A. 大数据有哪些具体的应用案例
大数据有具体的应用案例还是很多的,比如 :
1、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
2. Tipp24 AG针对欧洲博彩业构建的下注和预测平台。该公司用KXEN软件来分析数十亿计的交易以及客户的特性,然后通过预测模型对特定用户进行动态的营销活动。这项举措减少了90%的预测模型构建时间。SAP公司正在试图收购KXEN。
3. 沃尔玛的搜索。自行设计了最新的搜索引擎Polaris,利用语义数据进行文本分析、机器学习和同义词挖掘等。根据沃尔玛的说法,语义搜索技术的运用使得在线购物的完成率提升了10%到15%。“对沃尔玛来说,这就意味着数十亿美元的金额。”Laney说。
4. 快餐业的视频分析。该公司通过视频分析等候队列的长度,然后自动变化电子菜单显示的内容。如果队列较长,则显示可以快速供给的食物;如果队列较短,则显示那些利润较高但准备时间相对长的食品。
5. Morton牛排店的品牌认知。当一位顾客开玩笑地通过推特向这家位于芝加哥的牛排连锁店订餐送到纽约Newark机场(他将在一天工作之后抵达该处)时,Morton就开始了自己的社交秀。首先,分析推特数据,发现该顾客是本店的常客,也是推特的常用者。根据客户以往的订单,推测出其所乘的航班,然后派出一位身着燕尾服的侍者为客户提供晚餐。
6. PredPol Inc.。PredPol公司通过与洛杉矶和圣克鲁斯的警方以及一群研究人员合作,基于地震预测算法的变体和犯罪数据来预测犯罪发生的几率,可以精确到500平方英尺的范围内。在洛杉矶运用该算法的地区,盗窃罪和暴力犯罪分布下降了33%和21%。
7. Tesco PLC(特易购)和运营效率。这家超市连锁在其数据仓库中收集了700万部冰箱的数据。通过对这些数据的分析,进行更全面的监控并进行主动的维修以降低整体能耗。
8. American Express(美国运通,AmEx)和商业智能。以往,AmEx只能实现事后诸葛式的报告和滞后的预测。“传统的BI已经无法满足业务发展的需要。”Laney认为。于是,AmEx开始构建真正能够预测忠诚度的模型,基于历史交易数据,用115个变量来进行分析预测。该公司表示,对于澳大利亚将于之后四个月中流失的客户,已经能够识别出其中的24%。
B. 生活中的大数据例子
1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
目前位于美国加利福尼亚州的PredPol公司在某种程度上把利用大数据预测犯罪变成了现实。
PredPol 推出的犯罪活动预测软件主界面是一张城市地图,看起来与谷歌地图相似。它会根据某一地区过往的犯罪活动统计数据,借助特殊算法,计算出某地发生犯罪的概率、犯罪类型,以及最有可能犯罪的时间段。
它还可以用红色方框表示需要提高警惕的犯罪“热点”地区,警方可以通过个人电脑、手机或平板电脑对其进行在线查看。
犯罪预测软件实际上是从地震预测软件进化而来的,它能处理大量犯罪数据,尤其是犯罪地点和犯罪时间,然后再联系已知的犯罪行为,比如窃贼通常倾向于在他们最熟悉的社区犯罪等,最终给出一个较为完善的结果。
每次运算结束后,犯罪预测软件会给出一张画出了红色方框的地图,这些红色方框代表盗窃行为可能发生的“热点”地区,有些时候这些区域能准确地缩小至很小的范围。
警察局的上司会吩咐属下,当他们没在处理报警电话时,就应该花时间在这些高危区域中巡逻,最好是每两小时巡逻至少15分钟。这样做的重点更在于通过在软件画出的高危区中高调巡逻而降低犯罪,而非等案子发生后破案。
2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
Google流感趋势(Google Flu Trends,GFT)是Google于2008年推出的一款预测流感的产品。Google认为,某些搜索字词有助于了解流感疫情。Google流感趋势会根据汇总的Google搜索数据,近乎实时地对全球当前的流感疫情进行估测。
3、麻省理工学院利用手机定位数据和交通数据建立城市规划。
目前手机移动网络实现了城乡空间区域的全覆盖,城乡人口中手机终端的持有率和使用率已经达到相当高的比例,手机定位数据契合了城乡人口空间分布与活动规律的分析需求。
