、低速率无线个域网(LR-WPAN)。以下是对各类网络各自常见和常用的通信技术进行简单介绍。

三、无线局域网(WLAN)
无线局域网是指以无线电波、红外线等无线媒介来代替目前有线局域网中的传输媒介(比如电缆)而构成的网络。无线局域网内使用的通信技术覆盖范围一般为半径100m左右,也就是说差不多几个房间或小公司的办公室。当然实际的覆盖范围受很多因素影响,比如通信区域中的高大障碍物。
IEEE
802.11系列标准是IEEE制订的无线局域网标准,主要对网络的物理层和媒质访问控制层进行规定,其中重点是对媒质访问控制层的规定。目前该系列的标准有:IEEE802.11、IEEE
802.11b、IEEE 802.11a、IEEE 802.11g、IEEE 802.11d、IEEE 802.11e、IEEE802.11f、IEEE
802.11h、IEEE 802.11i、IEEE 802.11j等,其中每个标准都有其自身的优势和缺点。
下面就IEEE已经制订且涉及物理层的4种IEEE 802.11系列标准:IEEE 802.11、IEEE802.11a、IEEE 802.11b和IEEE
802.11g进行简单介绍。
1.IEEE 802.11
IEEE
802.11是最早提出的无线局域网网络规范,是IEEE于1997年6月推出的,它工作于2.4GHz的ISM频段,物理层采用红外、跳频扩频(Frequency
Hopsping SpreadSpectrum,FHSS)或直接序列扩频(Direct Sequence Spread
Spectrum,DSSS)技术,其数据传输速率最高可达2Mbps,它主要应用于解决办公室局域网和校园网中用户终端等的无线接入问题。使用FHSS技术时,2.4GHz频道被划分成75个1MHz的子频道,当接收方和发送方协商一个调频的模式,数据则按照这个序列在各个子频道上进行传送,每次在IEEE
802.11网络上进行的会话都可能采用了一种不同的跳频模式,采用这种跳频方式避免了两个发送端同时采用同一个子频段;而DSSS技术将2.4GHz的频段划分成14个22MHz的子频段,数据就从14个频段中选择一个进行传送而不需要在子频段之间跳跃。由于临近的频段互相重叠,在这14个子频段中只有3个频段是互不覆盖的。IEEE
802.11由于数据传输速率上的限制,在2000年也紧跟着推出了改进后的IEEE
802.11b。但随着网络的发展,特别是IP语音、视频数据流等高带宽网络应用的需要,IEEE
802.11b只有11Mbps的数据传输率不能满足实际需要。于是,传输速率高达54Mbps的IEEE
802.11a和IEEE802.11g也都陆续推出。
2.IEEE 802.11b
IEEE 802.11b又称为Wi-Fi,是目前最普及、应用最广泛的无线标准。IEEE 802.11b工作于2.4GHz频带,物理层支持5.5
Mbps和11 Mbps 两个速率。IEEE 802.11b的传输速率会因环境干扰或传输距离而变化,其速率在1 Mbps、2 Mbps、5.5 Mbps、11
Mbps 之间切换,而且在1 Mbps、2 Mbps速率时与IEEE 802.11兼容。IEEE
802.11b采用了直接序列扩频DSSS技术,并提供数据加密,使用的是高达128位的有线等效保密协议(WiredEquivalent
Privacy,WEP)。但是IEEE 802.11b和后面推出的工作在5GHz频率上的IEEE802.11a标准不兼容。
从工作方式上看,IEEE
802.11b的工作模式分为两种:点对点模式和基本模式。点对点模式是指无线网卡和无线网卡之间的通信方式,即一台配置了无线网卡的计算机可以与另一台配置了无线网卡的计算机进行通信,对于小规模无线网络来说,这是一种非常方便的互联方案;而基本模式则是指无线网络的扩充或无线和有线网络并存时的通信方式,这也是IEEE
802.11b最常用的连接方式。在该工作模式下,配置了无线网卡的计算机需要通过“无线接入点”才能与另一台计算机连接,由接入点来负责频段管理等工作。在带宽允许的情况下,一个接入点最多可支持1
024个无线节点的接入。当无线节点增加时,网络存取速度会随之变慢,此时通过添加接入点的数量可以有效地控制和管理频段。
IEEE
802.11b技术的成熟,使得基于该标准网络产品的成本得到很大的降低,无论家庭还是公司企业用户,无须太多的资金投入即可组建一套完整的无线局域网。当然,IEEE
802.11b并不是完美的,也有其不足之处,IEEE
802.11b最高11Mbps的传输速率并不能很好地满足用户高数据传输的需要,因而在要求高宽带时,其应用也受到限制,但是可以作为有线网络的一种很好的补充。
3.IEEE 802.11a
IEEE
802.11a工作于5GHz频带,但在美国是工作于U-NII频段,即5.15~5.25GHz、5.25~5.35GHz、5.725~5.825GHz三个频段范围,其物理层速率可达54
Mbps,传输层可达25Mbps。IEEE 802.11a的物理层还可以工作在红外线频段,波长为850~950纳米,信号传输距离约10m。IEEE
802.11a采用正交频分复用(OFDM)的独特扩频技术,并提供25Mbps的无线ATM接口和10Mbps的以太网无线帧结构接口,支持语音、数据、图像业务。IEEE
802.11a使用正交频分复用技术来增大传输范围,采用数据加密可达152位的WEP。
就技术角度而言,IEEE 802.11a与IEEE 802.11b之间的差别主要体现在工作频段上。由于IEEE 802.11a工作在与IEEE
802.11b不同的5GHz频段,避开了大量无线电子产品广泛采用的2.4GHz频段,因此其产品在无线通信过程中所受到的干扰大为降低,抗干扰性较IEEE
802.11b更为出色。高达54Mbps数据传输带宽,是IEEE 802.11a的真正意义所在。当IEEE
802.11b以其11Mbps的数据传输率满足了一般上网浏览网页、数据交换、共享外设等需求的时候,IEEE
802.11a已经为今后无线宽带网的高数据传输要求做好了准备,从长远的发展角度来看,其竞争力是不言而喻的。此外,IEEE
802.11a的无线网络产品较IEEE802.11b有着更低的功耗,这对笔记本电脑及PDA等移动设备来说也有着重大实用价值。
然而在IEEE 802.1la的普及过程中也面临着很多问题。首先,来自厂商方面的压力。IEEE 802.11b已走向成熟,许多拥有IEEE
802.11b产品的厂商会对IEEE
802.11a都持保守态度。从目前的情况来看,由于这两种技术标准互不兼容,不少厂商为了均衡市场需求,直接将其产品做成了“a+b”的形式,这种做法虽然解决了“兼容”问题,但也使得成本增加。其次,由于相关法律法规的限制,使得5GHz频段无法在全球各个国家中获得批准和认可。5GHz频段虽然令基于IEEE802.11a的设备具有了低干扰的使用环境,但也有其不利的一面,由于太空中数以千计的人造卫星与地面站通信也恰恰使用5GHz频段,这样它们之间产生的干扰是不可避免的。此外,欧盟也已将5GHz频率用于其自己制订的HiperLAN无线通信标准。
4.IEEE 802.11g
IEEE 802.11g是对IEEE
802.11b的一种高速物理层扩展,它也工作于2.4GHz频带,物理层采用直接序列扩频(DSSS)技术,而且它采用了OFDM技术,使无线网络传输速率最高可达54Mbps,并且与IEEE802.11b完全兼容。IEEE802.11g和IEEE802.11a的设计方式几乎是一样的。
IEEE 802.11g的出现为无线传感器网络市场多了一种通信技术选择,但也带来了争议,争议的焦点是围绕在IEEE 802.11g与IEEE
802.11a之间的。与IEEE
802.11a相同的是,IEEE802.11g也采用了OFDM技术,这是其数据传输能达到54Mbps的原因。然而不同的是,IEEE
802.11g的工作频段并不是IEEE 802.11a的工作频段5GHz,而是和IEEE 802.11b一致的2.4GHz频段,这样一来,使得基于IEEE
802.11b技术产品的用户所担心的兼容性问题得到了很好的解决。
从某种角度来看,IEEE 802.11b可以由IEEE 802.11a来替代,那么IEEE
802.11g的推出是否就是多余的呢?答案当然是否定的。IEEE
802.11g除了具备高数据传输速率及兼容性的优势外,其所工作的2.4GHz频段的信号衰减程度也不像IEEE 802.11a所在的5GHz那么严重,并且IEEE
802.11g还具备更优秀的“穿透”能力,能在复杂的使用环境中具有很好的通信效果。但是IEEE 802.11g工作频段为2.4GHz,使得IEEE
802.11g与IEEE 802.11b一样极易受到来自微波、无线电话等设备的干扰。此外,IEEE 802.11g的信号比IEEE
802.11b的信号能够覆盖的范围要小得多,用户需要通过添置更多的无线接入点才能满足原有使用面积的信号覆盖,这或许就是IEEE
802.11g能够具有高宽带所付出的代价吧!
IEEE 802.11系列4个标准的一些特性见表1-2。
四、无线个域网(WPAN)
从网络构成上来看,无线个域网WPAN(Wireless Personal Area
Networks)位于整个网络架构的底层,用于很小范围内的终端与终端之间的连接,即点到点的短距离连接。WPAN是基于计算机通信的专用网,工作在个人操作环境,把需要相互通信的装置构成一个网络,且无须任何中央管理装置及软件。用于无线个域网的通信技术有很多,如蓝牙、红外、UWB、HomeRF等,下面就几种主要的技术进行讲述。
1.蓝牙(Bluetooth)
蓝牙(Bluetooth)是由爱立信、英特尔、诺基亚、IBM和东芝等公司于1998年5月联合主推的一种短距离无线通信技术,它可以用于在较小的范围内通过无线连接的方式实现固定设备或移动设备之间的网络互联,从而在各种数字设备之间实现灵活、安全、低功耗、低成本的语音和数据通信。蓝牙技术的一般有效通信范围为10m,强的可以达到100m左右,其最高速率可达1Mbps。
蓝牙技术运行在全球通行的、无须申请许可的2.4GHz频段。采用GFSK调制技术,传输速率达1Mbps;采用FHSS扩频技术,把信道分成若干个长为625μs的时隙,每个时隙交替进行发射和接收,实现时分双工。在2.402~2.480GHz频段内含有间隔为1MHz的79个跳频载频及一系列的跳频序列,跳频速率为1
600hops/s,每个时隙传送一个分组数据。蓝牙由于采用了时分双工,可以防止收发信机之间的串扰;采用跳频技术提高了设备抗干扰能力,以及提供了一定的安全保障,便于叠区组网。蓝牙采用电路交换和分组交换技术,可独立或同时支持异步数据信道和语音信道。每个同步语音信道数据速率为64kbps,语音信号编码采用脉冲编码调制或连续可变斜率增量调制方法。当采用非对称信道传输数据时,其速率可达723.2kbps;当采用对称信道传输数据时,速率最高为342.6kbps。蓝牙还使用了前向纠错(Forward
Error Correction,FEC)机制,从而抑制了长距离链路的随机噪声。
基于蓝牙技术的设备在网络中所扮演的角色有主设备和从设备之分。主设备负责设定跳频序列,从设备必须与主设备保持同步。主设备负责控制主从设备之间的业务传输时间与速率。在组网方式上,通过蓝牙设备中的主设备与从设备可以形成一点到多点的连接,即在主设备周围组成一个微微网,网内任何从设备都可与主设备通信,而且这种连接无须任何复杂的软件支持,但是一个主设备同时最多只能与网内的7个从设备相连接进行通信。同样,在一个有效区域内多个微微网通过节点桥接可以构成散射网。
蓝牙技术是一种新兴的技术,其传输使用的功耗很低,它可以应用到无线传感器网络中。同时,也可以广泛应用于无线设备(如PDA、手机、智能电话)、图像处理设备(照相机、打印机、扫描仪)、安全产品(智能卡、身份识别、票据管理、安全检查)、消遣娱乐(蓝牙耳机、MP3、游戏)、汽车产品(GPS、动力系统、安全气袋)、家用电器(电视机、电冰箱、电烤箱、微波炉、音响、录像机)、医疗健身、智能建筑、玩具等领域。如今日常生活中基于蓝牙技术的手机、耳机和笔记本电脑随处可见。
2.红外(IrDA)
IrDA是国际红外数据协会的英文缩写,IrDA技术是一种利用红外线进行点对点短距离通信的技术。IrDA技术的主要特点有:利用红外传输数据,无须专门申请特定频段的使用执照;具有对设备体积小、功率低的特点;由于采用点到点的连接,数据传输所受到的干扰较小,数据传输速率高,速率可达16Mbps。
由于IrDA使用红外线作为传播介质。红外线是波长在0.75~1000μm之间的无线电波,是人用肉眼看不到的光线。红外数据传输一般采用红外波段内波长在0.75~25μm之间的近红外线。红外数据协会成立后,为保证不同厂商基于红外技术的产品能获得最佳的通信效果,规定所用红外波长在0.85~0.90μm之间,红外数据协会相继也制订了很多红外通信协议,有些注重传输速率,有些则注重功耗,也有二者兼顾的。

