⑴ 关于大数据分析的四个关键环节
关于大数据分析的四个关键环节
随着大数据时代的到来,AI 概念的火热,人们的认知有所提高。为什么说大数据有价值 这是不是只是一个虚的概念 大家怎么考虑数据驱动问题 为什么掌握更多的数据就会更有效 这些问题很难回答,但是,大数据绝不是大而空洞的。
信息论之父香农曾表示,信息是用来消除不信任的东西,比如预测明天会不会下雨,如果知道了今天的天气、风速、云层、气压等信息,有助于得出更准确的结论。所以大数据是用来消除不确定性的,掌握更多的有效数据,可以驱动企业进行科学客观的决策。桑文锋对大数据有着自己的理解,数据采集遵循“大”、“全”、“细”、“时”四字法则。“大”强调宏观的“大”,而非物理的“大”。大数据不是一味追求数据量的“大”。比如每天各地级市的苹果价格数据统计只有 2MB,但基于此研发出一款苹果智能调度系统,就是一个大数据应用,而有些数据虽然很大,却价值有限;“全”强调多种数据源。大数据采集讲求全量,而不是抽样。除了采集客户端数据,还需采集服务端日志、业务数据库,以及第三方服务等数据,全面覆盖,比如美国大选前的民意调查,希拉里有70%以上胜算,但是川普成为了美国总统,因为采样数据有偏差,支持川普的底层人民不会上网回复。“细”强调多维度数据采集,即把事件的维度、属性、字段等都进行采集。如电商行业“加入购物车”的事件,除了采集用户的 click 数据,还应采集用户点击的是哪个商品、对应的商户等数据,方便后续交叉分析。“时”强调数据的时效性。显然,具有时效性的数据才有参考价值。如国家指数,CPI 指数,月初收集到信息和月中拿到信息,价值显然不同,数据需要实时拿到,实时分析。从另一个视角看待数据的价值,可以分为两点,数据驱动决策,数据驱动产品智能。数据的最大价值是产品智能,有了数据基础,再搭建好策略算法,去回灌产品,提升产品本身的学习能力,可以不断迭代。如今日头条的新闻推荐,网络搜索的搜索引擎优化,都是数据驱动产品智能的体现。
数据分析四个关键环节 桑文锋把数据分析分为四个环节,数据采集、数据建模、数据分析、指标。他提出了一个观点,要想做好数据分析,一定要有自底向上的理念。很多公司的数据分析自顶向下推动,用业务分析指标来决定收集什么数据,这是需求驱动工程师的模式,不利于公司长久的数据采集。而一个健康的自底向上模式,可以帮助公司真正建立符合自己业务的数据流和数据分析体系。 一、数据采集 想要真正做好大数据分析,首先要把数据基础建好,核心就是“全”和“细”。 搜集数据时不能只通过 APP 或客户端收集数据,服务器的数据、数据库数据都要同时收集打通,收集全量数据,而非抽样数据,同时还要记录相关维度,否则分析业务时可能会发现历史数据不够,所以不要在意数据量过大,磁盘存储的成本相比数据积累的价值,非常廉价。 常见的数据采集方式归结为三类,可视化/全埋点、代码埋点、数据导入工具。
第一种是可视化/全埋点,这种方式不需要工程师做太多配合,产品经理、运营经理想做分析直接在界面点选,系统把数据收集起来,比较灵活。但是也有不好的地方,有许多维度信息会丢失,数据不够精准。第二种是代码埋点,代码埋点不特指前端埋点,后端服务器数据模块、日志,这些深层次的都可以代码埋点,比如电商行业中交易相关的数据可以在后端采集。代码埋点的优势是,数据更加准确,通过前端去采集数据,常会发现数据对不上,跟自己的实际后台数据差异非常大。可能有三个原因:第一个原因是本身统计口径不一样,一定出现丢失;第二点是流量过大,导致数据丢失异常;第三点是SDK兼容,某些客户的某些设备数据发不出去,导致数据不对称。而代码埋点的后台是公司自己的服务器,自己核心的模拟可以做校准,基本进行更准确的数据采集。第三种是通过导入辅助工具,将后台生成的日志、数据表、线下数据用实时批量方式灌到里面,这是一个很强的耦合。数据采集需要采集数据和分析数据的人共同参与进来,分析数据的人明确业务指标,并且对于数据的准确性有敏感的判断力,采集数据的人再结合业务进行系统性的采集。二、数据建模很多公司都有业务数据库,里面存放着用户注册信息、交易信息等,然后产品经理、运营人员向技术人员寻求帮助,用业务数据库支持业务上的数据分析。但是这样维护成本很高,且几千万、几亿条数据不能很好地操作。所以,数据分析和正常业务运转有两项分析,数据分析单独建模、单独解决问题。数据建模有两大标准:易理解和性能好。数据驱动不是数据分析师、数据库管理员的专利,让公司每一个业务人员都能在工作中运用数据进行数据分析,并能在获得秒级响应,验证自己的新点子新思维,尝试新方法,才是全员数据驱动的健康状态。多维数据分析模型(OLAP)是用户数据分析中最有效的模型,它把用户的访问数据都归类为维度和指标,城市是维度,操作系统也是维度,销售额、用户量是指标。