① 如何利用大数据促进旅游业发展
旅游与互联网深度融合大势所趋
当今世界,正在经历一场更大范围、更深层次的科技革命和产业变革,以互联网、大数据、人工智能等为代表的新一轮科技革命正在深刻改变全球经济发展和人们的生产生活。互联网是20世纪最伟大的发明之一,给人们的生产生活带来巨大变化,对很多领域的创新发展起到很强带动作用。
旅游行业也不例外。旅游与互联网的深度融合已是大势所趋,为文化和旅游带来了前所未有的发展机遇和全新空间。旅游因互联网的灌溉,而更加生动、精彩;互联网因旅游的洗礼,而更加丰富、绚丽。
上半年中国旅游行业总体运行情况分析
据前瞻产业研究院发布的《旅游产业发展趋势与投资决策分析报告》统计数据线,2018年上半年,国内旅游人数28.26亿人次,比上年同期增长11.4%。其中,城镇居民19.97亿人次,增长13.7%;农村居民8.29亿人次,增长6.3%。国内旅游收入2.45万亿元,比上年同期增长12.5%。其中,城镇居民花费1.95万亿元,增长13.7%;农村居民花费0.50万亿元,增长8.3%。
大数据对于旅游产业发展的提升作用主要体现在三个方面
1、改变营销策略,通过大数据得出的用户画像,能够掌握游客行为和旅行偏好,真正在营销中实现“投其所好”,实现推广资源效率的最大化。
2、通过产业运营状况分析对产业实施有效的管理,推动旅游产业建设,帮助旅游行政主管部门和景区等企业改善经营管理。
3、依托行业数据库建立纵向横向分析模型,通过数据分析与推演,有效协助旅游行政部门和景区提升服务体系建设。
大数据与一线的景区管理之间的距离也并不远。借助大数据的力量,能够完成个性化的精准定位,并在项目评估和可行性分析方面发挥作用,帮助旅游景区构建符合市场需求的旅游产品。同时,数据分析成果则能够为景区进行精准的市场自我定位提供可行性依据,并成为指导其市场营销与收益管理的利器,为景区需求开发提供新的思路,提高市场竞争力和收益能力。
大数据展望——未来风口
在冒总看来,“从数据资源体系、行业规模、产值等方面看,大数据在未来一定会成为一个新的风口。”
大数据的发展有数据自营、数据租赁、数据平台、数据仓库、数据众包和数据外包等多种模式。能与旅游行业结合的方面也一定会是方方面面的。而更值得我们注意的是,未来,“大数据+AI”所发挥的巨大能量不容小觑。一是管理层面,现在正在出现的智能酒店,就是酒店行业以人工智能和数据分析为基础,进行酒店管理升级的探索的典型案例。第二是服务的提升,比如国家在做的厕所革命,通过数据分析,能够在景区厕所选址、设置密度等方面有参考依据,而人工智能技术则能实现对公厕的智慧化管理。第三是消费层面,随着旅游消费升级,目的地都希望游客能多花钱,那用户的钱花在哪方面?怎么花?这些都能在对已有用户消费和行为数据的分析后得到答案。根据这些游客消费特征,去科学设置和规划消费区。
还是服务与消费层面,都将接受一轮全新的体验升级。
随着时代的转型,旅游行业也面临新的发展机遇和挑战,顺势而为完成转型,才能更好地完成旅游自愿的开发与供应链的优化,最终,更好地服务于旅游者。大数据,正在帮助我们重新认识行业,以及旅游人所从事的这份事业。
② 关于大数据应用有什么例子
1、关能源行业大数据应用