3.UWB
UWB(Ultra
Wideband)技术最初是被作为军用雷达技术开发的,它是一种不用载波,而采用时间间隔极短(小于1纳秒)的脉冲进行通信的方式,能在10m左右的范围内达到数百Mbps至数Gbps的数据传输速率。
4.HomeRF
HomeRF是由HomeRF工作组开发的,它是在家庭区域范围内的计算机和电子设备之间实现无线数字通信的开放性工业标准,为家庭用户建立具有互操作性的音频和数据通信网带来了便利。
HomeRF是IEEE 802.11与DECT(Digital Enhanced Cordless Telephony)的结合。与前面所介绍的IEEE
802.11、IEEE
802.11b、蓝牙等无线通信技术一样,HomeRF工作在开放的2.4GHz频段,采用跳频扩频(FHSS)技术,跳频速率为50hops/s,共有75个带宽为1
MHz的跳频信道,室内覆盖范围约45m,调制方式为恒定包络的FSK调制,且分2FSK与4FSK两种,采用FSK调制可以有效地抑制无线通信环境下的干扰和衰落。2FSK方式下,最高数据的传输速率为1Mbps;4FSK方式下,速率可达2Mbps。在新的HomeRF
2.x标准中,采用了宽带跳频(Wide Band Frequency
Hopsping,WBFH)技术来增加跳频带宽,由原来的1MHz跳频信道增加到3MHz和5MHz,跳频的速率也提高到75hops/s,数据传输速率峰值达10Mbps。
HomeRF是对现有无线通信标准的综合和改进。HomeRF把共享无线接入协议(SWAP)作为网络的技术指标,当进行数据通信时,采用简化的IEEE
802.11标准,沿用类似于以太网技术中的载波监听多路访问/冲突避免(CSMA/CA)方式;当进行语音通信时,则采用DECT无线通信标准,使用TDMA技术。HomeRF提供了对流媒体真正意义上的支持,其规定了高级别的优先权并采用了带有优先权的重发机制,这样就满足了播放流媒体所需的高带宽、低干扰、低误码要求。
目前HomeRF技术仅获得了少数公司的支持,并且由于在抗干扰能力等方面与其他技术标准相比也存在不少缺陷,这些使得HomeRF技术的应用和发展前景受到限制,又加上这一标准推出后,市场策略定位不准、后续研发与技术升级进展迟缓,因此,从2000年之后,HomeRF技术开始走下坡路,2001年HomeRF的普及率降至30%,逐渐丧失市场份额。尤其是芯片制造巨头英特尔公司决定在其面向家庭无线网络市场的AnyPoint产品系列中增加对IEEE802.11b标准的支持后,HomeRF的发展前景比较不乐观。这样看来,HomeRF很难冲出只能在家庭里应用的限制。
5.IEEE 802.15.1
IEEE
802.15.1标准是IEEE批准的用于无线个域网的蓝牙技术标准,它是由蓝牙标准演变而来的。该标准手2002年推出,但是在实施过程中进行了修改,于2005年发布了它的修正版。
目前国际上RFID的标准还不统一,很多公司企业都推出各自的标准,而且之间互不兼容。全球主要有两大阵营:欧美的Auto-ID
Center与日本的Ubiquitous ID
Center(UID)。前者的领导组织是美国的EPC环球协会,旗下有沃尔玛集团、英国Tesco等企业,同时有IBM、微软、飞利浦、Auto-ID
Lab等公司提供技术支持;后者主要由日本厂商组成。欧美的EPC标准采用860~930MHz的UHF频段,电子标签的信息位数为96位,日本RFID标准采用2.45GHz和13.56MHz的频段,其电子标签的信息位数为128位。
RFID技术可运用在很多方面,其典型应用有物流和供应链管理、生产制造和装配、航空行李处理、邮件与快运包裹处理、文档追踪、图书馆管理、动物身份标识、运动计时、门禁控制、电子门票和道路自动收费等。
五、低速率无线个域网(LR-WPAN)
1.IEEE 802.15.4/ZigBee
IEEE 802.15.4是为满足低功耗、低成本的无线传感器网络要求而专门开发的低速率WPAN标准。IEEE
802.15.4工作在ISM频段,它定义了2.45GHz频段和868/915
MHz频段两个物理层,这两个物理层都采用直接序列扩频(DSSS)技术。在2.45GHz频段有16个速率为250kbps的信道,在868
MHz频段有1个20kbps的信道,在915MHz频段有l0个40kbps的信道。IEEE 802.15.4有如下优点。
① 网络能力强:IEEE 802.15.4具有卓越的网络能力,在基于IEEE 802.15.4的网络中,可对多达254个网络设备进行动态寻址。
② 适应性好:IEEE
802.15.4可与现有控制网络标准无缝集成。通过网络协调器可自动建立网络,采用载波监听多路访问/冲突避免(CSMA/CA)方式进行信道存取。
③ 可靠性高:IEEE 802.15.4提供全握手协议,能可靠地传递数据。
ZigBee建立在IEEE
802.15.4标准上,并确定了可以在不同制造商之间共用的应用协议,是一种新兴的近距离、低复杂度、低功耗、低数据传输速率、低成本的无线传感器网络技术。它依据IEEE
802.15.4标准,可在众多的传感器节点之间相互协调实现通信。

