① 大数据时代,企业数据蕴藏着的商业价值
如今大数据早已不再是什么新鲜词,它已经被大众熟悉,可以称作是移动互联时代流动的黄金。
据《大数据产业发展前景与投资战略规划分析报告》(前瞻产业研究院发布)数据统计显示,中国大数据产业在2017年达到4700亿元的规模,同比增长30%,预计到2020年,中国大数据市场产值将突破万亿。随着大数据市场的快速发展,企业决策人员越来越重视对大数据的利用,如何借助大数据让企业快速成长也成为了人们的关注重点。
大数据挖掘商业价值的方法主要分为四种:
客户群体细分 ,然后为每个群体量定制特别的服务。
模拟现实环境 ,发掘新的需求同时提高投资的回报率。
加强部门联系 ,提高整条管理链条和产业链条的效率。
降低服务成本 ,发现隐藏线索进行产品和服务的创新。
对于企业来说,100条理论确实不如一个成功的标杆有实践意义,从亚马逊、Facebook、谷歌、LinkedIn,到腾讯、阿里、网络,都因其拥有大量的用户注册和运营信息,成为天然的大数据公司。
如果全球哪家公司从大数据发掘出了最大价值,截至目前,答案可能非亚马逊莫属。
亚马逊也要处理海量数据,这些交易数据的直接价值更大。作为一家“信息公司”(而非国内许多电商自己定位的“零售公司”),亚马逊不仅从每个用户的购买行为中获得信息,还将每个用户在其网站上的所有行为都记录下来:页面停留时间、用户是否查看评论、每个搜索的关键词、浏览的商品等等。这种对数据价值的高度敏感和重视,以及强大的挖掘能力,使得亚马逊早已远远超出了它的传统运营方式。
亚马逊CTO Werner Vogels早期在CeBIT上关于大数据的演讲,向与会者描述了亚马逊在大数据时代的商业蓝图。
长期以来,亚马逊一直通过大数据分析,尝试定位客户和和获取客户反馈。“在此过程中,你会发现数据越大,结果越好。为什么有的企业在商业上不断犯错?那是因为他们没有足够的数据对运营和决策提供支持,”Vogels说, “一旦进入大数据的世界,企业的手中将握有无限可能。” 从支撑新兴技术企业的基础设施到消费内容的移动设备,亚马逊的触角已触及到更为广阔的领域。
推荐: 亚马逊的各个业务环节都离不开“数据驱动”的身影。在亚马逊上买过东西的朋友可能对它的推荐功能都很熟悉,“买过X商品的人,也同时买过Y商品”的推荐功能看上去很简单,却非常有效,同时这些精准推荐结果的得出过程也非常复杂。
预测: 用户需求预测(Demand Forecasting)是通过历史数据来预测用户未来的需求。对于书、手机、家电这些东西——亚马逊内部叫硬需求(Hard Line)的产品,你可以认为是“标品”(但也不一定)——预测是比较准的,甚至可以预测到相关产品属性的需求。但是对于服装这样软需求(Soft Line)产品,亚马逊干了十多年都没有办法预测得很好,因为这类东西受到的干扰因素太多了,比如:用户的对颜色款式的喜好,穿上去合不合身,爱人朋友喜不喜欢…… 这类东西太易变,买得人多反而会卖不好,所以需要更为复杂的预测模型。
测试: 你会认为亚马逊网站上的某段页面文字只是碰巧出现的吗?其实,亚马逊会在网站上持续不断地测试新的设计方案,从而找出转化率最高的方案。整个网站的布局、字体大小、颜色、按钮以及其他所有的设计,其实都是在多次审慎测试后的最优结果。
记录: 亚马逊的移动应用让用户有一个流畅的无处不在的体验的同时,也通过收集手机上的数据深入地了解了每个用户的喜好信息;更值得一提的是Kindle Fire,内嵌的Silk浏览器可以将用户的行为数据一一记录下来。
以数据为导向的方法并不仅限于以上领域。对于亚马逊来说,大数据意味着大销售量。数据显示出什么是有效的、什么是无效的,新的商业投资项目必须要有数据的支撑。 对数据的长期专注让亚马逊能够以更低的售价提供更好的服务。