计算居民用电量。
2、职业篮球赛大数据应用
专业篮球队会通过搜集大量数据来分析赛事情况,然而他们还在为这些数据的整理和实际意义而发愁。通过分析这些数据,找到对手的弱点。
3、保险行业大数据应用
集中处理所有的客户信息。
③ 在这个大数据时代,酒店行业如何利用大数据
酒店行业如何利用大数据,有很多种方式:
1、利用平台大数据,比如与携程合作、与电信公司合作等,就是在利用平台大数据;
2、利用己方大数据,能做的事有:
——通过消费行为的统计研究,进行服务产品改善与提升;
——开发新产品;
——做精准营销;
——运营效率提升。
④ 列举大数据和云计算技术在酒店管理领域的应用
各行各业都开始面对互联网+的中大趋势了,不同的行业有不同的应对策略。随着专云计算属技术的不断深入发展,改变的不仅仅是传统企业IT系统由产品到服务的使用方式,更重要的在于创新企业组织管理体系,以消费者需求为中心向个性化商业之路探索。云计算作为IT产业的革命性发展趋势已经不可逆转,并逐步成为一个领域、一个产业、一个城市甚至一个国家的基础设施之一,规模宏大、市场前景广阔。对于电子政务、医疗信息化、教育信息化、移动互联网、物联网以及智慧城市,云计算将是其实现的最基本的前提。而未来,其对全社会各行业、各部门将加速渗透和扩张,改变传统的产销模式,带来创新商业模式,直接影响冲击传统产业的发展。传统产业如何正确把握在新经济条件下的转型之路,是迫切需要解决的问题。
⑤ 酒店大数据之客户数据收集
酒店大数据之客户数据收集
收益管理在酒店运营中发挥着至关重要的作用,其精确的数据分析能够帮助酒店根据精准预测,提升效率、增加营收,而酒店标准化的实务操作则有助于发挥收益管理工具的最佳效果。通过制定和执行数据收集操作流程,细化客户类别,酒店可提高实务操作的标准程度,进而使收益管理工具更好地为酒店服务。
在和客户的沟通中,我们经常会被问到:
为什么我们酒店每年拼了命维持住一定的出租率甚至有时还有些提高,但是最终却发现酒店的收入不升反降? 如果酒店已经能够达到一个比较高的出租率的话,那么收益管理到底还怎么能帮助酒店继续提高收益呢?
为了能够帮助客户寻找提升收益的机会,我们尝试着让客户利用系统的数据对酒店的业务情况进行分析,却发现这些数据中连一些最基本的信息都不够完整。比如,酒店有多少是一般散客,有多少是预付或其他散客等等。
通过和客户沟通,我们了解到——客户在内部的数据管理上,并没有清晰的标准。例如刚刚提到的市场细分,到今天为止,很多酒店还在使用预订渠道或公司作为主要的业绩统计来源。然而,相比几年前,现在的OTA的预订却要复杂的多。除了常规的一般散客现付预订,还会经常见到预付、包房、提早预订订单甚至还有某些商务公司的订房,这几乎已经涵盖了酒店大部分的散客市场细分。因此,酒店仅仅统计客户来源的做法,已经很难跟上时代的步伐。因为,大家都知道,对于酒店日常操作判断来说非常重要的就是预测,但是预测的前提基础是要找到有相同属性的客户的消费习惯,这样才能使预测更符合实际。
酒店应该如何设定数据标准,在日常实务操作中收集数据,以便酒店能够更好地理解客户的购买行为,为日后发现潜在销售机会以及提出更有针对性的市场活动提升销售收入打好基础?