ZigBee技术具有以下特点:
① 数据传输速率低:只有10~250kbps的带宽,因而它专注于低数据传输方面应用。
② 功耗低、成本低:由于工作周期很短,并且在应用中采用了休眠模式,那么收发信息功耗较低。ZigBee数据传输速率低,协议简单,这大大降低了成本。

网络容量大:ZigBee支持星状、片状和网状网络结构,一个基于ZigBee的网络可以容纳最多254个从设备和1个主设备,一个区域内可以同时存在最多100个ZigBee网络。
④ 时延短:通常时延都在15~30ms之间,因此在对实时性要求高的自动控制领域,ZigBee有着很好的应用和推广。
⑤ 高安全性:ZigBee提供了数据完整性检查和鉴定功能,采用AES-128加密算法。

有效范围小:ZigBee的通信有效覆盖范围在10~75m之间,基本上能够覆盖普通的家庭或办公室环境,其具体通信范围受实际发射功率的大小和各种不同应用模式的影响。
ZigBee主要应用在距离短、功耗低且传输速率要求不高的各种电子设备之间,典型的传输数据类型有周期性数据、间歇性数据和低反应时间数据。因而它的应用目标主要是:工业控制(如自动控制设备、无线传感器网络)、医护(如监视和传感)、家庭智能控制(如照明、水电气计量及报警)、消费类电子设备的遥控装置、PC外设的无线连接等领域。
2.Z-Wave
Z-Wave是Z-Wave联盟推出的一种基于射频的、低成本、低功耗、适用于无线传感器网络的高可靠性的无线通信技术。目前Z-Wave主要专注于家庭自动化领域,主要包括照明系统控制、读取仪表(水、气、电)、家用电器功能控制、身份识别、能量管理系统等。
Z-Wave属于低速率无线个域网通信技术,其工作频段为908MHz
ISM频带,其着力于窄带宽应用。Z-Wave的带宽只有9.6kbps,因而它也不适合用于高数据传输的应用,由于家用自动化系统中传输的数据量不多,所以其9.6kbps的带宽已经足够了。Z-Wave的传输距离为室内大于30m,室外大于10m,但这些都只是在单段传输时距离的理论值,实际的传输距离受发射功率的大小、应用模式及网络中中继节点的使用情况等因素的影响。由于Z-Wave和前面介绍的很多无线通信技术一样工作在ISM频段,那样其所受到的干扰很多,但是Z-Wave通过使用冗余的传送机制来降低干扰,利用浓缩帧格式和随机插入算法保证在网内设备之间高可靠性地进行通信。
总之,根据Z-Wave结构简单,成本低,功耗低,可靠性高,安全性高和其网络易管理等特征,Z-Wave在家庭自动化领域的市场中将会占有一席之地。
3.Insteon
Insteon是一种复杂度低,功耗低,数据传输速率低,成本低的双向混合通信技术,具有即时响应,易安装,易使用,经济可靠和与X10兼容的特点。Insteon被称为混合通信技术是因为它通过电力线和无线两种方式来实现家庭设备间的互联。Insteon网络是点对点通信的网状网结构,因而网络中所有设备的角色是对等的,都能发送报文、接收报文及转发报文,但是出于节能方面考虑,一般都不转发报文。
家庭网络中单独使用电力线或ISM频段都存在很多问题。单独使用无线通信时,无线设备要受到其他设备的干扰且无线信号在家庭环境中有很强的多径效应。使用电力线存在相位桥接和有严重电流噪声。为了解决这些问题,lnsteon通过电力线和无线构成的双线网状网络,改善了单一介质传输中的问题,提高了网络的可靠性。
Insteon网络工作在131.65kHz的电力线和904MHz的ISM频段上,采用CSMA实现MAC层的访问。当工作在131.65
kHz时,它采用BPSK调制方式,突发数据速率为13165bps,平均数据速率为2
880bps;当工作在904MHz时,它采用FSK调制方式,无线突发数据速率为38400bps。
根据Insteon的空中接口规范,用电力线上的零交叉点可实现电力线设备和无线设备全网同步。Insteon网络中有标准报文和扩展报文两种,其中电力线上传输的报文长度与无线传输的报文长度不一样,传输时报文需要分割成多个分组,每个分组中需要加入额外的同步比特,且只能在1.823ms的零交叉期间(电压零点前0.8ms至后1.023
ms)传输,每个零交叉期间传输的24bit,标准报文和扩展报文长度分别为120bit、264bit,因此传输一个标准报文需6个零交叉,最后一个为静默期,传输一个扩展报文需13个零交叉,最后两个为静默期。无线信道上的标准报文和扩展报文分别为112bit和224bit,需要时间为2.708ms和5.625
ms。
Insteon技术利用联播转发机制,因而不需要路由机制,也不需要网络中心控制器。联播转发为接收报文的设备,在报文转发跳数为非零,目的地址与自己不相符的情况下,在下一个发送周期转发该报文。联播转发机制有两个优点:省略路由,简化设备;提高报文传输的可靠性。

4.HomePlug

❸ 无线通信技术有哪些

1.蓝牙

蓝牙是一种无线通信模块。它是一种无线技术标准,可以实现固定终端设备、移动终端设备和个人局域网之间的短距离数据交换。它在频段使用2.4~2.485GHZUHF无线电波ISM。

蓝牙无线技术复杂度高,设备组网速度快,仅需10秒;集成度和可靠性高;传输速率一般为1Mbps;成本低,安装相对简单。这是一种近距离无线通信技术。


2.Wi-Fi

Wi-Fi无线技术已经遍布我们生活中的方方面面,这是我们每天接触到的最常见的无线通信技术,给我们的生活带来了极大的便利。它是基于IEEE802.11标准创建的无线局域网技术。该技术将所有有线网络信号转换成无线电波信号,其他终端设备通过无线通信模块连接到wifi,实现无线网络通信。

Wi-Fi技术覆盖范围一般在100米以内,技术较为复杂,传输速率可达54Mbps,工作频段2.4GHz,传输功率不足100mW,与蓝牙无线通信相比,数据安全性能相对较差。但是,WiFi的发明非常符合现代人和社会的需求,发展前景非常广阔。