还有一个很典型的案例,就是几年伴随社区营销火气来的小红书。
和其他电商平台不同,小红书是从社区起家 。2016年初,小红书将人工运营内容改成了机器分发的形式。通过大数据和人工智能,将社区中的内容精准匹配给对它感兴趣的用户,从而提升用户体验。
如今的小红书,已经不是简单的社交分享了,更多的是基于后台的大数据分析和智能推送,最终形成了良好的正向闭环反馈。
通过以上两个大数据服务案例,我们不难看出数据团队其实是一个独立性很强的团队,因为他们需要完成的事情很多,这其中包含从数据源开始到数据的输出。对研发而言,他们相当于纪检委,需要组织协调数据的周转,实现对数据的监控,同时也要配合研发完成一些数据聚合挖掘累开发。对业务而言,他们相当于研发,因为他们需要输出报表和相应的产品,所以如何构建一个高效的数据团队,对很多企业来说一直在探索,感觉隔雾看花,捉摸不清。
一个企业想要自主研发一个数据平台,创建一个数据分析团队,会是一个很庞大的工程量。企业数据的类型大致可分为三类:
传统企业数据: 包括CRM systems的消费者数据,传统的ERP数据,库存数据以及账目数据等。
机器和传感器数据: 包括呼叫记录,智能仪表,工业设备传感器,交易数据等。
社交数据: 包括用户行为记录,反馈数据等。如微博、微信这样的社交媒体平台。
从理论上来看,大部分企业都会从大数据的发展中受益。但由于数据缺乏以及从业人员本身的原因,对于中小型的初创企业来说,独自开发的成本太高了。而有财力的传统企业呢,也产生了大量的数据,但是数据源很乱,也没有统一的存储方式,更别说研发了。即使招人来做数据分析,也不知道从何下手。该怎么办呢?
其实,数据的价值就是从获取数据,存储,加工到挖掘分析,最终实现可视化,辅助商业决策。想真正去应用在企业的流程中,多少要依赖于专业的工具或平台,归云智能打造的大数据系统解决方案,可以帮助传统企业完成数据化,智能化的升级改造。帮助企业建立稳定高效的运营机制,推动企业实现降本增效和业务的高速发展。
通过新兴的智能技术,企业可以有新的视野,探索更宽广的商业模式,实现最大的商业价值。产品部署使用方便,中小企业可以使用归云智能提供的云服务,大型企业可以选择私有化部署到自己的服务器。 感兴趣的总们可以访问官网: http://www.guiyum.com ,了解详情。
② 大数据时代的大变革
大数据时代的大变革
在云计算仍处于“云里雾里”而亟待落地的今天,IT的浩瀚天空中突然传来了天使的号角声——大数据时代来了!大数据,开启了一个彻头彻尾的变革年代,更开启了一个蕴含无穷多机会的年代。谁能够“号准”大数据时代的“脉搏”,谁就能够在全球IT业的新一轮角逐中独领风骚。
令人充满想象的大数据,究竟“大”在何处?
今天,我们再也不能用狭隘的视角来审视大数据了。因为今天的大数据,不仅体现为数据量的惊人增长,更前所未有地引入了正在不断扩展中的数据类型。从量的增长来看,IDC报告显示,未来10年全球大数据将增加50倍。而刚刚过去的2011年,就产生了1.8ZB(1.8万亿GB)的大数据,这相当于每个美国人按每分钟发3条微博的速度,不停发布2.6976万年。与此同时,社会上的各行各业,从电信、IT业,到金融、证券、保险、航空、酒店服务业等,地球上的各种存在,从每个人到每棵树、每朵花乃至每粒沙子,无一例外地都在成为大数据的生成者。在量和面上的双重积累,让我们不难想象和接受数据大爆炸的现实——2020年的全球数据使用量将达到35.2ZB(1ZB=10亿TB)。
犹如一座富矿的大数据,究竟该如何“开采”?