数据收集标准操作流程的制定和执行
作为收益管理周期循环中的重要一环,数据收集是客户购买行为划分和分析的基础,但却并未引起大部分酒店或酒店集团的重视——大部分酒店没有设立一个标准化的操作流程或者有标准却不执行。
为了分别统计通过OTA的预付价格来预订的客户和通过OTA现付价格预定的客户等等,需要设置几个重要的分类标准:细分市场代码、细分市场分组、客源代码、房价代码和客户档案的维护和团队操作的标准流程等等。
细分市场代码(Market Segment Code)和细分市场分组(Market Segment Group)
细分市场代码主要是统计客户的购买行为、价格、入住星期等等购买行为的代码,是酒店对于客户行为分析的最基础数据。同时,把具有相类似购买模式的细分市场组合成细分市场分组,构成了进行预测的关键数据。对于细分市场代码的有效的界定和严格的执行往往是我们能否做出精准预测的关键。很遗憾的是,很多酒店对此没有引起足够的重视,前台甚至是预订部门都搞不清楚每个具体的细分市场的含义与用途。在实际工作中,这部分数据往往经常与客户来源数据(Source Code)的使用相混淆。
客户的购买行为的统计主要包括了对预订的时间(也就是我们通常说的预订进度)、价格、类型(散客预订还是团队预订)、入住的星期(比如商务客户一般选择周中,而休闲客户会选择周末及假期)、入住的天数以及可能产生的不确定性(诸如取消或者未入住)。
随着收益管理的不断变化,关于细分市场的划分会越来越专业化和精细化,将会出现一些根据是否有价格关联或者是否能够被调控的新的细分市场的趋势。
客源代码(Source Code)
客源代码主要是统计客户通过何种渠道来预订的。包含酒店自有渠道,诸如传统上的电话(或者呼叫中心)、传真、邮件以及酒店官网和APP乃至于酒店官方微信营销等,除此之外还包括第三方订房渠道,如OTA、GDS渠道和酒店中央预订系统产生的其他预订等等。对于各种订房来源进行归类,能够帮助我们更好地理解酒店客户的订房来源和预订方式。现在几乎很少会有客户使用传真这样的方式来预订,而更多地使用网络或者APP这样的新型预订方式。酒店应根据类似这样的实际情况尽快调整自身的预订接受方式。更甚者,有的酒店会调整预订部的工作时间,以便接受晚上9点后APP预订高峰所产生的订单。
客源代码能够让酒店了解各个订房来源的实际情况,以便针对不同的客源实施不同的策略,甚至对不同渠道的投入提供数据支持。
房价代码(Rate Code)
房价代码是对不同客源客户的价格进行分类的代码,这个相对比较好理解。但是,我们经常在实际工作中看到,许多酒店会使用一个房价代码来操作所有的团队预订,或者使用相同的房价代码来处理同一个OTA渠道的所有订单等等,之后,再使用手工变价的方式来满足不同预订价格的订单。这种简单的控制方法基本丧失了使用房价代码来统计不同客源的可能。针对这种情况,酒店应该设置不同的房价代码用于不同价格的预订。简而言之,同一个公司或渠道的不同的价格可以用不同的房价代码来表示,这样可以方便地统计出不同价格的预订情况。
客户档案的建立和维护
几乎每家酒店都会在PMS系统中建立客户入住的档案。但是由于不同预订来源提供的客户联系方式不同(在中文中,同名同姓甚至同音的情况特别多),导致在预订的时候,预订员很难分辨是否为同一位客户。大部分的情况下,预订员会先处理完订单,留待客户入住时,由前台人员跟进确认。但是由于很多原因,在实际操作的时候,很难确保每位客户的入住历史能够被很好地记录下来,导致很多酒店的系统中存在许多重复的客户档案。这也意味着酒店很难像OTA那样完整地记录着客户每一次的入住以及消费信息。所以,建议酒店定期检查合并同一位客户的档案,以帮助酒店了解每位客户的具体需求、入住习惯、价格水平以及消费记录。
团队操作的标准流程