3.ZigBee

ZigBee无线通信技术是一种基于IEEE802.15.4标准的低功耗局域网协议。它于2001年8月正式成立。成立之初,由于这个版本发布仓促,出现了一定的错误,此后进行了改进。

ZigBee无线通信技术类似于蓝牙无线通信技术。两者都是短距离无线通信技术,但蓝牙无线通信技术存在功耗高、复杂度高、通信距离短等缺点,应用范围有限,在家庭和个人范围内广泛应用。ZigBee技术是为了满足工业自动化的需要而发展起来的,具有布局简单、抗干扰、传输可靠、使用方便、成本低等特点。通信距离延长到10米。从开口距离到几百米,在室内场景中可以达到50米左右。


4.数传电台

数传电台是利用DSP数字信号处理技术和软件无线点技术实现的高性能专业数据电台。数字电台可以理解为一种通信介质。与光纤和微波一样,它也有一定的用途。数字电台的传输距离很远,适用于各种复杂的环境。传输速率为19.2Kbps,但终端设备价格较贵,使用成本较高,安装较为复杂。


❹ 无线通信技术有哪些

1、LoRa技术

LoRa是LPWAN通信技术之一,是美国Semtech公司采用并推广的基于扩频技术的超长距离无线传输方案。物理层或无线调制用于建立长距离通信链路。许多传统无线系统使用频移键控(FSK)调制作为物理层,因为这是实现低功耗的非常有效的调制。

2、WiFi

全称Wireless-Fidelity,是无线局域网(WLAN)中的一个标准。自1999年推出以来,它一直是我们生活中最常用的上网方式之一。

3、Zigbee/802.15.4协议

Zigbee于2003年正式提出,它的出现是为了弥补蓝牙通信协议复杂度高、功耗大、距离短、组网规模小等缺陷。这个名字取自蜜蜂。蜜蜂是一种“舞蹈”,通过飞行和拍动翅膀与同伴传递花粉的位置信息,在群体中形成交流网络。

4、线程/IEEE 802.15.4协议

Thread和ZigBee属于802.15.4,但是对于802.15.4已经有了很大的改进。Thread是基于IPv6的协议,在传输安全性和系统可靠性方面进行了优化。它不仅可以承载高通海尔数十家企业集团的物联网联盟AllSeen,还可以支持苹果的Homekit智能家居平台。

5、Z-Wave

Z-Wave无线组网规范于2004年由丹麦芯片和软件开发商Zensys牵头提出,其应用由Z-Wave联盟推动。Z-Wave的工作频率在美国为908.42MHz,在欧洲为868.42MHz,采用无线mesh网络技术,因此任何节点都可以直接或间接地与通信范围内的其他邻居节点进行通信。

无线通信技术的特点

一、无线通信技术不受时空间因素影响

无线通信技术不依靠天线进行信息的传递,其传播介质为电磁波与光波。电磁波与光波广泛存在于大气中,因此其传播并不会受到传播介质因素影响。此外无线通信技术还可以借助于卫星网络进行信息的传输。图片、文字信息、视频、音频等各种信息都可以依靠无线通信技术在卫星网络的助力下进行传播,这种方式大大提升了信息的传播效率。

不受限于时间和空间的限制的这种信息交流方式,极大满足了当下人们的交流沟通需求,解决了人们跨地域交流存在的困难与问题,提高了信息交流交互的时效性以及便捷性。同时,优秀的信息处理能力也是无线通信技术的显著优势,其能够实现知识信息的快速查阅和处理,极大方便了人们的生活。

二、无线通信技术具有可移动性

无线通信技术诞生之后,随着科技信息的发展,其在技术方面也得到了突破性的创新和进步。譬如在无线通信技术终端方面,就得到了不断的完善。无线通信用户可以进行不同区域之间的移动,其通信连接也能进行相应的移动而通信信号不会受到任何的影响。

当前移动智能终端是无线通信技术应用的主要工具与载体,由于这些工具体积较小,便于人携带,也就更利于进行无线通信。用户可以携带这些工具进行出行,且始终能够保持和具有良好的通信能力,用户能够不受时空间因素限制进行办公或娱乐。

三、无线通信具有不稳定性

虽然无线通信技术具有很多的优势,且给人们的生活带来了很大的便利,然而其依旧存在着一些不足。无线通信技术主要是依靠于空气中的电磁波和光波等介质进行传播,大气层是无线通信传输的物理通道,但由于大气层是一个开放的空间,也就是说在进行无线通信技术的信息传播时,所有的调制信息都是暴露在公共空间中的,具有很大的安全隐患。

由于在信息传递过程中缺乏相应的物理层保护,部分不法分子在就可以通过这个漏洞对信息进行窃取和篡改,信息的安全性也就得不到有效的保障。无线通信技术所存在的不稳定性问题会增加用户通信风险与隐患,无论是对个人的隐私还是整个社会的稳定都有着极大的不利影响。

以上内容参考:网络-无线通信

❺ 无线通信网络有哪些技术

当前流行的无线通信技术有Bluetooth、CDMA2000、GSM、Infrared(IR)、ISM、RFID、UMTS/3GPPw/HSDPA、UWB、WiMAXWi-Fi和ZigBee。
各种无线通信技术的适用频段、调制方式、最大作用距离、数据率和应用领域。这些无线通信技术的作用距离与数据率的关系,数据率越高,作用距离就越短。可用网络技术扩展作用距离而仍然保持数据率。

❻ 无线数据传输技术的种类、各自优势、适用范围

无线数据传输技术的种类、各自优势、适用范围:

无线个人网 :
无线个人网WPAN)是在小范围内相互连接数个装置所形成的无线网络,通常是个人可及的范围内。例如蓝牙连接耳机及膝上电脑,ZigBee也提供了无线个人网的应用平台。
蓝牙是一个开放性的、短距离无线通信技术标准。该技术并不想成为另一种无线局域网(WLAN)技术,它面向的是移动设备间的小范围连接,因而本质上说它是一种代替线缆的技术。它可以用来在较短距离内取代目前多种线缆连接方案,穿透墙壁等障碍,通过统一的短距离无线链路,在各种数字设备之间实现灵活、安全、低成本、小功耗的话音和数据通信。
蓝牙力图做到:必须像线缆一样安全;降到和线缆一样的成本;可以同时连接移动用户的众多设备,形成微微网(piconet);支持不同微微网间的互连,形成scatternet;支持高速率;支持不同的数据类型;满足低功耗、致密性的要求,以便嵌入小型移动设备;最后,该技术必须具备全球通用性,以方便用户徜徉于世界的各个角落。
从专业角度看,蓝牙是一种无线接入技术。从技术角度看,蓝牙是一项创新技术,它带来的产业是一个富有生机的产业,因此说蓝牙也是一个产业,它已被业界看成是整个移动通信领域的重要组成部分。蓝牙不仅仅是一个芯片,而是一个网络,不远的将来,由蓝牙构成的无线个人网将无处不在。它还是GPRS和3G的推动器。

无线区域网:
无线区域网(Wireless Regional Area Network,简称WRAN)基于认知无线电技术,IEEE802.22定义了适用于WRAN系统的空中接口。WRAN系统工作在47MHz~910MHz高频段/超高频段的电视频带内的,由于已经有用户(如电视用户) 占用了这个频段,因此802.22设备必须要探测出使用相同频率的系统以避免干扰。

无线城域网:
无线城域网是连接数个无线局域网的无线网络型式。
2003年1月,一项新的无线城域网标准IEEE 802.16a正式通过。致力于此标准研究的组织是WiMax论坛——全球微波接入互操作性(Worldwide Interoperability for Microwave Access)组织。作为一个非赢利性的产业团体,WiMax由Intel及其他众多领先的通信组件及设备公司共同创建。截至2004年1月底,其成员数由之前的28个迅速增长到超过70个,特别吸引了AT&T、电讯盈科等运营商,以及西门子移动及我国的中兴通讯等通信厂商的参与。WiMax总裁兼主席LaBrecque认为,这将是该组织发展的一个里程碑。虽然实际的商用进程尚待时日,但是从WiMax论坛发布的资料上显示,WiMax正力图成为继无线局域网联盟Wi-Fi之后的另一个具有充分产业影响力的无线产业联盟。作为WiMax的主要成员,Intel一直致力于IEEE 802.16无线城域网芯片的开发。据悉,Intel有望在2004年下半年开始销售基于IEEE 802.16d标准的芯片,该芯片将能够帮助实现终端设备与天线的无线高速连接。而WiMax的户外安装工作也将于2005年上半年开始,下半年将进行WiMax天线的室内安装。带有基于IEEE 802.16e标准的WiMax芯片设备有望在2006年初面市。

❼ 无线网络技术及特点

无线网络技术及特点

无线网络因其灵活性强、可扩展、可移动等优势,被广泛应用于社会生活的诸多领域,可以说现阶段人们的日常生活已经无法离开无线网络系统。下面我为大家搜索整理了关于无线网络技术及特点,欢迎参考阅读,希望对您有所帮助!