这是一个令人着迷的问题,因为与正确答案相伴的将是谁都渴望的巨大商业成功。当前,伴随着变革的发生,传统的互联网企业已经站在了大数据时代的最前沿。作为探索的先锋,他们能否笑到最后,是否会成为“先烈”?这一问题尽管很难回答,但至少为成功的觊觎者提供了充分的借鉴和参考。
作为后PC时代的四大巨头,Facebook、谷歌、苹果、亚马逊正在成为大数据的拥有者和使用者。在自觉或不自觉间,Facebook已然成为业界第一个生成大数据的“巨鳄”,而其他三巨头仍在努力中。苹果依靠操作系统和颠覆性的终端,正在努力打造大数据的生成之地;谷歌主要依靠操作系统、搜索引擎和“Google+”平台整合终端产品,以储备可以利用的大数据;亚马逊作为云计算的最早倡导者之一,则通过网络平台、云计算平台和阅读终端,期望建立起一个电子商务垂直领域的大数据汇集地。虽然巨头们的策略各有不同,但利用种种手段整合碎片化的数据进而加以利用的趋势,已经再明显不过了。
相比这四大巨头,电信运营商的探索才刚刚起步。“日内瓦的电信运营商,正在针对市民活动的可视化展开研究。”天云科技副总雷涛在近日举行的云计算大会云基地专场上指出,“通过在用户手机上安装传感器,就能够记录下大量的位置信息,从而使得市民活动可视化,这对建立一个智慧城市,进行人口规划、区域规划都具有重要意义。”事实上,一个个再简单不过的位置信息背后,隐藏着巨大的、待挖掘的价值,这个价值对于各行各业都具有关键的作用。例如,房地产开发商就很渴望知道高端用户最频繁出入的区域,而这些区域就是商业地产的最佳候选地。而除了位置信息外,电信运营商能够挖掘的信息和数据,仍有无穷无尽的空间,包括了用户喜好、消费能力等等。
在企业的自发行为以外,国家级的战略支持已经浮出水面。美国,作为ICT强国,嗅觉最为敏锐。2012年3月29日,奥巴马政府公布了“大数据研发计划”,目标在于改进当前人们从海量和复杂的数据中获取知识的能力,而这是美国继高速网络和超级计算中心之后的另一个重大科技项目。据悉,首批共有6个联邦部门宣布投资2亿美元,共同提高收集、储存、保留、管理、分析和共享海量数据所需核心技术的先进性,并形成合力,同时增加大数据技术开发和应用所需人才的供给。显然,先行一步的美国,已经把大数据当作了其ICT产业再度在全球崛起的重要契机。在找准了崛起的方向之后,富有行动力的美国,自然就会毫不拖泥带水地实施下去。
大数据,正在撬动全世界的神经,无论是国家、企业,还是每一个独立存在的个人,都将成为大数据时代的贡献者和受益者。但问题是,你准备好了吗?
