导航:首页 > 网络数据 > 如何搭建大数据平台

如何搭建大数据平台

发布时间:2022-12-29 03:10:48

A. 保险公司要和医疗机构进行数据对接,搭建大数据平台,有好的方法吗

讨论几种针对各种软件系统的数据采集的方式方法。重点关注它们的实现过程、各自的优缺点。
软件接口对接方式
开放数据库方式
基于底层数据交换的数据直接采集方式
1、软件接口对接方式
各个软件厂商提供数据接口,实现数据汇集,为客户构建出自己的业务大数据平台;
接口对接方式的数据可靠性较高,一般不存在数据重复的情况,且都是客户业务大数据平台需要的有价值的数据;同时数据是通过接口实时传递过来,完全满足了大数据平台对于实时性的要求。
但是接口对接方式需花费大量人力和时间协调各个软件厂商做数据接口对接;同时其扩展性不高,比如:由于业务需要各软件系统开发出新的业务模块,其和大数据平台之间的数据接口也需要做相应的修改和变动,甚至要推翻以前的所有数据接口编码,工作量很大且耗时长。
2、开放数据库方式
一般情况,来自不同公司的系统,不太会开放自己的数据库给对方连接,因为这样会有安全性的问题。为实现数据的采集和汇聚,开放数据库是最直接的一种方式。
不同类型的数据库之间的连接就比较麻烦,需要做很多设置才能生效,这里不做详细说明。
开放数据库方式可以直接从目标数据库中获取需要的数据,准确性很高,是最直接、便捷的一种方式;同时实时性也有保证;
开放数据库方式需要协调各个软件厂商开放数据库,其难度很大;一个平台如果要同时连接很多个软件厂商的数据库,并且实时都在获取数据,这对平台本身的性能也是个巨大的挑战。
3、基于底层数据交换的数据直接采集方式
101异构数据采集的原理是通过获取软件系统的底层数据交换、软件客户端和数据库之间的网络流量包,进行包流量分析采集到应用数据,同时还可以利用仿真技术模拟客户端请求,实现数据的自动写入。
实现过程如下:使用数据采集引擎对目标软件的内部数据交换(网络流量、内存)进行侦听,再把其中所需的数据分析出来,经过一系列处理和封装,保证数据的唯一性和准确性,并且输出结构化数据。经过相应配置,实现数据采集的自动化。
基于底层数据交换的数据直接采集方式的技术特点如下:
1)独立抓取,不需要软件厂家配合;
2)实时数据采集;
数据端到端的延迟在数秒之内;
3)兼容Windows平台的几乎所有软件(C/S,B/S);
作为数据挖掘,大数据分析的基础;
4)自动建立数据间关联;
5)配置简单、实施周期短;
6)支持自动导入历史数据。
目前,由于数据采集融合技术的缺失,往往依靠各软件原厂商研发数据接口才能实现数据互通,不仅需要投入大量的时间、精力与资金,还可能因为系统开发团队解体、源代码丢失等原因出现的死局,导致了数据采集融合实现难度极大。在如此急迫的需求环境下基于底层数据交换的数据直接采集方式应运而生,从各式各样的软件系统中开采数据,源源不断获取所需的精准、实时的数据,自动建立数据关联,输出利用率极高的结构化数据,让数据有序、安全、可控的流动到所需要的企业和用户当中,让不同系统的数据源实现联动流通,为客户提供决策支持、提高运营效率、产生经济价值。

扩展阅读:【保险】怎么买,哪个好,手把手教你避开保险的这些"坑"

B. 大数据平台是什么什么时候需要大数据平台如何建立大数据平台

首先我们要了解java语言和linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。

Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据基础。

Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。

Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。

Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。

Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。

Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。

Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。

Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。

Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。

Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。

Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。

C. 怎么搭建大数据分析平台

未至科技数据中心解决方案是以组织价值链分析模型为理论指导,结合组织战略规版划和面向对象权的方法论,对组织信息化战略进行规划重造立足数据,以数据为基础建立组织信息化标准,提供面向数据采集、处理、挖掘、分析、服务为组织提供一整套的基础解决方案。未至数据中心解决方案采用了当前先进的大数据技术,基于Hadoop架构,利用HDFS、Hive、Impala等大数据技术架构组件和公司自有ETL工具等中间件产品,建立了组织内部高性能、高效率的信息资源大数据服务平台,实现组织内数亿条以上数据的秒级实时查询、更新、调用、分析等信息资源服务。未至数据中心解决方案将,为公安、教育、旅游、住建等各行业业务数据中心、城市公共基础数据库平台、行业部门信息资源基础数据库建设和数据资源规划、管理等业务提供了一体化的解决方案。