无线网络技术及特点 篇1

一、无线网络的分类

1.无线个域网

无线个人区域网(或无线个域网)。就是在个人工作地方把属于个人使用的电子设备用无线技术连接起来,整个网络的范围大约为10米。

2.无线局域网

无线局域网络是利用无线通信技术在一定的局部范围内建立的网络,是计算机网络与无线通信技术相结合的产物,它以无线多址信道作为传输媒介,提供传统有线局域网的功能,能够使用户真正实现随时、随地、随意的宽带网络接入。

3.无线城域网

无线城域网络是指用户在一定的城区多个场所之间建立无线连接,不必花费很高的费用铺设光缆、电缆和对外租用线路。此外,在有线网络宽带的租赁线路不能完好使用时,WMAN可以充当备用网络使用。WMAN 的使用是通过无线电波、红外线光波传送数据。尽管目前我们正在使用的各种不同技术,如多路多点分布式服务 (MMDS) 和本地多点分布式服务 (LMDS),但负责制定网络宽带无线访问标准的 IEEE 802.16 技术人员仍在开发规范以便实现这些技术的标准化。

4.无线广域网络

无线广域网络是指用户通过远程公用网络或者专用用户网络建立的无线网络技术。其主要是通过使用由无线服务供应商负责维护的若干天线基站或者卫星系统,可以覆盖广大的地理区域。目前的无线网络技术被称为第二代系统(我们俗称为2G)。第二代系统(2G)包括移动通信全球系统(GSM)、蜂窝式数字分组数据(CDPD) 和码分多址 (CDMA)。目前正努力从 第二代(2G )网络向第三代 (3G) 技术过渡。

二、无线网络的特点分析

1.更具灵活性

无线网络可以更方便地照顾到有线网络不能顾及的地方,而且架设很方便。对经常需要变动网络布线结构和用户需要更大范围移动计算机的地方,使用无线局域网可以克服线缆限制引起的不便性,对于时间紧、需要迅速建立通讯而使用有线网架设不便、成本高或耗时长的情况也可使用无线局域网。

2.速度只有百兆,但使用更方便

千兆有线网虽然在骨干网络中早已跨入应用主流,但在实际家庭或小型办公应用中,百兆有线网络仍是绝对主流。所以从实际应用来看,目前的无线网络已能提供接近与有线网络的速度。虽然这种速度的保障对距离的要求更为苛刻,但便利性和性能间的矛盾对目前的整个网络技术来说,都是需要突破的。

3.安全性已能保障普通应用

现在的无线产品已能提供多重安全防护。支持64/128/152位WEP数据加密,同时支持WPA、IEEE 802.1X、TKIP、AES等加密与安全机制。支持SSID广播控制,支持基于MAC地址的访问控制,再配合强大的防火墙特性,可有效防止入侵,为无线通信提供强大的安全保护。

4.价格虽高于有线,但已可接受

对于普通的家庭用户和小型办公用户来说,无线的主要比较对象就是百兆有线家庭网络。同样以组建一个4台电脑的小型家庭无线网络为例,其投入可分为两类。组建Ad-Hoc对等网络,不需要投入无线AP,只需要购买无线网卡。以已有笔记本电脑集成有两块无线网卡为例,还需要为其它电脑购买两块网卡。虽然一些11M的产品60-80元就能拿下,但54M产品仍需要100元以上。

如果组建Infrastructure中心式无线网络,那么无线AP就是必需。由于市场中单纯性SOHO级无线AP已被淘汰,所于集无线AP和宽带路由器与一身的无线路由器成为必选。

三、无线网络主流技术及特点分析

1.无线宽带

Wi-Fi俗称为无线宽带,就是IEEE 802.11b的别称,它是一种短程的无线传输技术,能够在几百米的地理范围内支持互联网接入的一种无线电信号。随着网络技术的发展,以及IEEE 802.11a 和IEEE 802.11g等标准的出现, IEEE 802.11 这个标准已被统称作无线宽带(即Wi-Fi)。从实际应用上来说,要使用无线宽带(Wi-Fi),用户先要有 与Wi-Fi 相互兼容的用户端装置。

无线网络技术及特点 篇2

1.前言

通信网络随着INTERNET的飞速发展,从传统的布线网络发展到了无线网络,作为无线网络之一的无线局域网WLAN(WirelessLocalArea Network),满足了人们实现移动办公的梦想,为我们创造了一个丰富多彩的自由天空。

2.WLAN的概念

WLAN是利用无线通信技术在一定的局部范围内建立的网络,是计算机网络与无线通信技术相结合的产物,它以无线多址信道作为传输媒介,提供传统有线局域网LAN(LocalAreaNetwork)的功能,能够使用户真正实现随时、随地、随意的宽带网络接入。

3.WLAN的特点

WLAN开始是作为有线局域网络地延伸而存在的,各团体、企事业单位广泛地采用了WLAN技术来构建其办公网络。但随着应用的进一步发展,WLAN正逐渐从传统意义上的局域网技术发展成为“公共无线局域网”,成为国际互联网INTERNET宽带接入手段。WLAN具有易安装、易扩展、易管理、易维护、高移动性、保密性强、抗干扰等特点。

4.WLAN的标准

由于WLAN是基于计算机网络与无线通信技术,在计算机网络结构中,逻辑链路控制(LLC)层及其之上的应用层对不同的物理层的要求可以是相同的,也可以是不同的,因此,WLAN标准主要是针对物理层和媒质访问控制层(MAC),涉及到所使用的无线频率范围、空中接口通信协议等技术规范与技术标准。

4.1IEEE802.11X

(1)IEEE802.11

1990年IEEE802标准化委员会成立IEEE802.11WLAN标准工作组。IEEE802.11(别名:Wi-Fi(WirelessFidelity) 无线保真)是在1997年6月由大量的局域网以及计算机专家审定通过的标准,该标准定义物理层和媒体访问控制(MAC)规范。物理层定义了数据传输的信号特征和调制,定义了两个RF传输方法和一个红外线传输方法,RF传输标准是跳频扩频和直接序列扩频,工作在2.4000~2.4835GHz频段。

IEEE802.11是IEEE最初制定的一个无线局域网标准,主要用于解决办公室局域网和校园网中用户与用户终端的无线接入,业务主要限于数据访问,速率最高只能达到2Mbps。由于它在速率和传输距离上都不能满足人们的需要,所以IEEE802.11标准被IEEE802.11b所取代了。

(2)IEEE802.11b

1999年9月IEEE802.11b被正式批准,该标准规定WLAN工作频段在2.4-2.4835GHz,数据传输速率达到11Mbps,传输距离控制在50-150英尺。该标准是对IEEE 802.11的一个补充,采用补偿编码键控调制方式,采用点对点模式和基本模式两运作模式,在数据传输速率方面可以根据实际情况在11 Mbps、5.5 Mbps、2 Mbps、1 Mbps的不同速率间自动切换,它改变 了WLAN设计状况,扩大了WLAN的应用领域。

IEEE802.11b已成为当前主流的WLAN标准,被多数厂商所采用,所推出的产品广泛应用于办公室、家庭、宾馆、车站、机场等众多场合,但是由于许多WLAN的新标准的出现,IEEE802.11a和IEEE802.11g更是倍受业界关注。