③ 亚马逊卖家如何利用数据化运营做好一款产品
大数据时代精准的信息会给亚马逊卖家带来很好的销量,因此想要做好数据化运营要从以下两大方面入手。
一、选品
1、产品质量和自身资源考虑2、市场调研了解市场需求空间3、竞品分析
二、产品发布
1、Q&A分析2、关键词分析3、产品发布后的数据分析统计
④ 维克托迈尔舍恩伯格《大数据时代》读后感
当仔细品读一部作品后,大家一定都收获不少,是时候写一篇读后感好好记录一下了。千万不能认为读后感随便应付就可以,以下是我帮大家整理的维克托迈尔舍恩伯格《大数据时代》读后感范文,仅供参考,希望能够帮助到大家。
对于畅销书刊、热点话题、时尚科技,始终不太感兴趣。书刊,喜欢有一定年份的。话题,钟情于务虚的观点。新奇的产品于我无缘,习惯使用成熟的科技产品。既不清高,也非冷漠,就是要与现实保持一定的距离,给自己留一点思考的空间。这一习惯最近破了例。由于工作的原因,耳濡目染,“大数据”这个新兴概念开始频繁步入我的视野。按捺不住内心的好奇,网购《大数据时代》,手不释卷,三天读完,颇有收获,此书有如下特点。
首先,作者站在理论的制高点上,条理清楚地阐述了大数据对人类的工作、生活、思维带来的革新,大数据时代的三种典型的商业模式,以及大数据时代对于个人隐私保护、公共安全提出的挑战。其次,文中的事例贴近现实生活,贴近时代,令读者既印象深刻,又感同身受。此外,作者没有使用大量的专业术语,没有假装一副专业的面孔。纵观全书,遣词造句,均通俗易懂。
作者认为大数据时代具有三个显著特点。
一、人们研究与分析某个现象时,将使用全部数据而非抽样数据。
二、在大数据时代,不能一味地追求数据的精确性,而要适应数据的多样性、丰富性、甚至要接受错误的数据。
三、了解数据之间的相关性,胜于对因果关系的探索。“是什么”比“为什么”重要。
作者指出,随着技术的发展,数据的存储与处理成本显著降低,人们现在有能力从支离破碎的、看似毫不相干的数据矿渣中抽炼出真知烁见。在大数据时代,三类公司将成为时代的宠儿。一是拥有大数据的公司与组织。如政府、银行、电信公司、全球性互联网公司(阿里巴巴、淘宝网)。二是拥有数据分析与处理技术的专业公司,如亚马逊、谷歌。三是拥有创新思维的公司,他们可能既不掌握大数据,也没有专业技术,但却擅长使用大数据,从大数据中找到自己的理想天地。
面对即将来临的大数据时代,个人将如何应对自如?这是个严肃的问题。
如今说起新媒体和互联网,必提大数据,似乎不这样说就OUT了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作——舍恩佰格的《大数据时代》。维克托·迈尔舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。
他的咨询客户包括微软、惠普和IBM等全球企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,才能能与之进行一场思想上的对话。
舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:
一、更多:不是随机样本,而是全体数据。
二、更杂:不是精确性,而是混杂性。
三、更好:不是因果关系,而是相关关系。
对于第一个观点,我不敢苟同。
一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?
我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的.方法和范围要加以拓展。
我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。
读完《大数据时代》这本书后,我意识到:我们即将或正在迎接由书面到电子的跳跃之后的又一重大变革。
这本书介绍了大数据时代来临后,接踵而至的三项变革——商业变革、管理变革和思维变革。
其实,这场变革已经打响。商业领域由于大数据时代的到来而推陈出新。前几年,一家名为Farecast的公司,让预订到更优惠的机票价格不再是梦想。公司利用航班售票的数据来预测未来机票价格的走势。现在,使用这种工具的乘客,平均每张机票可以省大约50美元,这就是大数据给人们带来的便利。
大家应该都知道2009年出现的H1N1型流感,就拿美国为例,疾控中心每周只进行一次数据统计,而病人一般都是难以忍受病痛的折磨才会去医院就诊,因此也导致了信息的滞后。然而,对于飞速传播的疾病,Google公司却能及时地作出判断,确定流感爆发的地点,这便是基于庞大的数据资源,可见大数据时代对公共卫生也产生了重大的影响!
在我看来,如果想在在大数据时代里畅游,不仅要学会分析,而且还要能够大胆地决断。
在美国,每到七、八月份时,正是台风肆虐之时,防涝用品也摆上了商品货架。沃尔玛公司注意到,每到这时,一种蛋挞的销售量较其他月份明显增加。于是,商家作了大胆的推测,出现这样的结果源于两种物品的相关性,便将这种蛋挞摆在了防涝用品的旁边。这样的举措大大增加了利润,这就是属于世界头号零售商的大数据头脑!