说到团队操作,很多酒店几乎没有清晰的运作标准。
销售在报价的时候应该注意收集各种信息,包括客户愿意承受的预算以及竞争酒店的报价等等。 同时,在报价时还需要注意计算该团队潜在的置换收入。 销售或预订部处理团队锁房的具体标准需要明确。询价、待定、确定、分配,这些流程需要每一位团队成员清晰了解并认真执行。
酒店对于团队数据的处理需要遵循一致的标准,这样才能帮助收益经理更加准确地理解团队预订的进度以及相对的不确定性,为团队的合理预测提供有利的支持。
合理、准确并综合运用这些不同的代码,能够帮助酒店精确地了解自身的客源结构、业绩构成并能够作为制定未来决策的数据基础。然而,很多酒店的运营部门还没有意识到自己的日常操作和服务对收益管理和数据处理所带来的影响。只有自上及下认识到收益管理能够给酒店带来好处,收益管理才能实实在在给酒店带来变化,让酒店精准的数据分析给酒店管理带来革命性的变化。如需了解更多有关内容,请注册参加IDeaS公司8月26日举办的在线讲座——“酒店大数据之客户数据收集标准”。
⑥ 大数据有哪些具体的应用案例
大数据有具体的应用案例还是很多的,比如 :
1、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
2. Tipp24 AG针对欧洲博彩业构建的下注和预测平台。该公司用KXEN软件来分析数十亿计的交易以及客户的特性,然后通过预测模型对特定用户进行动态的营销活动。这项举措减少了90%的预测模型构建时间。SAP公司正在试图收购KXEN。
3. 沃尔玛的搜索。自行设计了最新的搜索引擎Polaris,利用语义数据进行文本分析、机器学习和同义词挖掘等。根据沃尔玛的说法,语义搜索技术的运用使得在线购物的完成率提升了10%到15%。“对沃尔玛来说,这就意味着数十亿美元的金额。”Laney说。
4. 快餐业的视频分析。该公司通过视频分析等候队列的长度,然后自动变化电子菜单显示的内容。如果队列较长,则显示可以快速供给的食物;如果队列较短,则显示那些利润较高但准备时间相对长的食品。
5. Morton牛排店的品牌认知。当一位顾客开玩笑地通过推特向这家位于芝加哥的牛排连锁店订餐送到纽约Newark机场(他将在一天工作之后抵达该处)时,Morton就开始了自己的社交秀。首先,分析推特数据,发现该顾客是本店的常客,也是推特的常用者。根据客户以往的订单,推测出其所乘的航班,然后派出一位身着燕尾服的侍者为客户提供晚餐。
6. PredPol Inc.。PredPol公司通过与洛杉矶和圣克鲁斯的警方以及一群研究人员合作,基于地震预测算法的变体和犯罪数据来预测犯罪发生的几率,可以精确到500平方英尺的范围内。在洛杉矶运用该算法的地区,盗窃罪和暴力犯罪分布下降了33%和21%。
7. Tesco PLC(特易购)和运营效率。这家超市连锁在其数据仓库中收集了700万部冰箱的数据。通过对这些数据的分析,进行更全面的监控并进行主动的维修以降低整体能耗。
8. American Express(美国运通,AmEx)和商业智能。以往,AmEx只能实现事后诸葛式的报告和滞后的预测。“传统的BI已经无法满足业务发展的需要。”Laney认为。于是,AmEx开始构建真正能够预测忠诚度的模型,基于历史交易数据,用115个变量来进行分析预测。该公司表示,对于澳大利亚将于之后四个月中流失的客户,已经能够识别出其中的24%。
⑦ 有哪些大数据分析案例
如下:
1. 大数据应用案例之:医疗行业
1)Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。
在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。
2)大数据配合乔布斯癌症治疗