(3)IEEE802.11a

1999年,IEEE802.11a标准制定完成,该标准规定WLAN工作频段在5.15-8.825GHz,数据传输速率达到54Mbps/72Mbps(Turbo),传输距离控制在10-100米。该标准也是IEEE 802.11的一个补充,扩充了标准的物理层,采用正交频分复用(OFDM)的独特扩频技术,采用QFSK调制方式,可提供25Mbps的无线ATM接口和10Mbps的以太网无线帧结构接口,支持多种业务如话音、数据和图像等,一个扇区可以接入多个用户,每个用户可带多个用户终端。

IEEE802.11a标准是IEEE802.11b的后续标准,其设计初衷是取代802.11b标准,然而,工作于2.4GHz频带是不需要执照的,该频段属于工业、教育、医疗等专用频段,是公开的,工作于5.15-8.825GHz频带需要执照的。一些公司仍没有表示对802.11a标准的`支持,一些公司更加看好最新混合标准――802.11g。

(4)IEEE802.11g

目前,IEEE推出最新版本IEEE802.11g认证标准,该标准提出拥有IEEE802.11a的传输速率,安全性较IEEE802.11b好,采用2种调制方式,含802.11a中采用的OFDM与IEEE802.11b中采用的CCK,做到与802.11a和802.11b兼容。

虽然802.11a较适用于企业,但WLAN运营商为了兼顾现有802.11b设备投资,选用802.11g的可能性极大。

(5)IEEE802.11i

IEEE802.11i标准是结合IEEE802.1x中的用户端口身份验证和设备验证,对WLANMAC层进行修改与整合,定义了严格的加密格式和鉴权机制,以改善WLAN的安全性。IEEE802.11i新修订标准主要包括两项内容:“Wi-Fi保护访问”(Wi-Fi Protected Access:WPA)技术和“强健安全网络”(RSN)。Wi-Fi联盟计划采用 802.11i标准作为WPA的第二个版本,并于2004年初开始实行。

IEEE802.11i标准在WLAN网络建设中的是相当重要的,数据的安全性是WLAN设备制造商和WLAN网络运营商应该首先考虑的头等工作。

(6)IEEE802.11e/f/h

IEEE802.11e标准对WLANMAC层协议提出改进,以支持多媒体传输,以支持所有WLAN无线广播接口的服务质量保证QOS机制。

IEEE802.11f,定义访问节点之间的通讯,支持IEEE802.11的接入点互操作协议(IAPP)。

IEEE802.11h用于802.11a的频谱管理技术。

4.2HIPERLAN

欧洲电信标准化协会(ETSI)的宽带无线电接入网络(BRAN)小组着手制定Hiper(HighPerformanceRadio)接入泛欧标准,已推出HiperLAN1和HiperLAN2。HIPERLAN1推出时,数据速率较低,没有被人们重视,在2000年,HIPERLAN2标准制定完成,HIPERLAN2标准的最高数据速率能达到54Mbit/s,HIPERLAN2标准详细定义了WLAN的检测功能和转换信令,用以支持许多无线网络,支持动态频率选择、无线信元转换、链路自适应、多束天线和功率控制等。该标准在WLAN性能、安全性、服务质量QOS等方面也给出了一些定义。

HiperLAN1对应1EEE802.11b,HiperLAN2与1EEE082.11a具有相同的物理层,他们可以采用相同的部件,并且,HiperLAN2强调与3G整合。HIPERLAN2标准也是目前较完善的WLAN协议。

4.3HomeRF

HomeRF工作组是由美国家用射频委员会领导于1997年成立的,其主要工作任务是为家庭用户建立具有互操作性的话音和数据通信网,2001年8月推出HomeRF2.0版,集成了语音和数据传送技术,工作频段在10GHz,数据传输速率达到10Mbps,在WLAN的安全性方面主要考虑访问控制和加密技术。

HomeRF是针对现有无线通信标准的综合和改进:当进行数据通信时,采用IEEE802.11规范中的TCP/IP传输协议;进行语音通信时,则采用数字增强型无绳通信标准。

除了IEEE802.11委员会、欧洲电信标准化协会和美国家用射频委员会之外,无线局域网联盟WLANA(WirelessLAN Association)在WLAN的技术支持和实施方面也做了大量工作。WLANA是由无线局域网厂商建立的非营利性组织,由3Com、Aironet、Cisco、Intersil、Lucent、Nokia、Symbol和中兴通讯等厂商组成,其主要工作验证不同厂商的同类产品的兼容性,并对WLAN产品的用户进行培训等。 4.4 中国WLAN规范

中华人民共和国国家信息产业部正在制订WLAN的行业配套标准,包括:《公众无线局域网总体技术要求》和《公众无线局域网设备测试规范》。该标准涉及的技术体制包括IEEE802.11X系列(IEEE802.11、802.11a、IEEE802.11b、IEEE802.11g、 IEEE802.11h、 IEEE802.11i)和HIPERLAN2。信息产业部通信计量中心承担了相关标准的制订工作,并联合设备制造商和国内运营商进行了大量的试验工作,同时,信息产业部通信计量中心和中兴通讯股份有限公司等联合建成了WLAN的试验平台,对WLAN系统设备的各项性能指标、兼容性和安全可靠性等方面进行全方位的测评。

此外,由信息产业部科技公司批准成立的“中国宽带无线IP标准工作组(www.chinabwips.org)”在移动无线IP接入、IP的移动性、移动IP的安全性、移动IP业务等方面进行标准化工作。2003年5月,国家首批颁布了由“中国宽带无线IP标准工作组”负责起草的WLAN两项国家标准:《信息技术系统间远程通信和信息交换局域网和城域网特定要求第11部分:无线局域网媒体访问(MAC)和物理(PHY)层规范》、《信息技术 系统间远程通信和信息交换 局域网和城域网特定要求 第11部分:无线局域网媒体访问(MAC)和物理(PHY)层规范:2.4GHz频段较高速物理层扩展规范》。这两项国家标准所采用的依据是ISO/IEC8802.11和ISO/IEC8802.11b,两项国家标准的发布,将规范WLAN产品在我国的应用。

5.WLAN网络结构

一般地,WLAN有两种网络类型:对等网络和基础结构网络。

对等网络:由一组有无线接口卡的计算机组成。这些计算机以相同的工作组名、ESSID和密码等对等的方式相互直接连接,在WLAN的覆盖范围的之内,进行点对点与点对多点之间的通信通信。

基础结构网络:在基础结构网络中,具有无线接口卡的无线终端以无线接入点AP为中心,通过无线网桥AB、无线接入网关AG、无线接入控制器AC和无线接入服务器AS等将无线局域网与有线网网络连接起来,可以组建多种复杂的无线局域网接入网络,实现无线移动办公的接入。

6.WLAN应用

作为有线网络无线延伸,WLAN可以广泛应用在生活社区、游乐园、旅馆、机场车站等游玩区域实现旅游休闲上网;可以应用在政府办公大楼、校园、企事业等单位实现移动办公,方便开会及上课等;可以应用在医疗、金融证券等方面,实现医生在路途中对病人在网上诊断,实现金融证券室外网上交易。

对于难于布线的环境,如老式建筑、沙漠区域等,对于频繁变化的环境,如各种展览大楼;对于临时需要的宽带接入,流动工作站等,建立WLAN是理想的选择。

6.1销售行业应用

对于大型超市来讲,商品的流通量非常大,接货的日常工作包括定单处理、送货单、入库等需要在不同地点的现场将数据录入数据库中。仓库的入库和出库管理,物品的搬动较多,数据在变化,目前,很多的做法是手工做好记录,然后再将数据录入数据库中,这样费时而且易错,采用WLAN,即可轻松解决上面两个问题,在超市的各个角落,在接货区、在发货区、货架、中仓库中利用WLAN,可以现场处理各种单据。

6.2物流行业应用

随着我国WTO的加入,各个港口、储存区对物流业务的数字化提出了较高的要求。一个物流公司一般都有一个网络处理中心,还有些办公地点分布在比较偏僻的地方,对于那些运输车辆、装卸装箱机组等的工作状况,物品统计等等,需要及时将数据录入并传输到中心机房。部署WLAN是物流业的一项现代化必不可少的基础设施。

6.3电力行业应用

如何对遥远的变电站进行遥测、遥控、遥调,这是摆在电力系统的一个老问题。WLAN能监测并记录变电站的运行情况,给中心监控机房提供实时的监测数据,也能够将中心机房的调控命令传入到各个变电站。这是WLAN在电力系统遍布到千家万户,但又无法完全用有线网络来检测与控制的一个潜在应用。