D. 如何搭建大数据分析平台

1、 搭建大数据分析平台的背景
在大数据之前,BI就已经存在很久了,简单把大数据等同于BI,明显是不恰当的。但两者又是紧密关联的,相辅相成的。BI是达成业务管理的应用工具,没有BI,大数据就没有了价值转化的工具,就无法把数据的价值呈现给用户,也就无法有效地支撑企业经营管理决策;大数据则是基础,没有大数据,BI就失去了存在的基础,没有办法快速、实时、高效地处理数据,支撑应用。 所以,数据的价值发挥,大数据平台的建设,必然是囊括了大数据处理与BI应用分析建设的。
2、 大数据分析平台的特点
数据摄取、数据管理、ETL和数据仓库:提供有效的数据入库与管理数据用于管理作为一种宝贵的资源。
Hadoop系统功能:提供海量存储的任何类型的数据,大量处理功率和处理能力几乎是无限并行工作或任务
流计算在拉动特征:用于流的数据、处理数据并将这些流作为单个流。
内容管理特征:综合生命周期管理和文档内容。
数据治理综合:安全、治理和合规解决方案来保护数据。
3、 怎样去搭建大数据分析平台
大数据分析处理平台就是整合当前主流的各种具有不同侧重点的大数据处理分析框架和工具,实现对数据的挖掘和分析,一个大数据分析平台涉及到的组件众多,如何将其有机地结合起来,完成海量数据的挖掘是一项复杂的工作。我们可以利用亿信一站式数据分析平台(ABI),可以快速构建大数据分析平台,该平台集合了从数据源接入到ETL和数据仓库进行数据整合,再到数据分析,全部在一个平台上完成。
亿信一站式数据分析平台(ABI)囊括了企业全部所需的大数据分析工具。ABI可以对各类业务进行前瞻性预测分析,并为企业各层次用户提供统一的决策分析支持,提升数据共享与流转能力。

E. 大数据怎么实现的

搭建大数据分析平台的工作是循序渐进的,不同公司要根据自身所处阶段选择合适的平台形态,没有必要过分追求平台的分析深度和服务属性,关键是能解决当下的问题。大数据分析平台是对大数据时代的数据分析产品(或称作模块)的泛称,诸如业务报表、OLAP应用、BI工具等都属于大数据分析平台的范畴。与用户行为分析平台相比,其分析维度更集中在核心业务数据,特别是对于一些非纯线上业务的领域,例如线上电商、线下零售、物流、金融等行业。而用户行为分析平台会更集中分析与用户及用户行为相关的数据。企业目前实现大数据分析平台的方法主要有三种:(1)采购第三方相关数据产品例如Tableau、Growing IO、神策、中琛魔方等。此类产品能帮助企业迅速搭建数据分析环境,不少第三方厂商还会提供专业的技术支持团队。但选择此方法,在统计数据的广度、深度和准确性上可能都有所局限。例如某些主打无埋点技术的产品,只能统计到页面上的一些通用数据。随着企业数据化运营程度的加深,这类产品可能会力不从心。该方案适合缺少研发资源、数据运营初中期的企业。一般一些创业公司、小微企业可能会选择此方案。(2)利用开源产品搭建大数据分析平台对于有一定开发能力的团队,可以采用该方式快速且低成本地搭建起可用的大数据分析平台。该方案的关键是对开源产品的选择,选择正确的框架,在后续的扩展过程中会逐步体现出优势。而如果需要根据业务做一些自定义的开发,最后还是绕不过对源码的修改。(3)完全自建大数据分析平台对于中大型公司,在具备足够研发实力的情况下,通常还是会自己开发相关的数据产品。自建平台的优势是不言而喻的,企业可以完全根据自身业务需要定制开发,能够对业务需求进行最大化的满足。对于平台型业务,开发此类产品也可以进行对外的商业化,为平台上的B端客户服务。例如淘宝官方推出的生意参谋就是这样一款成熟的商用数据分析产品,且与淘宝业务和平台优势有非常强的结合。在搭建大数据分析平台之前,要先明确业务需求场景以及用户的需求,通过大数据分析平台,想要得到哪些有价值的信息,需要接入的数据有哪些,明确基于场景业务需求的大数据平台要具备的基本的功能,来决定平台搭建过程中使用的大数据处理工具和框架。