建立好多维数据分析模型,解决的不是某个业务指标分析的问题,使用者可以灵活组合,满足各种需求。三、数据分析数据分析支持产品改进产品经理在改进产品功能时,往往是拍脑袋灵光一现,再对初级的点子进行再加工,这是不科学的。《精益创业》中讲过一个理念,把数据分析引入产品迭代,对已有的功能进行数据采集和数据分析,得出有用的结论引入下一轮迭代,从而改进产品。在这个过程中大数据分析很关键。Facebook 的创始人曾经介绍过他的公司如何确定产品改进方向。Facebook 采用了一种机制:每一个员工如果有一个点子,可以抽样几十万用户进行尝试,如果结果不行,就放弃这个点子,如果这个效果非常好,就推广到更大范围。这是把数据分析引入产品迭代的科学方法。桑文锋在 2007 年加入网络时,也发现了一个现象,他打开邮箱会收到几十封报表,将网络知道的访问量、提问量、回答量等一一介绍。当网络的产品经理提出一个需求时,工程师会从数据的角度提出疑问,这个功能为什么好 有什么数据支撑 这个功能上线时如何评估 有什么预期数据 这也是一种数据驱动产品的体现。数据驱动运营监控运营监控通常使用海盗模型,所谓的运营就是五件事:触达是怎么吸引用户过来;然后激活用户,让用户真正变成有效的用户;然后留存,提高用户粘性,让用户能停留在你的产品中不断使用;接下来是引荐,获取用户这么困难,能不能发动已有的用户,让已有用户带来新用户,实现自传播;最后是营收,做产品最终要赚钱。要用数据分析,让运营做的更好。数据分析方法互联网常见分析方法有几种,多维分析、漏斗分析、留存分析、用户路径、用户分群、点击分析等等,不同的数据分析方法适用于不同的业务场景,需要自主选择。举个多维分析的例子,神策数据有一个视频行业的客户叫做开眼,他们的软件有一个下载页面,运营人员曾经发现他们的安卓 APP 下载量远低于 iOS,这是不合理的。他们考虑过是不是 iOS 用户更愿意看视频,随后从多个维度进行了分析,否定了这个结论,当他们发现某些安卓版本的下载量为零,分析到屏幕宽高时,看出这个版本下载按钮显示不出来,所以下载比例非常低。就这样通过多维分析,找出了产品改进点。举个漏斗分析的例子,神策数据的官网访问量很高,但是注册-登录用户的转化率很低,需要进行改进。所以大家就思考如何把转化漏斗激活地更好,后来神策做了小的改变,在提交申请试用后加了一个查看登录页面,这样用户收到账户名密码后可以随手登录,优化了用户体验,转化率也有了可观的提升。四、指标如何定义指标 对于创业公司来说,有两种方法非常有效:第一关键指标法和海盗指标法。第一关键指标法是《精益数据分析》中提出的理论,任何一个产品在某个阶段,都有一个最需要关注的指标,其他指标都是这个指标的衍生,这个指标决定了公司当前的工作重点,对一个初创公司来说,可能开始关注日活,围绕日活又扩展了一些指标,当公司的产品成熟后,变现就会成为关键,净收入(GMV)会变成第一关键指标。
⑵ 大数据分析时代的特点有哪些
如果简单来理解什么是大数据,我们只要抓住大数据的四个特点,大量、高速、多样、价值。具体来讲就是数据体量巨大,数据的爆发性增长迫切的需要智能的算法、强大的数据处理平台和新的数据处理技术,来统计、分析、预测和实时处理如此大规模的数据;数据类型繁多,广泛的数据来源决定了大数据形式的多样性。
任何形式的数据都可以产生作用,目前应用最广泛的就是推荐系统的应用;价值密度低,现实世界所产生的数据中,有价值的数据所占比例很小。相比于传统的小数据,大数据最大的价值在于通过从大量不相关的各种类型的数据中,挖掘出对未来趋势与模式预测分析有价值的数据;数据分析处理速度快,主要通过互联网传输。大数据对处理速度有非常严格的要求,服务器中大量的资源都用于处理和计算数据,很多平台都需要做到实时分析。
⑶ 大数据时代,大数据概念,大数据分析是什么意思
大数据概念就是指大数据,指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据时代是IT行业术语。最早提出“大数据”时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”
大数据分析是指对规模巨大的数据进行分析。大数据可以概括为4个V, 数据量大(Volume)、速度快(Velocity)、类型多(Variety)、价值(Value)。
(3)时大数据分析扩展阅读:
大数据分析的实例应用:
数据分析成为巴西世界杯赛事外的精彩看点。伴随赛场上球员的奋力角逐,大数据也在全力演绎世界杯背后的分析故事。
一向以严谨著称的德国队引入专门处理大数据的足球解决方案,进行比赛数据分析,优化球队配置,并通过分析对手数据找到比赛的“制敌”方式;谷歌、微软、Opta等通过大数据分析预测赛果...... 大数据,不仅成为赛场上的“第12人”,也在某种程度上充当了世界杯的"预言帝"。