根据手机信号在真实地理空间上的覆盖情况,将手机用户时间序列的移动信号数据,映射至现实的地理空间位置,即可完整、客观地还原出手机用户的现实活动轨迹,从而挖掘得到人口空间分布与活动联系特征信息。
4、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
(2)大数据方面的例子扩展阅读
经李克强总理签批,2015年9月,国务院印发《促进大数据发展行动纲要》(以下简称《纲要》),系统部署大数据发展工作。
《纲要》明确,推动大数据发展和应用,在未来5至10年打造精准治理、多方协作的社会治理新模式,建立运行平稳、安全高效的经济运行新机制,构建以人为本、惠及全民的民生服务新体系,开启大众创业、万众创新的创新驱动新格局,培育高端智能、新兴繁荣的产业发展新生态。
未来,数据科学将成为一门专门的学科,被越来越多的人所认知。各大高校将设立专门的数据科学类专业,也会催生一批与之相关的新的就业岗位。与此同时,基于数据这个基础平台,也将建立起跨领域的数据共享平台,之后,数据共享将扩展到企业层面,并且成为未来产业的核心一环。
C. 生活中有哪些大数据
网络日志抄、传感器袭网络、社会网络、社会数据、互联网文体和文件、呼叫详细记录、天文学、医疗记录,篮球比赛中利用大数据对球员的个人在比赛场上的数据分析。
通过收集普通家庭的能耗数据,大数据技术给出人们切实可用的节能提醒;通过对城市交通数据的收集处理,大数据技术能实现城市交通的优化。这些都是大数据在生活中的应用。
(3)大数据方面的例子扩展阅读:
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据的价值体现在以下几个方面:
1、对大量消费者提供产品或服务的企业可以利用大数据进行精准营销
2、做小而美模式的中小微企业可以利用大数据做服务转型
3、面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值
D. 有哪些大数据分析案例
如下:
1. 大数据应用案例之:医疗行业
1)Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。
在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。
2)大数据配合乔布斯癌症治疗
乔布斯是世界上第一个对自身所有DNA和肿瘤DNA进行排序的人。为此,他支付了高达几十万美元的费用。他得到的不是样本,而是包括整个基因的数据文档。医生按照所有基因按需下药,最终这种方式帮助乔布斯延长了好几年的生命。
2. 大数据应用案例之:能源行业
1)智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。
通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。
因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。
2)丹麦的维斯塔斯风能系统(Vestas Wind Systems)运用大数据,系统依靠的是BigInsights软件和IBM超级计算机,分析出应该在哪里设置涡轮发电机,事实上这是风能领域的重大挑战。在一个风电场20多年的运营过程中,准确的定位能帮助工厂实现能源产出的最大化。
为了锁定最理想的位置,Vestas分析了来自各方面的信息:风力和天气数据、湍流度、地形图、公司遍及全球的2.5万多个受控涡轮机组发回的传感器数据。这样一套信息处理体系赋予了公司独特的竞争优势,帮助其客户实现投资回报的最大化。
3. 大数据应用案例之:通信行业—通过大数据分析挽回核心客户
法国电信-Orange集团旗下的波兰电信公司Telekomunikacja Polska是波兰最大的语音和宽带固网供应商,希望有效的途径来准确预测并解决客户流失问题。
他们决定进行客户细分,方法是构建一张“社交图谱”- 分析客户数百万个电话的数据记录,特别关注 “谁给谁打了电话”以及“打电话的频率”两个方面。“社交图谱”把公司用户分成几大类,如:“联网型”、“桥梁型”、“领导型”以及“跟随型”。