乔布斯是世界上第一个对自身所有DNA和肿瘤DNA进行排序的人。为此,他支付了高达几十万美元的费用。他得到的不是样本,而是包括整个基因的数据文档。医生按照所有基因按需下药,最终这种方式帮助乔布斯延长了好几年的生命。
2. 大数据应用案例之:能源行业
1)智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。
通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。
因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。
2)丹麦的维斯塔斯风能系统(Vestas Wind Systems)运用大数据,系统依靠的是BigInsights软件和IBM超级计算机,分析出应该在哪里设置涡轮发电机,事实上这是风能领域的重大挑战。在一个风电场20多年的运营过程中,准确的定位能帮助工厂实现能源产出的最大化。
为了锁定最理想的位置,Vestas分析了来自各方面的信息:风力和天气数据、湍流度、地形图、公司遍及全球的2.5万多个受控涡轮机组发回的传感器数据。这样一套信息处理体系赋予了公司独特的竞争优势,帮助其客户实现投资回报的最大化。
3. 大数据应用案例之:通信行业—通过大数据分析挽回核心客户
法国电信-Orange集团旗下的波兰电信公司Telekomunikacja Polska是波兰最大的语音和宽带固网供应商,希望有效的途径来准确预测并解决客户流失问题。
他们决定进行客户细分,方法是构建一张“社交图谱”- 分析客户数百万个电话的数据记录,特别关注 “谁给谁打了电话”以及“打电话的频率”两个方面。“社交图谱”把公司用户分成几大类,如:“联网型”、“桥梁型”、“领导型”以及“跟随型”。
这样的关系数据有助电信服务供应商深入洞悉一系列问题,如:哪些人会对可能“弃用”公司服务的客户产生较大的影响?挽留最有价值客户的难度有多大?运用这一方法,公司客户流失预测模型的准确率提升了47%。
4、大数据应用案例之:零售业—大数据帮零售企业制定促销策略
北美零售商百思买在北美的销售活动非常活跃,产品总数达到3万多种,产品的价格也随地区和市场条件而异。由于产品种类繁多,成本变化比较频繁,一年之中,变化可达四次之多。
结果,每年的调价次数高达12万次。最让高管头疼的是定价促销策略。公司组成了一个11人的团队,希望透过分析消费者的购买记录和相关信息,提高定价的准确度和响应速度。
定价团队的分析围绕着三个关键维度:
1)数量:团队需要分析海量信息。他们收集了上千万的消费者的购买记录,从客户不同维度分析,了解客户对每种产品种类的最高接受能力,从而为产品定出最佳价位。
2)多样性:团队除了分析了购买记录这种结构化的数据外,他们也利用社交媒体发帖这种新型的非结构化数据。由于消费者需要在零售商专页上点赞或留言以获得优惠券,团队利用情感分析公式来分析专页上消费者的情绪,从而判断他们对于公司的促销活动是否满意,并微调促销策略。
3)速度:为了实现价值最大化,团队对数据进行实时或近似实时的处理。他们成功地根据一个消费者既往的麦片购买记录,为身处超市麦片专柜的他/她即时发送优惠券,为客户带来便利性和惊喜。
透过这一系列的活动,团队提高了定价的准确度和响应速度,为零售商新增销售额和利润数千万美元。
5、大数据应用案例之:网络营销行业(SEM)
很多企业在做SEM的过程中,都有这样的感触:每年都会花费大量的预算在SEM推广中,但是因为关键词投入产出无法可视化,常常花了很多钱却不见具体的回报。
在竞争如此激烈的SEM市场中,企业需要一个高效的数据分析工具来尽可能地帮企业优化SEM推广,例如BDP,来帮企业节省不必要的支出,提升整体的经营绩效。