大数据分析邂逅世界杯,是大数据时代的必然发生,而大数据分析也将在未来改变我们生活的方方面面。
⑷ 大数据时代 大数据分析解决方案
大数据时代 大数据分析解决方案
大数据数据分析一般技巧
①通过中国互联网大数据了解产品的消费者需求偏好、增长趋势、同行竞争、消费数据、政策环境、广告消费、市场前景等,指导产品研发设计及市场定价策略;
②消费升级后,高端消费者在购买产品时关心的产品知识是什么,信任什么网络信息渠道,分析用户心理和关注因素,制定宣传策略和选择宣传方式;
③分析行业龙头的网络宣传策略,并了解消费者选择品牌时关注的购买因素,制定差异化营销策略,用消费者喜欢的内容和方式巧妙取胜;
大数据对于品牌推广作用
①借助大数据制定品牌推广策略,提升品牌知名度、影响力、良好口碑,集团公司整体形象宣传;
②通过大数据,锁定目标招商对象,为品牌做招商加盟宣传、品牌连锁店宣传,通过网络扩大招商影响;
③通过对企业品牌节假日促销/活动/开业/庆典/展会等的线上二次宣传,扩大活动营销效果;
④企业上市宣传、企业海外上市宣传、上市公司网络形象优化、上市公关服务;
⑤产品宣传、新品上市、产品扩大知名度、产品快速进行展现、产品线上宣传等。
大数据如何应用于电商推广
①电商品牌重要节庆宣传,如双十一促销、中秋节促销、年货节促销等。提前1-2个月覆盖精准客户关心的话题、分析潜在需求数据;
②电商品牌全年品牌推广计划,品牌全网宣传包年合作,全面打造淘品牌。通过大数据分析客户需求、关心元素、品牌排名等,刺激用户购买需求,提升品牌口碑。
依托多平台的大数据采集,以及大数据技术的分析与预测能力,能够使推广更加精准有效,给品牌企业带来更高的投资回报率。未来企业如想进一步提升品牌知名度并准确把握市场走向,进行大数据营销是必不可少的。
⑸ 如何进行大数据分析及处理
聚云化雨的处理方式
聚云:探码科技全面覆盖各类数据的处理应用。以数据为原料,通过网络数据采集、生产设备数据采集的方式将各种原始数据凝结成云,为客户打造强大的数据存储库;
化雨:利用模型算法和人工智能等技术对存储的数据进行计算整合让数据与算法产生质变反应化云为雨,让真正有价值的数据流动起来;
开渠引流,润物无声:将落下“雨水”汇合成数据湖泊,对数据进行标注与处理根据行业需求开渠引流,将一条一条的数据支流汇合集成数据应用中,为行业用户带来价值,做到春风化雨,润物无声。
⑹ 大数据分析的概念和方法
一、大数据分析的五个基本方面
1,可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2,数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3,预测性分析能力
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4,语义引擎
大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配。
5,数据质量和数据管理
大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
二、如何选择适合的数据分析工具
要明白分析什么数据,大数据要分析的数据类型主要有四大类:
1.交易数据(TRANSACTION DATA)
大数据平台能够获取时间跨度更大、更海量的结构化交易数据,这样就可以对更广泛的交易数据类型进行分析,不仅仅包括POS或电子商务购物数据,还包括行为交易数据,例如Web服务器记录的互联网点击流数据日志。
2.人为数据(HUMAN-GENERATED DATA)
非结构数据广泛存在于电子邮件、文档、图片、音频、视频,以及通过博客、维基,尤其是社交媒体产生的数据流。这些数据为使用文本分析功能进行分析提供了丰富的数据源泉。
3.移动数据(MOBILE DATA)
能够上网的智能手机和平板越来越普遍。这些移动设备上的App都能够追踪和沟通无数事件,从App内的交易数据(如搜索产品的记录事件)到个人信息资料或状态报告事件(如地点变更即报告一个新的地理编码)。
4.机器和传感器数据(MACHINE AND SENSOR DATA)
这包括功能设备创建或生成的数据,例如智能电表、智能温度控制器、工厂机器和连接互联网的家用电器。这些设备可以配置为与互联网络中的其他节点通信,还可以自动向中央服务器传输数据,这样就可以对数据进行分析。机器和传感器数据是来自新兴的物联网(IoT)所产生的主要例子。来自物联网的数据可以用于构建分析模型,连续监测预测性行为(如当传感器值表示有问题时进行识别),提供规定的指令(如警示技术人员在真正出问题之前检查设备)