这样的关系数据有助电信服务供应商深入洞悉一系列问题,如:哪些人会对可能“弃用”公司服务的客户产生较大的影响?挽留最有价值客户的难度有多大?运用这一方法,公司客户流失预测模型的准确率提升了47%。
4、大数据应用案例之:零售业—大数据帮零售企业制定促销策略
北美零售商百思买在北美的销售活动非常活跃,产品总数达到3万多种,产品的价格也随地区和市场条件而异。由于产品种类繁多,成本变化比较频繁,一年之中,变化可达四次之多。
结果,每年的调价次数高达12万次。最让高管头疼的是定价促销策略。公司组成了一个11人的团队,希望透过分析消费者的购买记录和相关信息,提高定价的准确度和响应速度。
定价团队的分析围绕着三个关键维度:
1)数量:团队需要分析海量信息。他们收集了上千万的消费者的购买记录,从客户不同维度分析,了解客户对每种产品种类的最高接受能力,从而为产品定出最佳价位。
2)多样性:团队除了分析了购买记录这种结构化的数据外,他们也利用社交媒体发帖这种新型的非结构化数据。由于消费者需要在零售商专页上点赞或留言以获得优惠券,团队利用情感分析公式来分析专页上消费者的情绪,从而判断他们对于公司的促销活动是否满意,并微调促销策略。
3)速度:为了实现价值最大化,团队对数据进行实时或近似实时的处理。他们成功地根据一个消费者既往的麦片购买记录,为身处超市麦片专柜的他/她即时发送优惠券,为客户带来便利性和惊喜。
透过这一系列的活动,团队提高了定价的准确度和响应速度,为零售商新增销售额和利润数千万美元。
5、大数据应用案例之:网络营销行业(SEM)
很多企业在做SEM的过程中,都有这样的感触:每年都会花费大量的预算在SEM推广中,但是因为关键词投入产出无法可视化,常常花了很多钱却不见具体的回报。
在竞争如此激烈的SEM市场中,企业需要一个高效的数据分析工具来尽可能地帮企业优化SEM推广,例如BDP,来帮企业节省不必要的支出,提升整体的经营绩效。
企业可借助数据平台提供的网络营销整合解决方案,打通各个搜索引擎营销(SEM)、在线客服系统和CRM系统,营销竞价人员无需掌握复杂的编程技术,简单拖拽即可生成报表,观察每一个关键词的投入和产出,分析每一个页面的转化,有效降低投放成本。
通过BDP实况分析数据,可以快速洞悉对手关键词的投放时段、地域及排名,并对其进行可视化的分析,实时监控自己和竞争对手的投放情况,了解对手的投放策略,支持自定义设置数据更新的时间点、监控频次和时段,及时调整策略。知已知彼,才能百战不殆。
6、大数据应用案例之:电商行业
意料之外:胸部最大的是新疆妹子。曾经淘宝平台显示,中国女性购买最多的文胸尺码为B罩杯。B罩杯占比达41.45%,其中又以75B的销量最好,其次是A罩杯,购买占比达25.26%,C罩杯只有8.96%。
虽然淘宝数据平台不能代表一切,但是结合现实来看,这个也具有普遍的代表性,只能感慨中国女性普遍size。在文胸颜色中,黑色最为畅销,黑色绝对是百搭,每个女性必备。
从省市排名,胸部最大的是新疆妹子。这些数据都对于文胸店铺而言是很好的参考,为店铺的库存、定价、款式选择等策略都有奠定数据基础。
7、大数据应用案例之:娱乐行业
微软大数据成功预测奥斯卡21项大奖。2013年,微软纽约研究院的经济学家大卫•罗斯柴尔德(David Rothschild)利用大数据成功预测24个奥斯卡奖项中的19个,成为人们津津乐道的话题。
今年罗斯柴尔德再接再厉,成功预测第86届奥斯卡金像奖颁奖典礼24个奖项中的21个,继续向人们展示现代科技的神奇魔力。
总的来说,大数据的终极目标并不仅仅是改变竞争环境,而是彻底扭转整个竞争环境,带来新机遇,企业需要应势而变。企业只有认识到这一点,使用合适的数据分析产品、聪明地使用和管理数据,才能在长期竞争中成为终极赢家。
E. 大数据都体现在哪些方面
1、疫情期间的大数据
就比如疫情期间我们所用的健康码,其实也就是基于大数据,采集每位用户的行动轨迹,然后自动生成绿码或者红码。又比如说,在疫情爆发时,浙江通过使用交通流大数据技术,排查分析从疫情严重地区驶入的车辆,帮助提高疫情防控效率。另外,大数据也被广泛应用到语音智能识别、智慧城市和信息安全、医疗、交通等方方面面。
2、业务流程优化
大数据还会更多的帮助业务流程的优化。我们可以通过利用社交媒体数据、网络搜索以及天气预报等等去挖掘出大量的有价值的数据,其中大数据的应用最广泛的就是供应链以及配送路线的优化。从这两个方面,地理定位和无线电频率的识别追踪货物和送货车,利用实时交通路线数据制定更加优化的路线。