大数据时代的到来,可以让我们的生活更加便利。但是,如果让大数据主宰一切,也存在一定的风险。
大家应该都知道电子地图,它可以为人们指引方向。但大家应该还不知道,它会默默地积累人们的行程数据,通过智能分析可以推断出哪里是自己的家,哪里是工作单位。我们的隐私就这样被不为人知地收集着。
大数据时代的到来,让我们的生活更安全,更方便,但与此同时,我们的隐私不再是隐私,数据的收集变得无所不包、无孔不入。世界已经向大数据时代迈进了一小步,一个崭新的时代正向我们走来。让我们用知识武装大脑,做好准备,迎接新时代的到来!
⑤ 大数据时代读后感1000字(2)
大数据时代读后感1000字(精选7篇)
舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:一、更多:不是随机样本,而是全体数据;二、更杂:不是精确性,而是混杂性;三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。
我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。
世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出”不是因果关系,而是相关关系。“这一论断时,他在书中还说道:”在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。“[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。
大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可”量化“,大数据的定量分析有力地回答”是什么“这一问题,但仍然无法完全回答”为什么“。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。在风险社会中信息安全问题日趋凸显,数据独裁与隐私保护成为一对矛盾。如何摆脱大数据的困境?舍恩伯格在最后一节”掌控“中试图回答,但基本上属于老生常谈。我想,或许凯文·凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:”大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。“谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考答案。
此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。
我们不再热衷于寻找因果关系,而应该寻找事物之间的相关关系。这个命题是我读这本书最大的感触。个人认为也是这本书最核心的思想。从头说起吧,首先,书提出一个颠覆我以前认知的命题--”并非原子而是信息才是一切的本源“,将世界看做信息,看做可以理解的数据的海洋,为我们提供了一个从未有过的审视下是的视角。它是一种可以渗透到所有生活领域的世界观。这个命题是在书的最后一部分中的某一段中描写的。我之所以把它放在最前面来讲,因为我觉得,这是谈数据化世界的前提,自然也是谈论大数据的前提啦。书的中间部分有一节讲到数据化和数字化的区别。经过我自己脑子的整理,把数据化世界这个命题列为大数据思维的第二步。写到这里,我不由得反省下,我是不是有领悟到书的精髓所在(我认为的精髓),就是第一句话。因为回顾我整个思路,还是按照旧模式的因果关系思考模式思考问题。书中另一个吸引我的地方就是,有很多观点的论述,会从哲学的高度论述。虽然,自己肚子没多少墨水,但是读这些描述的时候,就会发现自己会更好的理解作者提出的命题。比如书中有一段文字
当我们说人类是通过因果关系了解世界时,我们指的是我们再理解和解释世界各种现象时使用的两种基本方法:一种是通过快速、虚幻的因果关系,还有一种就是通过缓慢、有条不紊的因果关系。大数据会改变这两种基本方法在我们认识世界时所扮演的角色。
在附上一些事例的时候,用作者提供的”本质“去看待时,很容易理解,确实是这么回事。好了,那么大数据到底改变了我们什么呢,作者给出3点,
大数据的精髓在于我们分析信息时的三个转变,这些转变讲改变我们理解和组建社会的方法。
第一个转变就是,在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样(样本=总体)
第二个转变就是,研究数据如此之多,以至于我们不再热衷于追求精确度
第三个转变因前两个转变而促成,即我们不再热衷于寻找因果关系,而应该寻找事物之间的相关关系。大数据告诉我们”是什么“而不是”为什么“。在大数据时代,我们不必知道现象背后的原因,我们只要让数据自己发声。,出处:短美文,否则追究其责任,谢谢你的支持,我们会给做得更好!