⑺ 数据分析和大数据有什么区别
从概念上看数据分析、大数据分析和大数据,大数据是海量数据的存在,而数据分析是基于大数据存在的基础上才能对数据进行分析管理,并依据数据分析为企业经营决策提供依据。
数据分析:指用适当的统计、分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
大数据分析:是指对规模巨大的数据进行分析。大数据可以概括为5个V, 数据量大(Volume)、速度快(Velocity)、类型多(Variety)、价值(Value)、真实性(Veracity)。
大数据作为时下最火热的IT行业的词汇,随之而来的数据仓库、数据安全、数据分析、数据挖掘等等围绕大数据的商业价值的利用逐渐成为行业人士争相追捧的利润焦点。随着大数据时代的来临,大数据分析也应运而生。
对于“大数据”(Big data)
1)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
2)麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
⑻ 大数据分析的具体内容有哪些
随着互联网的不断发展,大数据技术在各个领域都有不同程度的应用
1、采集
大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。
2、导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
3、统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
4、挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
⑼ 大数据分析是指的什么
大数据分析是指对规模巨大的数据进行分析。对大数据bigdata进行采集、清洗、挖掘、分析等,大数据主要有数据采集、数据存储、数据管理和数据分析与挖掘技术等。
大数据分析目标:语义引擎处理大数据的时候,经常会使用很多时间和花费,所以每次生成的报告后,应该支持语音引擎功能。产生可视化报告,便于人工分析通过软件,对大量的数据进行处理,将结果可视化。通过大数据分析算法,应该对于数据进行一定的推断,这样的数据才更有指导性。
统计分析:假设检验、显著性检验、差异分析、相关分析、多元回归分析、逐步回归、回归预测与残差分析等。
数据挖掘:分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)。建立模型,采集数据可以通过网络爬虫,或者历年的数据资料,建立对应的数据挖掘模型,然后采集数据,获取到大量的原始数据。导入并准备数据在通过工具或者脚本,将原始转换成可以处理的数据,
大数据分析算法:机器学习通过使用机器学习的方法,处理采集到的数据。根据具体的问题来定。这里的方法就特别多。
⑽ 大数据时代的数据分析技术面临的挑战
数据分析是整个大数据处理流程的核心,大数据的价值产生于分析过程。从异构数据源抽取和集成的数据构成了数据分析的原始数据。根据不同应用的需求可以从这些数据中选择全部或部分进行分析。小数据时代的分析技术,如统计分析、数据挖掘和机器学习等,并不能适应大数据时代数据分析的需求,必须做出调整。
大数据时代的数据分析技术面临着一些新的挑战,主要有以下几点。
(1)数据量大并不一定意味着数据价值的增加,相反这往往意味着数据噪音的增多。因此,在数据分析之前必须进行数据清洗等预处理工作,但是预处理如此大量的数据,对于计算资源和处理算法来讲都是非常严峻的考验。
(2)大数据时代的算法需要进行调整。首先,大数据的应用常常具有实时性的特点,算法的准确率不再是大数据应用的最主要指标。在很多场景中,算法需要在处理的实时性和准确率之间取得一个平衡。其次,分布式并发计算系统是进行大数据处理的有力工具,这就要求很多算法必须做出调整以适应分布式并发的计算框架,算法需要变得具有可扩展性。许多传统的数据挖掘算法都是线性执行的,面对海量的数据很难在合理的时间内获取所需的结果。因此需要重新把这些算法实现成可以并发执行的算法,以便完成对大数据的处理。最后,在选择算法处理大数据时必须谨慎,当数据量增长到一定规模以后,可以从小量数据中挖掘出有效信息的算法并一定适用于大数据。
(3)数据结果的衡量标准。对大数据进行分析比较困难,但是对大数据分析结果好坏的衡量却是大数据时代数据分析面临的更大挑战。大数据时代的数据量大,类型混杂,产生速度快,进行分析的时候往往对整个数据的分布特点掌握得不太清楚,从而会导致在设计衡量的方法和指标的时候遇到许多困难。