3、更了解用户需求
大数据的应用目前在这领域是最广为人知的。重点是如何应用大数据更好的了解客户以及他们的爱好和行为。企业非常喜欢搜集社交方面的数据、浏览器的日志、分析出文本和传感器的数据,为了更加全面的了解客户。在一般情况下,建立出数据模型进行预测。举一个比较简单的例子就是通过大数据的应用,电信公司可以更好预测出流失的客户,沃尔玛则会更加精准的预测哪个产品会大卖,汽车保险行业会了解客户的需求和驾驶水平,政府也能了解到选民的偏好。
4、提高医疗和研发
大数据分析应用的计算能力可以让我们能够在几分钟内就可以解码整个DNA。并且让我们可以制定出最新的治疗方案。同时可以更好的去理解和预测疾病。就好像人们戴上智能手表等可以产生的数据一样,大数据同样可以帮助病人对于病情进行更好的治疗。大数据技术目前已经在医院应用监视早产婴儿和患病婴儿的情况,通过记录和分析婴儿的心跳,医生针对婴儿的身体可能会出现不适症状做出预测。这样可以帮助医生更好的救助婴儿。
5、金融交易
大数据在金融行业主要是应用金融交易。高频交易(HFT)是大数据应用比较多的领域。其中大数据算法应用于交易决定。现在很多股权的交易都是利用大数据算法进行,这些算法现在越来越多的考虑了社交媒体和网站新闻来决定在未来几秒内是买出还是卖出。
F. 大数据改变我们生活的五个例子
大数据改变我们生活的五个例子
在科技世界里,我们经常谈论如何利用大数据来做大生意。但在国家地理杂志和时代杂志的前摄影师Rick Smolan撰写的《The Human Face of Big Data》一书(该书将于11月20日出版)中,他讲述了大数据如何改变我们生活的一些例子。
Smolan称,大数据的意义不亚于1993年的互联网,但在社会影响上更大。以下则是与我们的生活息息相关的五个例子:
心脏病患者的风险监控
麻省理工学院、密歇根大学和一家妇女医院创建了一个计算机模型,可利用心脏病患者的心电图数据进行分析,预测在未来一年内患者心脏病发作的几率。在过去,医生只会花30秒钟来观看用户的心电图数据,而且缺乏对之前数据的比较分析,这使得医生对70%的心脏病患者再度发病缺乏预判,而现在通过机器学习和数据挖掘,该模型可以通过累积的数据进行分析,发现高风险指标。
“魔毯”病人的监控
“魔毯”是GE和Intel联合开发的一个项目,其原型使用家中地毯内装的传感器感应缺乏人照料的老人下床和行走的速度和压力,一旦这些数据发生异常则对老人的亲人发送一个警报。虽然内置传感器装置对大多数人来讲依然昂贵,但Smolan称由于这些对自身数据量化的小工具越来越受到欢迎,用户可以清楚了了解和改变他们的行为,改善他们的健康状况。
应用级家庭能源监测
在节约用电的公益广告中我们往往可以看到我们浪费的电能有多大的例子。或许很多人还不知道,仅仅是DVR一款产品就消耗了美国家庭用电量的11%,因此华盛顿大学教授、MacArthur研究员Shwetak Patel开发了一款叫做ElectriSense的装置,该款装置可以像插头一样插入家中的充电插座,即可通过家电产品在使用Shitter造成的电磁频率干扰提醒用户如何节约电能。贝尔金(Belkin)国际已经购买了这一技术并将于近期开发出商用产品。
利用GPS数据了解交通状况
如同有首歌唱得好,下雨时总是难以打到出租车。而在新加坡与麻省理工联合进行的一项研究中,研究员Oliver Senn则提出,出租车司机可以在恶劣天气提前将车靠边,从而拉到更多乘客。在进一步研究他还发现,新加坡出租车司机必须预交一笔1000美元的事故保证金,最初一旦发生事故,司机第二天即可获得赔付,而现在赔付时间被延长到了数月之久,这导致司机在下雨等恶劣天气时选择磨洋工。该研究对这一政策提出了质疑,这也是大数据如何帮助城市规划者们如何了解厄更好改善城市交通的一个例子。
早期天气警报
现在我们可以从电视甚至智能手机上接收到天气警报,但WeatherBug应用开发商Earth Networks称,现在全球人口已经高达70亿,尚有60亿人未能在恶劣天气状况前接收到预警(在非洲、南美洲和亚洲等欠发达国家和地区尤其严重)。该公司利用遍布全球的数万个传感器,监测温度、风力和雷电的变化情况,给用户提供领先的恶劣天气分析及预警。