正如大家所知道的那样,人类的大脑具备这样的功能,它会把新输入的刺激或信息与”过去的经验或积累的部分知识“相对照,然后进行调整并接受下来。如果眼前新的现实与大脑中储存的固有信息无法协调,便会在无意识中拒绝接受新的现实(当作没有看见);或者通过自己一知半解的知识任意推测,使自己认识到的情况偏离实际(产生错觉)。这是人的一种本能,目的在于使自己保持冷静。
所以作者称之为revolution。
讲了这么多,那么大数据到底给我们带来什么。在这里,我只想谈我感触最深的,其他的有兴趣的可以自己去了解。当然,书中提了很多,最多的就是,XXX公司或者个人利用大数据创造了多大的财富了,抛开这些表面的不说,最让我动心亦或者是害怕的是,预测。这是大数据带来最核心的东西,动心的理由无须赘述,计算机会告诉你什么时候买什么双色球可以中头奖,想想心里是不是有一点小激动咧。当然这只是我打的一个比较夸张的比喻。至于害怕呢,书中有段话我很喜欢
公平正义的基础是人只有做了某事才需要对它负责,毕竟,想做而未做不是犯罪,社会关系于个人责任的基本信条是,人为其选择的行为承担责任。如果大数据分析完全准确,那么我们的未来会被精准的预测,因此在未来,我们不仅会失去选择的权利,而且会按照预测去行动。如果精准的预测成为现实的话,我们也就失去了自由意志,失去了自由选择的权利。既然我们别无选择,那么我们也就不需要承担责任。这不是很讽刺吗。
扯到这里,顺便扯一下,书中另一段关于自由意志的描述
在哲学界,关于因果关系是否存在的争论已经持续了几个世纪。毕竟,如果凡事皆有因果的话,那么我们就没有决定任何事的自由了。如果说我们做的每一个决定或者每一个想法都是其他事情的结果。而这个结果又是由其他原因导致的。以此循环往复,那么就不存在人的自由意志这一说了。——所有的生命轨迹都只是受因果关系的控制了。因此,对于因果关系在世间所扮演的角色,哲学家们争论不休,有时他们认为,这是与自由意志相对立。
书中举了个例子,举了部电影《少数派报告》,当我看到这里的时候,”哎哟,我居然看过这部电影,想想心里还是有点小激动“,有兴趣的可以去看下,大概就是讲警察通过预测来提前抓捕犯人,不过不是通过大数据,是通过超人类的方式。当你什么举动都可以被预测,相当于你完全暴露在太阳光下,换成你,你害怕不。
最后,附上两段结语,一段是书中的一段话,另一段是我自己瞎编的。
大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。
大数据终将会影响到我们,也像其他技术一样会是一把双刃剑,用得好,动心,滥用,害怕。如同核技术一样,用的话,造福地球,滥用,给个金刚石地球你,照样爆。我相信,未来的大数据的发展会如作者所说的,是一场生活、工作与思维的革命。
“大数据”一词不知何时在我们的生活悄然出现,为了一探究竟,我便选择了《大数据时代》一书。
作者先从全局简单地描述大数据对我们的生活、工作与思维的影响,再从三方面具体地用上百个学术和商业的实例展开写作。样本=总体、追求精确性和相关关系等大数据时代具体特点一一现出。在同时,作者也从个人、企业等多角度分析大数据中的隐忧。
书中内容繁多,在此不能各方面概括。此书中虽有许多专有名词,但作者以其通俗的语言以及许多实例让我嗅到大数据时代中一抹清新之气。
