导航:首页 > 网络数据 > 南北方大数据

南北方大数据

发布时间:2022-12-28 19:56:09

Ⅰ 通过大数据看我国的城市群分布,东南与西北差距有多大呢

首先要告诉大家,这不是夜晚的灯光图,很多网友会以为这是城市夜晚灯光图,看起来是有点像,实际上这是腾讯位置大数据星云图,简单的说就是腾讯地图的定位次数,为了让大家直观的看出来,采用了这种灯光图的模式,越亮的地方定位次数越多,人口越密集,也就是城市越大,如果亮度连成一片,说明这里有城市群。本文就以这个角度来带大家看看我国的城市群分布。

这一区域面积很大,亮度明显能看出来的有北京、天津、济南、郑州、西安、兰州、上海、南京、杭州、合肥、武汉、呼和浩特、包头等地。京津冀城市群、山东半岛城市群、呼包鄂城市群、关中平原城市群、中原城市群,武汉城市群,长三角城市群,,这些城市群都比较明显。在这一区域亮的地方多,不亮的地方就显得明显,比如内蒙古和宁夏之间的沙漠,西安南部的秦岭,江苏的太湖、洪泽湖、高邮湖,湖北的神农架,这些地方都不亮。 最后再提醒一下大家,这不是夜晚的灯光图,是腾讯大数据定位次数星云图,就是使用腾讯地图的网友分布图,越亮的地方人越多,从这个角度也可以看出我国的城市群分布,希望通过这样的方式让大家了解我们的城市发展。

Ⅱ 大数据和数据大集中有什么区别和联系

大数据实质是数据量到了一定程度,怎么获取、处理和分析的事情。其他问题比回如数据中心怎么建设、是否采用答数据大集中的形式可以说和大数据的实质关系不大。大数据使用的数据可以是集中的一处拿来的,更可能是分布在多地或者一地的多处的。
数据大集中是一种建设模式。意思主要是不搞分级分地区的部署,而把数据中心统一在一处。比如银行的中国南北两大数据中心、税务部门的大集中建设,这样数据库在物理上是位于一处汇总的(当然为了数据安全,可有异地备份),对银行和税务等部门来说,便于提取和统计,特别是便于总行总局之类的上级部门直接拿到各地业务数据。
所以我的感觉是,两者关系不大。主要看业务类型和上级要求吧。特别需要统一汇总和管理数据的,或者运维力量集中保障高可用高安全的,采用数据大集中适合。大数据,只有能获取和挖掘数据,随意怎么玩。当然,如果数据是集中存放的话,更方便大数据平台拿和用。

Ⅲ 大数据都体现在哪些方面

在过去几年,大数据的建设主要集中在物联网、云计算、移动互联网等基础领域,一些大数据起步较早、积累较深的行业领域,开始基于大数据的基础建设,开启了行业数据应用与价值挖掘之路。从数据的抽取、清洗等预处理,到数据存储及管理,再到数据分析挖掘,以及最终的可视化呈现。行业用户开始把注意力转向大数据真正的价值点——发现规律,提升决策效率与能力。这一年,他们在收集数据上花费的时间很少,而在实际分析数据并回答各种问题上的时间则越来越多。
目前进入大数据应用相对较成熟的领域主要在公安、交通、电力、园区管理、网络安全、航天等。大数据价值被挖掘,帮助各行业从业务管理、事前预警、事中指挥调度、事后分析研判等多个方面提升智能化决策能力。
公安领域的大数据应用,可以实现从警综、警力、警情、人口、卡口/车辆、重点场所、摄像头管理等全方位进行公安日常监测与协调管理;实现突发事件下的可视化接处警、警情查询监控、辖区定位、应急指挥调度管理,满足公安行业平急结合的应用需求。
从而全面提升公安机关智能化决策能力,提升警务资源利用和服务价值,为预防打击违法犯罪、维护社会稳定提供有力支持。
交通领域的大数据应用,可以实现从公交车辆、司乘人员、运行线路、站点场站管理、乘客统计等多个维度进行日常路网运行监测与协调管理;支持突发事件下的值班接警、信息处理发布、应急指挥调度管理,发挥交通资源最大效益
电力领域的大数据应用,可以实现用户分布、节点负荷、电网拓扑、电能质量、窃电嫌疑、安全防御、能源消耗等智能电网多个环节进行日常运行监测与协调管理;满足常态下电网信息的实时监测监管、应急态下协同处置指挥调度的需要。全面提高电力行业管理的及时性和准确性,更好地实现电网安全、可靠、经济、高效运行。
园区管理的大数据应用,可以实现从园区建设规划、管网运行、能耗监测、园区交通、安防管理、园区资源管理等多个维度进行日常运行监测与协调管理;从而全面加强园区创新、服务和管理能力,促进园区产业升级、提升园区企业竞争力。
网络安全的大数据应用,能够实现对网络中的安全设备、网络设备、应用系统、操作系统等整体环境进行安全状态监测,帮助用户快速掌握网络状况,识别网络异常、入侵,把握网络安全事件发展趋势,全方位感知网络安全态势。
航天是大数据应用最早也最成熟,取得成果最多的领域,航天要对尺度远比地球大无数倍的广阔空间进行探索,其总量更多,要求更高。因此,航天大数据不仅具有一般大数据的特点,更要求高可靠性和高价值。能够实现对航天测发、测控设备控制;航天指挥作战体系模拟推演、作战评估;航天作战指挥显示控制航天器数据分析、状态监控