企业可借助数据平台提供的网络营销整合解决方案,打通各个搜索引擎营销(SEM)、在线客服系统和CRM系统,营销竞价人员无需掌握复杂的编程技术,简单拖拽即可生成报表,观察每一个关键词的投入和产出,分析每一个页面的转化,有效降低投放成本。
通过BDP实况分析数据,可以快速洞悉对手关键词的投放时段、地域及排名,并对其进行可视化的分析,实时监控自己和竞争对手的投放情况,了解对手的投放策略,支持自定义设置数据更新的时间点、监控频次和时段,及时调整策略。知已知彼,才能百战不殆。
6、大数据应用案例之:电商行业
意料之外:胸部最大的是新疆妹子。曾经淘宝平台显示,中国女性购买最多的文胸尺码为B罩杯。B罩杯占比达41.45%,其中又以75B的销量最好,其次是A罩杯,购买占比达25.26%,C罩杯只有8.96%。
虽然淘宝数据平台不能代表一切,但是结合现实来看,这个也具有普遍的代表性,只能感慨中国女性普遍size。在文胸颜色中,黑色最为畅销,黑色绝对是百搭,每个女性必备。
从省市排名,胸部最大的是新疆妹子。这些数据都对于文胸店铺而言是很好的参考,为店铺的库存、定价、款式选择等策略都有奠定数据基础。
7、大数据应用案例之:娱乐行业
微软大数据成功预测奥斯卡21项大奖。2013年,微软纽约研究院的经济学家大卫•罗斯柴尔德(David Rothschild)利用大数据成功预测24个奥斯卡奖项中的19个,成为人们津津乐道的话题。
今年罗斯柴尔德再接再厉,成功预测第86届奥斯卡金像奖颁奖典礼24个奖项中的21个,继续向人们展示现代科技的神奇魔力。
总的来说,大数据的终极目标并不仅仅是改变竞争环境,而是彻底扭转整个竞争环境,带来新机遇,企业需要应势而变。企业只有认识到这一点,使用合适的数据分析产品、聪明地使用和管理数据,才能在长期竞争中成为终极赢家。
⑧ 从你们各自的角度看酒店和民宿在利用大数据支持服务运营和市场营销方面有哪些好的案例和误区
有以下3点的好的方案和误区。
以广州花园酒店为例,该酒店常年的客户销售结构是国内70%外宾30%左右,会利用外关入境数据和航班信息预测入住率,结合往年的入住经验拟定房价。一般是早上拟价较高,傍晚开始变价(入住率低于70%降价)。这样做的好处有
1、可以根据市场情况随时调价,保证当天高入住率
2、低价引流,能吸引顾客浏览网站信息
3、高流量方便宣传和推广自己的品牌,吸引潜在目标客户
但这样也往往会有以下几点坏处
1、犹豫价格变化较大会导致较早购买的客户觉得吃亏,导致客户对产品和服务有落差感,降低满意度
2、流量错误分析,因为数据本身存在误差信息,并不是说当天航班多少留在广州的外宾就有多少,客户有可能是以广州为中转站当天乘车离开广州到达周边其他城市。
3、当天太早满房的高入住率碰上大型节日和证书考试等人流量猛增的情况应付不急,失去很多盈利机会。
基于以上情况,建议企业先做好利润分析,确定价格和入住率的关系定好最优价格(并不是说价格低住满了利润就最大)。应该常备20%左右的客房存储量以应付突发事件,在利用大数据的同时要结合往年的经验和客户入住周期作为参考才能更加精准的预测入住率和定价。另外当天早中晚至少要根据销售状况预测市场三次,根据状况随时调价,以保障盈利最大化。
另外做好商家合作,遇到高价但是却满房供不应求的节假日行情,也可以跟顾客协商后当天先带去周边的酒店入住,第二天房态不紧张了带回来入住,以保证客服入住率。
⑨ 如何利用大数据做好酒店经营管理
一、大数据的支持更有益于精确的前期市场定位
建造一座酒店,首先要进行项目评估和可行性分析,只有通过项目评估和可行性分析才能最终决定是否适合建造一家酒店。如果适合建造一家酒店,那么,这家酒店的文化主题是什么?建什么样的规模和档次?设计什么样的产品?酒店的客源群体是什么?能卖到什么样的价格?未来市场的供需情况等等,这些内容都需要在酒店建造之前来确定,也就是我们常说的前期市场定位。