F. 菜鸟驿站如何搭建管理平台,引入大数据

1、首先进入菜鸟驿站管理系统。
2、其次搭建菜鸟驿站管理平台。
3、最后在菜鸟驿站管理平台引入大数据即可。

G. 中小企业要怎么搭建自己的大数据系统平台

中小企业自己开发大数据系统是有难度的,不过可以使用现场的大数据现场成平台,我们公司就是有的,同时也可以提供大数据系统软件开发。
搭建大数据系统平台一般的流程为:
(1)操作系统的选择。
操作系统一般使用开源版的RedHat、Centos或者Debian作为底层的构建平台,要根据大数据平台所要搭建的数据分析工具可以支持的系统,正确的选择操作系统的版本
(2)搭建Hadoop集群。
(3)选择数据接入和预处理工具面对各种来源的数据。
(4)数据存储。
(5)选择数据挖掘工具。
(6)数据的可视化以及输出。

H. 如何建立自己的大数据

1、调整心态。社会的发展很快,大数据作为一个新的产业,对人们的生活已经产生了很多的影响,我们应该调整好心态,随时准备挑战新的变化。

2、个人用途。建立一个大数据项目,可以从自己实践开始,比如通过大数据找到一个女朋友等等。

3、坚持学习。大数据的发展和应用日新月异,要走出去,增长见识,不断的学习,这样才能跟上时代的脚步。

4、市场导向。大数据项目其实与用户有关,商业性的应用以及市场的导向有关,要选择一个重点的方向,找准定位。

5、客户来源。目前的大数据可以供商用,比如像一些中小型的需求,我们也要找到这些企业客户,让我们的成功体现价值。

6、快速更新。大数据的发展,是根据企业的需求来开发的,开发的需求不断的更迭,也需要我们快速的更新大数据产品。

I. 怎样搭建企业大数据平台

步骤一:开展大数据咨询


规划合理的统筹规划与科学的顶层设计是大数据建设和应用的基础。通过大数据咨询规划服务,可以帮助企业明晰大数据建设的发展目标、重点任务和蓝图架构,并将蓝图架构的实现分解为可操作、可落地的实施路径和行动计划,有效指导企业大数据战略的落地实施。


步骤二:强化组织制度保障


企业信息化领导小组是企业大数据建设的强有力保障。企业需要从项目启动前就开始筹备组建以高层领导为核心的企业信息化领导小组。除了高层领导,还充分调动业务部门积极性,组织的执行层面由业务部门和IT部门共同组建,并确立决策层、管理层和执行层三级的项目组织机构,每个小组各司其职,完成项目的具体执行工作。


步骤三:建设企业大数据平台


基于大数据平台咨询规划的成果,进行大数据的建设和实施。由于大数据技术的复杂性,因此企业级大数据平台的建设不是一蹴而就,需循序渐进,分步实施,是一个持续迭代的工程,需本着开放、平等、协作、分享的互联网精神,构建大数据平台生态圈,形成相互协同、相互促进的良好的态势。


步骤四:进行大数据挖掘与分析


在企业级大数据平台的基础上,进行大数据的挖掘与分析。随着时代的发展,大数据挖掘与分析也会逐渐成为大数据技术的核心。大数据的价值体现在对大规模数据集合的智能处理方面,进而在大规模的数据中获取有用的信息,要想逐步实现这个功能,就必须对数据进行分析和挖掘,通过进行数据分析得到的结果,应用于企业经营管理的各个领域。