Ⅳ 当制造遇上大数据

当制造遇上大数据
大数据如今已经影响到企业生产制造、运营、管理的方方面面,本文从客户管理、优化生产以及供应链管理三方面窥探大数据的无限可能。
小调查:大数据如何改造制造业?
由汤姆·克鲁斯主演、斯皮尔伯格导演的影片《少数派报告》描述了在2054年,利用科技读取“先知”脑波的画面来侦察出人的犯罪企图,从而准确预测犯罪行为,并在罪犯犯罪之前就能将其逮捕的场景。片中的“先知”是拥有超能力的“人类”,但在现实世界中,“先知”就是近年来我们经常提及的—大数据分析。专注于大数据分析的全球性软件公司Teradata(天睿公司)国际集团总裁赫尔曼·威摩(HermannWimmer)认为大数据主要包含三大块:一是传统的数据,例如企业原来的交易系统、网络系统以及ERP系统等数据仓库;二是传感器生成的数据;三是社交媒体上的数据。
“现在越来越多的行业都要适应大数据的趋势,不仅限于原来的高科技、互联网企业,现在包括通讯、金融、制造、能源等行业都在顺应趋势培养这方面的竞争力。”Hermann Wimmer 说,“用数据来驱动业务增长”是未来的方向。“例如,市场部门如何利用真实的数据来帮助制定市场成长策略;怎样提升客户体验或者客户满意度;怎样通过降低仓储、物流的运营成本等让企业运营得更智慧、更有效率;怎样结合生产部门和其他部门的数据优化生产和运营能力,这些都是大数据的‘用武之地’。”Teradata( 天睿公司) 大中华区首席执行官辛儿伦(AaronHsin) 举例道。
对于传统制造业来说,大数据能在哪些方面进行“颠覆”和“改进”?麦肯锡咨询公司在近日发布的《如何利用大数据改进制造业》的报告中列举了10 条大数据颠覆制造过程的路径,涉及优化生产进度;提高制造绩效;精确供应商管理;追踪产品质量,改进工作流程;以销定产,制定生产计划;量化产能,追踪设备运转效率;以及提供生产设备预防性维护建议等方面。
可以说,大数据影响到生产制造、运营、管理的方方面面,而从目前大数据在制造业的应用范围来看,我们想从客户关系管理(CRM)、优化生产以及供应链管理三方面窥探大数据的无限可能。
“大海捞针”成为可能
在当今经济环境中,良好的客户服务和客户体验至关重要。越来越多的企业通过挖掘客户|数据提升客户关系,了解客户需求。今天的CRM 数据分析能力已经不止局限于客户邮件、电话等数据,而是能够识别客户购买行为,了解客户情绪。辛儿伦切身感受到数据分析在客户管理方面应用的变化趋势:“过去更多是在数据仓库针对客户关系的管理和体验,特别是对客户|数据和CRM数据进行分析和探索促进营销增长的途径和手段。随着技术和数据架构的演进,现在的数据已经延伸到很多范围,比如位置数据、基站数据、还有通话记录和移动互联网上的消费者行为等。利用这些来自多渠道的数据建立分析模型,以便从360 度去观察客户的兴趣、爱好,并预测未来的行为,从而制定个性化的营销策略。”
发生在海尔的一个营销故事可以从这方面揭示大数据的“神奇”。2012 年,海尔推出帝樽空调,如何精准地预测有哪些用户可能选购帝樽空调?如何送去个性化的服务方案?海尔从SCRM 会员数据库中提取了数万名用户数据,与中国邮政的名址数据库匹配,建立“look-alike”模型。此外,海尔SCRM会员平台还同旅游、健康类杂志有合作。海尔通过查询订阅名|录,发现北京一小区有人订阅旅游杂志,其中有位陈先生。海尔得出“他对环境、自然应该感兴趣”的结论,于是推测,他极有可能对帝樽空调除PM2.5功能感兴趣。接着,陈收到了海尔投递的一封直邮单页,除了公益环保知识外,重点介绍了帝樽空调的除PM2.5 功能。接下来的故事就水到渠成了,陈带着直邮单页,到附近的商超购买了空调,并且还登录海尔官方网站,自主注册成为海尔会员。
从这个案例可以看出,在客户管理方面,企业营销的对象不仅是一群人、一类人,而是具体的某个人。其次,跨领域数据的整合也很重要,当然企业应当首先明确需要哪些领域的数据和如何获取这些数据。Hermann Wimmer 例举了两个行业之间的数据共享带来的商业价值—汽车行业和保险行业。“买车的人都要上保险,每一个司机由于自己的驾驶习惯不一样,保险公司对于他们的评估也是不一样的。如何才能更准确地评估一个司机到底属于高风险还是低风险驾驶习惯,就取决于他所开的车。通过车上所装载的100多个传感器传回的数据,可以了解他的驾驶习惯,然后判断他属于什么级别的风险类别。比如,他不超速、驾驶平稳,就属于低风险,反之,开的很快就属于高风险类别。”Hermann Wimmer 说,这两个行业密切的联系就是由传感器带来的数据连接起来的
数字化、智能化的生产过程