建造一家酒店不仅要需要投入大量的资金,而且建设期一般需要3到5年或者更长,建造成本很高;一旦饭店建好投入运营,再想改变其市场定位就非常困难了,可以说前期市场定位是一项不容有任何偏差的工作。否则,将会给投资商带来不可估量的后期损失。由此看出,前期市场定位对建造酒店非常重要,只有定位准确乃至精确,才能使建造出的酒店与未来市场环境相适应,构建出能满足市场需求的酒店产品,使酒店在竞争中立于不败之地。然而,要想做到这一点,就必须有足够的相关数据和市场信息来供酒店研究人员分析和判断,仅凭工作经验是远远不够的。通常,在酒店前期市场定位中,相关数据的收集主要来自于统计年鉴、行业管理部门数据、相关行业报告、行业专家意见及属地市场调查等,这些数据多存在样本量不足,时间滞后和准确度低等缺陷,酒店研究人员能够获得的信息量非常有限,使准确的市场定位存在着数据瓶颈。随着大数据时代的来临,借助云计算和数据挖掘技术不仅能给研究人员提供足够的样本量和数据信息,还能够通过建立数学模型借助历史数据对未来市场进行预测,为研究人员数据收集、统计和分析提供了更加广阔的空间。当然,仅靠酒店本身来完成大量数据的收集和统计分析工作是有困难的,还需要相关数据公司的帮助,为酒店制定更精准的前期市场定位。
二、大数据未来将成为饭店市场营销工作的利器
在酒店市场营销工作中,无论是产品、渠道、价格还是顾客,可以说每一项工作都与市场数据息息相关,而以下两个方面又是饭店市场营销工作中的重中之重。一是通过获取数据并加以统计分析来充分了解市场信息,掌握竞争者的商情和动态,知晓酒店在竞争群中所处的市场地位,来达到“知彼知己,百战不殆”的目的;二是酒店通过积累和挖掘顾客档案数据,有助于分析顾客的消费行为和价值趣向,便于更好地为顾客服务和发展忠诚顾客,形成饭店稳定的会员客户。
在传统的市场竞争模式中,由于酒店获取数据资源的途径有限,只能够依靠有限的调查数据对个体竞争者进行比较分析,无法全面掌握市场动态和供需情况,特别是竞争态势,更难以确定饭店在竞争市场中所处的地位,给酒店制订正确的竞争策略带来困难。随着酒店营销管理理念的不断更新,原有传统营销模式已面临着严峻的挑战,对管理者准确掌握市场信息,精确了解竞争对手动态,制订合适的价格提出了更高的要求。市场竞争的分析也由原来简单的客房出租率、平均房价、RevPAR分析转化为对竞争群的数据分析,如:市场渗透指数(MPI)、平均房价指数(ARI)、收入指数(RGI)等,从维度上讲还有时间维度、市场份额及同比变化率等。通过这些市场标杆数据的分析,可以使酒店管理者充分掌握市场供求关系变化的信息,了解酒店潜在的市场需求,准确获得竞争者的商情,最终确定酒店在竞争市场中的地位,从而对酒店制订准确的营销策略,打造差异化产品,制订合适的价格起到关键的作用。而大数据的应用概念正是需要酒店获取这些市场市场数据,并通过统计与分析技术来为酒店提供帮助。在对顾客的消费行为和趣向分析方面,如果酒店平时善于积累、收集和整理顾客在饭店消费行为方面的信息数据,如:顾客在饭店的花费、选择的订房渠道、偏好的房间类型、停留的平均天数、来酒店属地的目的、喜欢的背景音乐和菜肴等。如果酒店积累并掌握了这些数据,便可通过统计和分析来掌握顾客消费行为和兴趣偏好。当顾客再次到店时发现你已经为他准备好了喜欢入住的房间,播放着他爱听的音乐,为他推荐喜欢吃的菜肴,那么他已经是你的忠诚顾客了。因此,可以说数据中蕴含着出奇制胜的力量,如果饭店管理者善于在市场营销加以运用,将成饭店在市场竞争中立于不败之地的利器。
三、酒店收益管理更是离不开数据的支持