6.4服务行业应用

由于PC机的移动终端化、小型化,一个旅客在进入一个酒店的大厅要及时处理邮件,这时酒店大堂的InternetWLAN接入是必不可少的;客房Internet无线上网服务也是需要的,尤其是星级比较高的酒店,客人可能在床上躺着上网,客人希望无线上网无处不在,由于WLAN的移动性、便捷性等特点,更是受到了一些大中型酒店的青睐。

在机场和车站是旅客候机候车的一段等待时光,这时打开笔记本电脑来上上网,何尝不是高兴的事儿,目前,在北美和欧洲的大部分机场和车站,都部署了WLAN,在我国,也在逐步实施和建设中。

6.5教育行业应用

WLAN可以让教师和学生对教与学的时时互动。学生可以在教师、宿舍、图书馆利用移动终端机向老师问问题、提交作业;老师可以时时给学生上辅导课。学生可以利用WLAN在校园的任何一个角落访问校园网。WLAN可以成为一种多媒体教学的辅助手段。

6.6证券行业应用

有了WLAN,股市有了菜市场般的普及和活跃。原来,很多炒股者利用股票机看行情,现在不用了,WLAN能够让您实现实时看行情,时时交易。股市大户室也可以不去了,不用再为大户室交纳任何费用。

6.7展厅应用

一些大型展览的展厅内,一般都布有WLAN,服务商、参展商、客户走入大厅内可以随时接入Internet。WLAN的可移动性、可重组性、灵活性为会议厅和展会中心等具有临时租用性质的服务行业提供了盈利的无限空间。

6.8中小型办公室/家庭办公应用

WLAN可以让人们在中小型办公室或者在家里任意的地方上网办公,收发邮件,随时随地可以连接上Internet,上网资费与有线网络一样,有了WLAN,我们的自由空间增大了。

6.9企业办公楼之间办公应用

对于一些中大型企业,有一个主办公楼,还有其他附属的办公楼,楼与楼之间、部门与部门之间需要通信,如果搭健有限网络,需要支付昂贵的月租费和维护费,而WLAN不需要,也不需要综合布线,一样能够实现有限网络的功能。

7.WLAN安全

WLAN应用中,对于家庭用户、公共场景安全性要求不高的用户,使用VLAN(VirtualLocalAreaNetworks)隔离、MAC地址过滤、服务区域认证ID(ESSID)、密码访问控制和无线静态加密协议WEP(Wired Equivalent Privacy)可以满足其安全性需求。但对于公共场景中安全性要求较高的用户,仍然存在着安全隐患,需要将有线网络中的一些安全机制引进到WLAN中,在无线接入点AP(Access Point)实现复杂的加密解密算法,通过无线接入控制器AC,利用PPPoE或者DHCP+WEB认证方式对用户进行第二次合法认证,对用户的业务流实行实时监控。这方面的WLAN安全策略有待于实践与进一步探讨并完善。

;

❽ 无线通信技术有哪些

1、LoRa技术

LoRa是通信技术中的一种,是美国Semtech公司采用和推广的一种基于扩频技术的超远距离无线传输方案。

是物理层或无线调制用于建立长距离通信链路。许多传统的无线系统使用频移键控(FSK)调制作为物理层,因为它是一种实现低功耗的非常有效的调制。

2、WiFi/ IEEE 802.11协议

WiFi,全称Wireless-Fidelity,无线保真,是无线局域网(WLAN)中的一个标准。从1999年推出以来一直是是我们生活中较常用的访问互联网的方式之一。

3、ZigBee/802.15.4协议

Zigbee被正式提出来是在2003年,它的出现是为了弥补蓝牙通信协议的高复杂,功耗大,距离近,组网规模太小等缺陷。

名称取自于蜜蜂,蜜蜂 (bee)是靠飞翔和“嗡嗡”(zig)地抖动翅膀的“舞蹈”来与同伴传递花粉所在方位信息,依靠这样的方式构成了群体中的通信网络。

4、Thread /IEEE 802.15.4协议

Thread和ZigBee同属802.15.4,但是针对802.15.4做了很大的改进。Thread是建立在IPv6的基础之上的一个协议,无论在传输安全,还是系统可靠性上都做了非常棒的优化。它既可以承载高通海尔数十企业组物联网盟AllSeen,也可以支持苹果的Homekit智能家居平台。

5、Z-Wave协议

Z-Wave无线组网规格于2004年提出,由丹麦的芯片与软件开发商Zensys主导,Z-wave联盟推广其应用。

Z-Wave工作频率美国 908.42MHz、欧洲868.42MHz,采用无线网状网络技术,因此任何节点都能直接或间接地和通信范围内的其它临近节点通信。

❾ 无线网络技术和移动通信技术有什么不同,有哪些相同。

其实这两种差不多,以下做分别介绍:

(一)、无线网络技术

1、所谓的无线网络,既包括允许用户建立远距离无线连接的全球语音和数据网络,也包括为近距离无线连接进行优化的红外线技术及射频技术,与有线网络的用途十分类似,最大的不同在于传输媒介的不同,利用无线电技术取代网线,可以和有线网络互为备份。
2、采用无线传输媒体如无线电波、红外线等的网络。与有线网络的用途十分类似,最大的不同在于传输媒介的不同,利用无线电技术取代网线。
3、无线网络技术涵盖的范围很广,既包括允许用户建立远距离无线连接的全球语音和数据网络,也包括为近距离无线连接进行优化的红外线技术及射频技术。通常用于无线网络的设备包括便携式计算机、台式计算机、手持计算机、个人数字助理(PDA)、移动电话、笔式计算机和寻呼机。无线技术用于多种实际用途。例如,手机用户可以使用移动电话查看电子邮件。
4、使用便携式计算机的旅客可以通过安装在机场、火车站和其他公共场所的基站连接到Internet。在家中,用户可以连接桌面设备来同步数据和发送文件目前主流应用的无线网络分为GPRS手机无线网络上网和无线局域网两种方式。
5、而GPRS手机上网方式,是一种借助移动电话网络接入Internet的无线上网方式,因此只要所在城市开通了GPRS上网业务,在任何一个角落都可以通过笔记本电脑来上网。
6、无线网络并不是何等神秘之物,可以说是相对于目前普遍使用的有线网络而言的一种全新的网络组建方式。无线网络在一定程度上扔掉了有线网络必须依赖的网线。