在传统的制造企业中,大量的数据分布于企业中的各个部门中,要想在整个企业内及时、快速提取这些数据存在一定的困难。譬如,企业资源规划系统(ERP) 数据、制造执行系统(EMS) 数据等分别位于各自的系统中,除此之外,在一些智能化的工厂里,设备、原材料等都被嵌入微型处理器、传感器,这些装置产生大量的数据。人们在将制造过程数字化的同时也为数据处理和分析提出了难题。如何将这些数据放置到一个技术处理平台上对于优化生产流程等有重要意义。Teradata( 天睿公司) 大中华区大数据事业部总监孔宇华指出,新的技术可以把人和人、物和物及事件之间的关联性找出来,但是前提是这种大数据分析是建立在一个统一、可以实现数据流通的平台上。这个可供访问的平台,能够整合不同系统内的数据。
最简单直接的方法就是创建产品生命周期管理(PLM) 平台,它也是一种企业管理软件,但好处在于可以充分整合来自研发、工程、生产部门的数据,对工业产品的生产进行虚拟模型化,优化生产流程,确保企业内的所有部门以相同的数据协同工作,从而提升组织的运营效率,缩短产品的研发与上市时间。西门子工业软件( 上海) 有限公司的高级业务顾问周克虎说:“拿汽车行业为例,汽车研发是个极其复杂的过程,一方面,它需要多个职能团队的通力合作。另一方面,所有这些团队还要处理大量的数据。为了避免沟通不力,确保生产过程的顺畅运行,工程团队不仅要管理团队内的数据,还必须时刻掌握生产部门的质量控制团队的工作进展。”
PLM 汇集从初稿到详细设计过程、再到实际生产的所有相关信息。因此,企业可以通过PLM 收集的此类数据来优化设计和生产过程。例如,奇瑞汽车利用PLM 平台, 将生产规划、模拟和实际生产,把制造和产品研发联系起来。例如,尺寸分析在车身设计中具有重要作用,奇瑞的研发人员利用PLM 工具进行尺寸分析,能够在设计的早期阶段就能确定设计结构和生产方法是否符合技术规范,以便及早制定解决方案来优化这些因素。同时利用这些模拟程序,还可以进行各种汽车安全性能的测试等。
举例, 西门子的PLM 软件平台上可以做的差异分析,它能在计算机生成的三维模型的辅助下模拟生产工艺,能够在执行实际生产之前洞察生产工艺中的薄弱点。奇瑞就曾利用它查出某车型头灯生产中的问题,为公司避免了十多万美元的损失。因为能够在虚拟的环境中模拟产品设计、生产流程,工厂规划效率得以提升,生产线生产效率也会提高。
大数据是制造业智能化的基础,进而实现大规模的定制。由于消费者人数众多,每个人需求不同,导致需求的具体信息也不同,加上需求不断变化,就构成了产品需求的大数据。制造业企业对这些数据进行处理,进而传递给智能设备,进行数据挖掘、设备调整、原材料准备等步骤,才能生产出符合个性化需求的定制产品。“未来的制造将是数据驱动的。”Hermann Wimmer 说。
高效、科学的供应链管理
大数据所具备的预测功能使得大数据在供应链管理上的作用大大提高。制造业从供应链渠道,以及生产现场的仪器或传感器网络收集了大量数据。利用大数据对这些数据库进行更紧密的整合与分析,可以帮助改善库存管理、销售与分销流程的效率,以及对设备的连续监控。大数据可以使供应链中的物流业变得更高效:卡车内的电子车载录像机可以提供卡车的位置;如何快速驱动传感器和射频标签等,帮助满载的卡车更有效地结合道路状况、交通信息和天气条件以及客户的位置,从而大大节省时间和费用。
孔宇华说,供应链上的大数据分析可以让企业科学地制定销售策略,而不是像过去那样靠经验和冒险。比如,一个生产羽绒服的品牌,在全国有几千家店,10万件货品如何分配到全国的各个店里。平均每个店1,000套?显然不够科学。因为南北方的供需市场不一样,北方需求大但竞争品牌也多;此外,不同地域里衣服的号码需求也不一样,南方人穿衣的号码就小一点,北方人则可能大一点。通过大数据分析,对历史数据、天气信息等做分析可以给企业合理的建议:哪些货运到哪里最合适,从而避免了积压或缺货的库存问题。
零售商在大数据的应用上处于领先地位。零售巨头沃尔玛开发了一个大数据工具,通过这个工具供应商可以事先知道每家店的卖货和库存情况,从而可以在沃尔玛发出指令前自行补货,极大地减少断货的情况和供应链整体的库存水平。在这个过程中,供应商还可以控制商品在店内的陈设,而沃尔玛也减少了这项的人力和资金投入,可谓双赢。因此,对于制造企业来说,借鉴这些经验优化供应链管理,从原料采购,到物流配送环节都非常有意义。根据大数据和相应的分析工具及时甚至事先选择合适的供应商和物料投入生产加工,并且到物流阶段可以选择合理的配送方案,以及销售策略。在大数据的支持下,一切都科学、合理,不仅提高了生产效率、服务质量,同时也降低了成本。