收益管理作为实现酒店收益最大化的一门理论学科,近年来已受到业界的普遍关注并加以推广运用,收益管理的含义把合适的产品或服务,在合适的时间,以合适的价格,通过合适的销售渠道,出售给合适的顾客,最终实现饭店收益最大化目标。要做到以上五个要素的有效组合,需求预测、细分市场和敏感度分析是此项工作的三个重要环节。
需求预测是通过数据的统计与分析,采取科学的预测方法,通过建立数学模型,使饭店管理者掌握和了解潜在的市场需求,未来一段时间每个细分市场的订房量和酒店的价格走势等,从而使酒店能够通过价格的杠杆来调节市场的供需平衡,并针对不同的细分市场来实行动态定价和差别定价;在市场需求旺盛的时候通过提高价格来盈得更大的收益,在市场疲软的时期通过推出促销价和折扣价等方式来招徕客源,以此来保证酒店在不同市场周期中的收益最大化。需求预测的好处在于可提高酒店管理者对市场判断的前瞻性,并在不同的市场波动周期以合适的产品和价格投放市场,获得潜在的收益。细分市场为酒店准确预测订房量和实行差别定价提供了条件,差别定价是通过对同一种酒店产品(如:同类型的客房、餐食和康体项目等)按不同的细分市场制定不同价格的行为和方法,其特点是对高支付意愿的顾客收取高价,对低支付意愿的顾客收取低价,从而把产品留给最有价值的顾客。其科学性体现在通过市场需求预测来制定和更新价格,最大化各个细分市场的收益。敏感度分析是通过需求价格弹性分析技术,对不同细分市场的价格进行优化,最大限度地挖掘市场潜在的收入。酒店管理者可通过价格优化方法找到酒店不同市场周期每个细分市场的最佳可售房价—BAR,并通过预订控制手段为最有价值的顾客预留或保留客房,较好地解决了房间因过早被折扣顾客预订而遭受损失的难题。
大数据时代的来临,为酒店收益管理工作的开展提供了更加广阔的空间。需求预测、细分市场和敏感度分析对数据需求量很大,以往多是采集的是酒店自身的历史数据来进行预测和分析,容易忽视外界市场信息数据,难免使预测的结果存在一定的离差。酒店在实施收益管理过程中如果能在酒店自有数据的基础上,借助更多的市场数据,了解更多的市场信息,同时引入竞争分析,将会对制订准确的收益策略,盈得更高的收益起到推进作用。
四、客评的多维度分析成为挖掘饭店服务质量潜力的重要要素
网络评论,最早源自于互联网论坛,是供网友闲暇之余相互交流的网络社交平台。过去,顾客住店后对酒店在互联网上的评价,也就是我们常说的客评并没有引起酒店管理者的足够的重视,针对顾客反映的问题,多数酒店没有做到及时的回复甚至是根本不回复,日常管理中是否及时解决了客评中反映的问题就更不得而知了,这不仅拉大了与顾客之间的距离,而且顾客与酒店之间的信息显得更加不对称,失去了酒店与顾客情感互动和交流的机会。
随着互联网和电子商务的发展,现今的酒店客评已不再是过去简单意义上评论,已发生了质的转变,由过去顾客对酒店服务简单表扬与评批演变为多内容、多渠道和多维度的客观真实评价,顾客的评价内容也更趋于专业化和理性化,发布的渠道也更加广泛。因此,如今的客评不仅受到了酒店管理者的重视,更是受到消费者的高度关注。有市场调查显示,超过70%的客人在订房前都会浏览该酒店的客评,成为主导顾客是否预订这家酒店的主要动机因素之一。从某种角度看,客评在互联网走进人们生活的今天已成为衡量酒店品牌价值、服务质量和产品价值的重要要素。多维度地对客评数据进行收集、统计和分析将会有助于酒店深入了解顾客的消费行为、价值趣向和酒店产品质量存在的不足,对改进和创新产品,量化产品价值,制订合理的价格及提高服务质量都将起到推进作用。要做到这一点,就需要酒店平时善于收集、积累和统计客评方面的大量数据,多维度地进行比较分析,从中发现有价值的节点,将会更有益于推进酒店的营销和质量管理工作,从中获取更大的收益。
综上所述,大数据,并不是一个神秘的字眼,只要酒店平时善于积累、收集、挖掘、统计和分析这些数据,为我所用,都会有效地帮助酒店提高市场竞争力和收益能力,盈得良好的效益。