步骤五:利用大数据进行辅助决策


通过大数据的分析,为企业领导提供辅助决策。利用大数据决策将成为企业决策的必然,系统通过提供一个开放的、动态的、以全方位数据深度融合为基础的辅助决策环境,在适当的时机、以适当的方式提供指标、算法、模型、数据、知识等各种决策资源,供决策者选择,最大程度帮助企业决策者实现数据驱动的科学决策。


关于怎样搭建企业大数据平台,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

J. 大数据平台建设有哪些步骤以及需要注意的问题

大数据平台的搭建步骤:

1、linux系统安装
一般使用开源版的Redhat系统--CentOS作为底层平台。为了提供稳定的硬件基础,在给硬盘做RAID和挂载数据存储节点的时,需要按情况配置。
2、分布式计算平台/组件安装
国内外的分布式系统的大多使用的是Hadoop系列开源系统。Hadoop的核心是HDFS,一个分布式的文件系统。在其基础上常用的组件有Yarn、Zookeeper、Hive、Hbase、Sqoop、Impala、ElasticSearch、Spark等
使用开源组件的优点:1)使用者众多,很多bug可以在网上找的答案(这往往是开发中最耗时的地方)。2)开源组件一般免费,学习和维护相对方便。3)开源组件一般会持续更新,提供必要的更新服务『当然还需要手动做更新操作』。4)因为代码开源,若出bug可自由对源码作修改维护。
3、数据导入
数据导入的工具是Sqoop。用它可以将数据从文件或者传统数据库导入到分布式平台『一般主要导入到Hive,也可将数据导入到Hbase』。
4、数据分析
数据分析一般包括两个阶段:数据预处理和数据建模分析。
数据预处理是为后面的建模分析做准备,主要工作时从海量数据中提取可用特征,建立大宽表。这个过程可能会用到Hive SQL,Spark QL和Impala。
数据建模分析是针对预处理提取的特征/数据建模,得到想要的结果。这一块最好用的是Spark。常用的机器学习算法,如朴素贝叶斯、逻辑回归、决策树、神经网络、TFIDF、协同过滤等,都已经在ML lib里面,调用比较方便。
5、结果可视化及输出API
可视化一般式对结果或部分原始数据做展示。一般有两种情况,行数据展示,和列查找展示。要基于大数据平台做展示,会需要用到ElasticSearch和Hbase。Hbase提供快速『ms级别』的行查找。 ElasticSearch可以实现列索引,提供快速列查找。

大数据平台搭建中的主要问题
1、稳定性 Stability
理论上来说,稳定性是分布式系统最大的优势,因为它可以通过多台机器做数据及程序运行备份以确保系统稳定。但也由于大数据平台部署于多台机器上,配置不合适,也可能成为最大的问题。
2、可扩展性 Scalability
如何快速扩展已有大数据平台,在其基础上扩充新的机器是云计算等领域应用的关键问题。在实际2B的应用中,有时需要增减机器来满足新的需求。如何在保留原有功能的情况下,快速扩充平台是实际应用中的常见问题。

阅读全文

与如何搭建大数据平台相关的资料

热点内容
安装三菱编程闪退怎么回事 浏览:488
手机怎么创建word文件格式 浏览:694
c语言连接数据库 浏览:887
数据线粉色和白色哪个是正 浏览:775
vb编程应注意什么 浏览:855
js循环添加控件 浏览:615
学习计算机网络的作用 浏览:235
access数据库最新内容怎么调 浏览:203
上古世纪新版本跑商 浏览:267
iphone5国际漫游设置 浏览:107
ipodwatch如何安装app 浏览:114
谁有微信抢红包的群号 浏览:872
word07页码从任意页开始 浏览:791
js禁止滑动事件 浏览:800
苹果查序号怎么看不是 浏览:61
linux在txt文件 浏览:568
ps如何导入文件匹配 浏览:201
转转app怎么把自己的账号租出去 浏览:828
福昕阅读器合并照片pdf文件 浏览:591
vhd文件有什么用 浏览:482

友情链接