Ⅳ 我国大数据行业发展现状表现在哪些方面

大数据行业主要上市公司:易华录(300212)、美亚柏科(300188)、海量数据(603138)、同有科技(300302)、海康威视(002415)、依米康(300249)、常山北明(000158)、思特奇(300608)、科创信息(300730)、神州泰岳(300002)、蓝色光标(300058)等

本文核心数据:中国大数据产业发展历程 市场规模 细分市场格局 应用市场格局 发展前景预测等

发展历程:十年来大数据产业高速增长,我国信息智能化程度得到显著提升

我国大数据产业布局相对较早,2011年,工信部就把信息处理技术作为四项关键技术创新工程之一,为大数据产业发展奠定了一定的政策基础。自2014年起,“大数据”首次被写进我国政府工作报告,大数据产业上升至国家战略层面,此后,国家大数据综合试验区逐渐建立起来,相关政策与标准体系不断被完善,到2020年,我国大数据解决方案已经发展成熟,信息社会智能化程度得到显著提升。

市场规模:2020年市场规模超6000亿 维持高速增长

中国大数据产业联盟发布的《2021中国大数据产业发展地图暨中国大数据产业发展白皮书》指出,2018年以来,大数据技术的快速发展,以及大数据与人工智能、VR、5G、区块链、边缘智能等新技术的交汇融合,持续加速技术创新。与此同时,伴随新型智慧城市和数字城市建设热潮,各地与大数据相关的园区加速落地,大数据产业持续增长。

赛迪顾问的数据显示,2020年中国大数据产业规模达6388亿元,同比增长18.6%,预计未来三年保持15%以上的年均增速,到2023年产业规模超过10000亿元。