(二)、移动通信技术

第一代

第一代 移动通信系统(1G)是在20世纪80年代初提出的,它完成于20世纪90年代初,如NMT和AMPS,NMT于1981年投入运营。第一代移动通信系统是基于模拟传输的,其特点是业务量小、质量差、安全性差、没有加密和速度低。1G主要基于蜂窝结构组网,直接使用模拟语音调制技术,传输速率约2.4kbit/s。不同国家采用不同的工作系统。
第二代
第二代移动通信系统(2G)起源于90年代初期。欧洲电信标准协会在1996年提出了GSM Phase 2+,目的在于扩展和改进GSM Phase 1及Phase 2中原定的业务和性能。它主要包括CMAEL(客户化应用移动网络增强逻辑),S0(支持最佳路由)、立即计费,GSM 900/1800双频段工作等内容,也包含了与全速率完全兼容的增强型话音编解码技术,使得话音质量得到了质的改进;半速率编解码器可使GSM系统的容量提近一倍。在GSM Phase2+阶段中,采用更密集的频率复用、多复用、多重复用结构技术,引入智能天线技术、双频段等技术,有效地克服了随着业务量剧增所引发的GSM系统容量不足的缺陷;自适应语音编码(AMR)技术的应用,极大提高了系统通话质量;GPRs/EDGE技术的引入,使GSM与计算机通信/Internet有机相结合,数据传送速率可达115/384kbit/s,从而使GSM功能得到不断增强,初步具备了支持多媒体业务的能力。尽管2G技术在发展中不断得到完善,但随着用户规模和网络规模的不断扩大,频率资源己接近枯竭,语音质量不能达到用户满意的标准,数据通信速率太低,无法在真正意义上满足移动多媒体业务的需求。
第三代
3G技术
第三代移动通信系统(3G),也称IMT 2000,是正在全力开发的系统,其最基本的特征是智能信号处理技术,智能信号处理单元将成为基本功能模块,支持话音和多媒体数据通信,它可以提供前两代产品不能提供的各种宽带信息业务,例如高速数据、慢速图像与电视图像等。如WCDMA的传输速率在用户静止时最大为2Mbps,在用户高速移动是最大支持144Kbps,说占频带宽度5MHz左右。但是,第三代移动通信系统的通信标准共有WCDMA,CDMA2000和TD-SCDMA三大分支,共同组成一个IMT 2000家庭,成员间存在相互兼容的问题,因此已有的移动通信系统不是真正意义上的个人通信和全球通信;再者,3G的频谱利用率还比较低,不能充分地利用宝贵的频谱资源;第三,3G支持的速率还不够高,如单载波只支持最大2~fDps的业务,等等。这些不足点远远不能适应未来移动通信发展的需要,因此寻求一种既能解决现有问题,又能适应未来移动通信的需求的新技术(即新一代移动通信:next generation mobile communication)是必要的。
高速铁路移动通信和3G技术
一般来说,在高速移动的物体上,当速度超过时速150千米时,2G/3G的快速功率控制效果不佳,此时就要看哪种通信制式的抗衰落手段多,且衰落储备量大。TD-SCDMA对高速移动情况不太适应,主要是因为技术性能先进的只能天线没有在高铁上全面普及和覆盖,且系统的增益又不高,再加上使用终端的功率不大,使得在高铁上,对于覆盖边缘由于衰落储备不足而掉话;到目前为止,GSM制式在高铁系统中还没有启用功控装置,不过GSM制式只提供语音通话,信道编码纠错技术在这种情况下的作用显著,在通信基站功率达到40W,终端功率达到2W,且基站距离较短的情况下,衰落储备量发挥作用,高铁的应用效果还可以。GSM系统中的EDGE制式在高铁中的效果不好,主要是由于EDGE在高速数据时的编码效率为1,没有编码冗余度,对应的信道编码增益相对较低,此外,高阶的数据8PSK调制,会使得解调EDGE数据的信噪比较高,导致EDGE边缘的覆盖电压需要更高,其衰落储备要更大;但在实际的高铁系统中,两个基站覆盖区之间的衰落储备一般都不足,使得传输的数据率会迅速下降。所以,就要寻求新的技术体系来解决高铁中的移动通信问题。 3G通信技术在我国的发展是日新月异。2009年1月7日,我国同时发放了三张3G牌照,即:TD-SCDMA、WCDMA、CDMA200,标志着我国正式进入了3G时代。3G网络运行的两年多时间里,在拉动我国GDP增长的同时,还为国内创造了大量的就业机会。从技术角度来分析,3G移动通信网络相对于2G网络的优势在于更大的系统容量和更好的通信质量,且能够实现全球范围的无缝漫游,为通信用户提供包括语音、数据和多媒体等多种形式的通信服务。 在国际移动通信领域,国际电联对3G网络有其最低的要求和标准,即:在高速移动的地面物体上,3G网络所能提供的数据业务为64~144kb/s,要能够适应500km/h的移动环境。针对该标准,我国现行的3种3G网络中,WCDMA和CDMA2000主要采用“软切换”技术,能够实现移动终端在时速500km时的正常通信,即能够实现在与另一个新基站通信时,首先不中断跟原基站的联系,而是在跟新的基站连接好后,再中断跟原基站的连接,这也是3G网络优于2G网络的一个突出特点;WCDMA技术已经解决了高速运动物体的无缝覆盖问题;此外,TD-SCDMA也对高铁通信的覆盖方案进行了研究。 因此,3G移动通信网络在技术层面上已经具有为高铁提供通信保障的基本条件,为我国高铁发展过程中移动通信问题的完满解决奠定了坚实基础。
第四代
4G是第四代移动通信及其技术的简称,是集3G与WLAN于一体并能够传输高质量视频图像以及图像传输质量与高清晰度电视不相上下的技术产品。 4G系统能够以100Mbps的速度下载,比拨号上网快2000倍,上传的速度也能达到20Mbps,并能够满足几乎所有用户对于无线服务的要求。而在用户最为关注的价格方面,4G与固定宽带网络在价格方面不相上下,而且计费方式更加灵活机动,用户完全可以根据自身的需求确定所需的服务。此外,4G可以在DSL和有线电视调制解调器没有覆盖的地方部署,然后再扩展到整个地区。 很明显,4G有着不可比拟的优越性。
4G移动系统网络结构可分为三层:物理网络层、中间环境层、应用网络层。物理网络层提供接入和路由选择功能,它们由无线和核心网的结合格式完成。中间环境层的功能有QoS映射、地址变换和完全性管理等。物理网络层与中间环境层及其应用环境之间的接口是开放的,它使发展和提供新的应用及服务变得更为容易,提供无缝高数据率的无线服务,并运行于多个频带。这一服务能自适应多个无线标准及多模终端能力,跨越多个运营者和服务,提供大范围服务。第四代移动通信系统的关键技术包括信道传输;抗干扰性强的高速接入技术、调制和信息传输技术;高性能、小型化和低成本的自适应阵列智能天线;大容量、低成本的无线接口和光接口;系统管理资源;软件无线电、网络结构协议等。第四代移动通信系统主要是以正交频分复用(OFDM)为技术核心。OFDM技术的特点是网络结构高度可扩展,具有良好的抗噪声性能和抗多信道干扰能力,可以提供无线数据技术质量更高(速率高、时延小)的服务和更好的性能价格比,能为4G无线网提供更好的方案。例如无线区域环路(WLL)、数字音讯广播(DAB)等,预计都采用OFDM技术。4G移动通信对加速增长的广带无线连接的要求提供技术上的回应,对跨越公众的和专用的、室内和室外的多种无线系统和网络保证提供无缝的服务。通过对最适合的可用网络提供用户所需求的最佳服务,能应付基于因特网通信所期望的增长,增添新的频段,使频谱资源大扩展,提供不同类型的通信接口,运用路由技术为主的网络架构,以傅利叶变换来发展硬件架构实现第四代网络架构。移动通信会向数据化,高速化、宽带化、频段更高化方向发展,移动数据、移动IP预计会成为未来移动网的主流业务。

❿ 物联网应用主要的无线通讯技术有哪些

NB-复IoT(NarrowBandInternetofThings,NB-IoT,又称窄带物制联网),是由3GPP标准化组织定义的一种技术标准,是一种专为物联网设计的窄带射频技术;LoRa(LongRange)是美国Semtech公司采用和推广的一种基于扩频技术的超远距离无线传输方案。LoRa网络主要由终端(可内置LoRa模块)、网关(或称基站)、Server和云四部分组成。
DDA物联网无线通讯技术是一项自主创新研发,拥有完全自主知识产权的物联网无线通讯技术,由杜光东博士及其团队历经近十年的研发创新成果。在通讯距离、低成本网络覆盖、低功耗设计、抗干扰设计、通讯可靠性、数据安全性、海量终端接入、鲁棒性、易用性、自适应频段选择等多项通讯技术指标上,达到或超过国内、国外其它无线通讯技术。其区别于NB-IoT和 LoRa,在物联网无线通讯技术领域中发挥着无可替代的作用。

阅读全文

与无线数据通信网络技术相关的资料

热点内容
word删除尾注分隔符 浏览:773
公告质疑需要哪些文件 浏览:608
数据库模型是干什么的 浏览:404
win10的驱动怎么安装驱动 浏览:320
word文件水印怎么取消 浏览:443
rhel6的镜像文件在哪里下载 浏览:571
成功正能量微信头像 浏览:848
wps表格如何恢复数据 浏览:264
linuxc静态库创建 浏览:838
u盘有微信文件但微信恢复不了 浏览:585
苹果的网站数据是什么 浏览:22
ps滚字教程 浏览:237
win7网络邻居如何保存ftp 浏览:186
安卓客户端代理服务器 浏览:572
编程用苹果 浏览:659
51虚拟机的文件管理在哪里 浏览:13
win10系统有没有便签 浏览:722
java引用传递和值传递 浏览:109
oracle下载安装教程 浏览:854
php筛选数据库 浏览:830

友情链接