以上是小编为大家分享的关于大数据改变我们生活的五个例子的相关内容,更多信息可以关注环球青藤分享更多干货
G. 大数据时代,几个例子告诉你什么叫大数据
例子:比如,阿里来每天都在收集源每一个淘宝用户的各个方面的信息参考(千人千面)。然后再用大数据算法来推荐给你现在需要的产品,或者广告,这个就是大数据。我说的是最浅显的一种大数据。 大数据就没有隐私,手机里的APP都回收集你的一切的数据,一切的数据,这样呢,你在淘宝上看了看一款手机,那么当你关了淘宝,打开了今日头条,你如果注意的话,你会发现,头条今日推荐你的广告就是手机,文章内容也会偏向手机之内的。这就是大数据。
所谓大数据无非就是一大堆数据。
小的 1、2 G,多的上千、上万 G
用户行为
用户习惯
怎么才能从用户身上赚到钱。
H. 生活中的大数据有哪些例子
一、在金融行业的应用
金融行业应该是运用大数据技术最频繁的一个行业,证券和银行经常会运用大数据技术进行数据分析,通过对数据的监控和分析,有效规避风险。
金融行业面临的行业挑战有很多,证券欺诈预警,超高金融分析,信用卡欺诈和企业信用风险等一系列数据数据风险挑战,行业内面临的种种问题,都需要大数据发挥其预测的核心功能,有效规避风险。
二、在娱乐媒体的运用
大数据行业在各个行业都有涉足,举一个简单的例子,通过社交媒体明星粉丝数量分析和行业内新闻动态,可以预测影视视频的播放量和受喜爱程度;通过智能产品的点击数量和浏览量,可以推测用户的个性偏好,并且推荐其喜爱的产品。
前段时间大火的美剧《纸牌屋》,通过大数据分析,选取适合网友的视频偏好和明星选择,造成轰动的播放量。大数据在社交媒体和娱乐行业的大数据分析,一部分也在引导观众和粉丝,让其为娱乐产业消费。
三、在医疗行业的运用
iPhone用户手机上都有这个功能,通过健康APP里的健康步数统计和锻炼情况,为你记录你的健康状况,并且预测可能发生的疾病,这就是在运用大数据技术,通过一系列的记录分析,预测可能要发生的事情并且及时解决。
医疗行业可以通过用户的身体情况和大量病例数据,分析提高医疗行业的监控力度,并且进行有效检测,降低用户的患病率。
四、提高体育成绩
现在很多运动员在训练的时候应用大数据技术来分析。很多精英运动队还追踪比赛环境外运动员的活动-通过使用智能技术来追踪其营养状况以及睡眠,以及社交对话来监控其情感状况。
五、医疗保健
大数据可以更好的去理解和预测疾病。人们戴上智能手表等可以产生的数据一样,大数据同样可以帮助病人对于病情进行更好的治疗。大数据可以帮助我们实现流行病预测、智慧医疗、健康管理,同时还可以帮助我们解读DNA,了解更多的生命奥秘。
大数据技术目前已经在医院应用监视早产婴儿和患病婴儿的情况,通过记录和分析婴儿的心跳,医生针对婴儿的身体可能会出现不适症状做出预测。
I. 关于大数据应用有什么例子
大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。以下是关于各行各业,不同的组织机构在大数据方面的应用的案例,在此申明,以下案例均来源于网络,本文仅作引用,并在此基础上作简单的梳理和分类。
大数据应用案例之:医疗行业
Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。
在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。
大数据应用案例之:能源行业
智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。
有了这个预测后,就可以向发电或者供电企业购买一定数量的电。因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。
维斯塔斯风力系统,依靠的是BigInsights软件和IBM超级计算机,然后对气象数据进行分析,找出安装风力涡轮机和整个风电场最佳的地点。利用大数据,以往需要数周的分析工作,现在仅需要不足1小时便可完成。
J. 关于大数据应用有什么例子
1、关能源行业大数据应用
计算居民用电量。
2、职业篮球赛大数据应用
专业篮球队会通过搜集大量数据来分析赛事情况,然而他们还在为这些数据的整理和实际意义而发愁。通过分析这些数据,找到对手的弱点。
3、保险行业大数据应用
集中处理所有的客户信息。