市场格局

——细分市场格局:软硬件占据行业主要市场

目前,我国的大数据产业尚处于初级建设阶段,从市场结构来分,大数据产业可划分为大数据硬件、软件以及服务三类市场。

根据《IDC全球大数据支出指南》,2020年中国大数据市场最大的构成部分仍然来自于传统硬件部分——服务器和存储,占比超过40%,其次为IT服务和商业服务,两者共占33.6%的比例,剩余由25.4%的大数据软件所构成。从软件角度来看,2020年中国最大的三个细分子市场依次为终端用户查询汇报分析工具(End-User
Query, Reporting, and Analysis Tools)、人工智能软件平台(AI Software
Platforms)以及关系型数据仓库(Relational Data
Warehouses),并且IDC预计,三者总和占中国整体大数据软件市场的比例接近50%。

——应用市场格局:互联网、政府、金融为大数据主要应用领域

从具体行业应用来看,互联网、政府、金融和电信引领大数据融合产业发展,合计规模占比为77.6%。互联网、金融和电信三个行业由于信息化水平高,研发力量雄厚,在业务数字化转型方面处于领先地位;政府大数据成为近年来政府信息化建设的关键环节,与政府数据整合与开放共享、民生服务、社会治理、市场监管相关的应用需求持续火热。此外,工业大数据和健康医疗大数据作为新兴领域,数据量大、产业链延展性高,未来市场增长潜力大。

更多行业相关数据请参考前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。

Ⅵ 旅游 如何化大数据为商业价值

旅游:如何化大数据为商业价值

来到山明水秀的景区,入住客栈,卸下行李,打开微信找到免费WiFi,就能看到附近地道的美食菜馆,有地图路线指引,还有过往游客的评价——这是国家旅游局今年最提倡的智慧旅行的设想场景。

在智慧旅行的背后,是海量大数据的支撑,这些看似呆板的数据能为旅游产业经营者们创造巨大的商业价值,那么需要如何运用?

预测和追踪

一手创办了在线旅游B2B票管家的黄荣最近刚刚创立了“聚创致旅”,这是一个集合了大数据和智慧旅行概念的新公司。

“我理解的智慧旅游是在政府构建的智慧城市之下,未来旅游企业需要在大数据时代高度移动互联网化的背景下达到与旅游消费者之间的无缝交互,其应用场景应该包括近场支付、移动终端支付、移动数据化管理、社交化营销等。”

有了如此概念,那么大数据从何而来?

不少旅游业者开始尝试大数据收集和智慧旅游的开发,比如携程、同程、票管家等。

携程攻略社区事业单位、智慧旅游业务总经理蓝美玲告诉《第一财经日报》记者,携程收集数据后,可以知道各个旅游目的地、酒店、景区的预订情况,这些数字的首要功能就是给予上下游产业链者市场预判。

蓝美玲指出,目前黄山、九寨沟等著名景区都非常注重游客量与安全问题,在黄金周期间这一点尤为重要,但是每天究竟有多少客人来景区难以预测,此时携程的大数据就起到了关键作用。

“我们的景区和附近酒店预订数据相当于告诉该景区,你在近期的游客量预计有多少,他们的出行结构是家庭客还是商旅,这些数据我们会以预测报告的形式给到景区。这让他们能做好安全和市场准备,以管控客流,对我们而言,则加强了OTA(在线旅游企业)与景区方的资源合作。”蓝美玲说。

携程大数据的另一项特色是“一生的足迹”,该功能是记录下使用者曾经到访的地方甚至是其轻轻动一下手指查询的记录。

“比如一个客人,他点击浏览了新加坡旅游,进而点击了几个景点和酒店,这些都可以被记录和追踪下来,然后结合其最终的订单,系统可以知道客人的偏好、消费定位和消费习惯,甚至是其餐饮习惯。今后携程就可以根据客人的消费特点进行精准营销。精准营销非常重要,精准有效客户所贡献的利润是最高的。”蓝美玲如是说。

大数据暗藏商机

“番茄来了”是一家开发智慧旅游的企业,其主要与旅游城市的客栈合作,近期,其刚开发了一款智慧旅游产品——“智连古镇”,即游客到店以后,不需要进行繁琐的登记流程,只需要连接客栈的微信WiFi,进入服务页面,即可以快速办理入住手续,自动分配到房间。退房时,通过页面的快速退房就可以迅速通知到老板准备结算。同时在支付方面,客人只需要快速入住的时候,选择微信支付就可以轻松搞定付款环节,当然也可以通过“番茄来了”提供的行业创新的“虚拟POS-快捷支付”方式,轻松扫码付房费。

“通过这些智能服务,我们可以获得客户的使用以及他们的入住和消费数据,这些数据弥足珍贵。我们会按照几个指标进行分析,然后给旅游产业链者带来巨大商业价值。”“番茄来了”运营总监赵永林告诉《第一财经日报》记者,基于这些数据,其可以进行房型入住率分析,以入住率、收入变化、同比、环比等数据分析,客栈酒店经营者可以根据分析结果来为客栈装修整改、房型更改、房价调控,改善入住率。比如,若一家酒店其今年大床房销量最好、标间入住率最低,那么其未来可以考虑减少标间的数量,改造为大床房,或者调低标间的卖价,针对标间做促销活动等,以此提升酒店入住率。

游客的大数据中还精准显示了预订习惯、归属地来源、年龄分段、性别统计、入住时间统计、消费内容统计、续住统计等。在赵永林看来,这些数据极具价值,因为客人的性别占比可以让酒店或餐厅改善装修风格以符合主流客群喜好;而年龄段占比则可以让业者在服务上倾向于年轻化或中年化;客人地域的占比数据则可以让业者在餐食和生活习惯方面进行南北方差异经营。

“如果一家酒店的客人来源60%是北京地区,70%客户是年龄在18~26岁的年轻人,女性居多,那么我们的系统会建议该酒店未来的广告宣传和口碑宣传,应更多重视在北京地区,客栈的装修和服务应该更具有年轻化和女性化。同时可多考虑组织年轻人喜欢的一些活动,以提升客栈人气等,这些都有助于业者提升收益。”赵永林指出。

此外,游客的消费记录和数据还可以提供行业的横向对比数据。比如一家酒店入住率在区域里的排行情况、区域内渠道合作比例、区域内平均房价、区域内节假日调价情况、区域内续住情况等等,让酒店业者更清楚同行经营情况,针对性提升自己的业绩。

丽江一家客栈经营者表示,根据上述区域排行数据状况,发现其在2014年节假日入住率为60%,价格较平时上升400%,而丽江区域客栈的整体入住率为89%,同期价格较平时上升120%。该客栈经营者算了一笔账,根据入住率、房价和市场平均水平与涨幅,其认为应该在节假日调价,控制涨幅,提升入住率,以便于在同行竞争中夺得优势。这相当于进行酒店收益管理,有助于提升利润率。

“我们可以提供客栈订单、财务管理等基础信息管理,也可以根据上述数据分类分析为旅游产业链者提供‘月报’、‘年报’等服务。主要目的是为了让经营者清楚地了解其自身、客人以及市场的特点,并能根据数据分析结果对服务、硬件等进行改善。”赵永林表示。

部分旅游业者反映,通过对大数据进行上述细分指标分析,针对旅游行业和游客,大数据分析得出的入住率、平均房价、节假日的房价变化,和整体入住率变化、旅游目的地游客预订习惯差异、入住天数、消费内容、消费金额、各个时间的旅游热度分析、消费差异分析等,可以为行业、景区、旅游管理机构等提供实时数据参考,直接改善经营。若改善得当,则不少业者通常可以提升20%~50%的收益。

以上是小编为大家分享的关于旅游 如何化大数据为商业价值的相关内容,更多信息可以关注环球青藤分享更多干货

阅读全文

与南北方大数据相关的资料

热点内容
社区版本 浏览:738
怎么查微信公众号什么时候开通的 浏览:717
安装三菱编程闪退怎么回事 浏览:488
手机怎么创建word文件格式 浏览:694
c语言连接数据库 浏览:887
数据线粉色和白色哪个是正 浏览:775
vb编程应注意什么 浏览:855
js循环添加控件 浏览:615
学习计算机网络的作用 浏览:235
access数据库最新内容怎么调 浏览:203
上古世纪新版本跑商 浏览:267
iphone5国际漫游设置 浏览:107
ipodwatch如何安装app 浏览:114
谁有微信抢红包的群号 浏览:872
word07页码从任意页开始 浏览:791
js禁止滑动事件 浏览:800
苹果查序号怎么看不是 浏览:61
linux在txt文件 浏览:568
ps如何导入文件匹配 浏览:201
转转app怎么把自己的账号租出去 浏览:828

友情链接