为什么是清新的呢?因为书中的内容仿佛向我打开了一个既有点熟悉又有点陌生的世界。我们现在已处于网络时代 ,在我们日常简单的操作中大量数据产生,然而起初我们仅用众多技术在解决手头上的问题,那些大数据像沙子中的金子,价值不被发现。到目前,每当我们网上购书时总会看到“猜你喜欢”的栏目、出现谷歌搜索与流感预测、Farecast与飞机票价预测系统等,这些事情的达成全来自于那些曾被忽略的大数据同时也在证明“预测,大数据的核心”这句话,为我们的生活创造了前所未有的可量化的维度。看到书中这部分内容时,我不禁感受到自己的生活已在享大数据带来的福利,就像“猜你喜欢”栏目让我触到更多合我口味的书,让我看到了以前无法发现的细节。拥有大量数据的公司巨头如谷歌、亚马逊大力开发有关大数据的新型产业和研究相关项目。借网络时代的便利大数据成为了如今最有商业价值的事物,使一切可量化的趋势也开始出现。“本质上世界是由信息构成的”,面对这句话时,大数据时代仿佛就在眼前。
在感受惊叹着大数据能为我们做到以往无法想象的事和它巨大的价值时,我认同大数据能极大优化我们的生活,但又不禁为这时代感到担忧。一旦大数据时代来临,不仅我们的隐私可能不再是隐私,就如书中所言“我们时刻暴露在‘第三只眼’下:亚马逊监视着我们的购物习惯,谷歌监视着我们的购物习惯,而微博似乎什么都知道”,而且利用大数据我们可以预测许多事情并且十分高效,一旦人们依赖大数据极少运用人类自身的创新等能力被数据束缚住,世界只会沦落为一个极少活力的机械环境。而我认为最大的忧患,是大数据时代对人类自身思维、思想、信仰等精神领域的冲击。如今我们都生活在数据中,大数据时代说不定在几年后就会逐步来临,这使我不禁发问:我们一直坚信着信仰着的究竟是什么?我觉得世界说变就变实在令我想不通这个问题。事情都有好坏,我也不知道自己是否杞人忧天。
于是我继续去探索作者对这问题的思考。“更大的数据在于人本身”,作者还说“我们是在创造更好的未来”,也说“在一个预测的时代里,人类的自由意志不可侵犯,这一点不可轻视。我们在使用大数据时,应当怀有谦恭之心,铭记人性之本”。人类学家克利福德吉尔兹曾说:“努力在可以应用、可以拓展的地方,应用它、拓展它;在不能应用、不能拓展的地方,就停下来。”这些话语仿佛是阳光,驱散我心中对大数据时代的担忧以及内心对其的恐惧。我认为,在坚守我们内心和自由意志下,大数据才会造福我们人类世界,发挥出它背后对人温暖的光芒。
面对时代的变革,我会为坚守内心深处的自由意志而努力并“拥抱大数据”。
世界的本质就是数据,当你掌握了数据,你便掌控了世界—你可以轻而易举地通过数据中的相关关系预测事物的发展,将一切不利因素扼杀于摇篮之中—这远胜于"防患于未然"。
《大数据时代》一书,让我们在观念上有了三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。全书介绍了 "大数据"时代三种大的变革:思维变革,商业变革和管理变革。在这些巨大变革如洪水一般的"冲击"之下,现代社会的运作方式必将有重大的改变,若不顺应这种变革的潮流,就像古中国固步自封,最终被坚船利炮打开国门而自己还用着长钩铁戟抗争一样,不可避免被掠夺,被落于世界进程之后,所以我们必须转变我们的思想。
"我们不再热衷于寻找因果关系,而应该寻找事物间的相关关系",我想这句话是本书的核心思想。大数据时代,信息与数据已成为了一切的本源,我们生活在各种数据构成的海洋之中,如果从另一种视角看,就好像无数条"看不见的线"将我们与这些数据联系到一起,这是我们以前从未有过、从未想过的。大数据改变了我们以前的通过因果关系了解世界的方法,而提供了几种新的途径,因为,在大数据时代,我们可以分析更多数据,有时甚至可以处理和某个特别现象相关的所有数据,也就是:样本=总体;而且,当研究数据如此之多时,我们已不热衷于"精确",而是"混乱",若不接受"混乱",那么有95%的非结构化数据无法利用,这将无法使我们构建完整的数据世界,在分析更多、更全面的数据之后,我们就可以从这些数据之中发掘它们的相关关系,即以"是什么"而不是"为什么"的角度看待数据,不用管其从何而来,只要分析其如何影响其他事物既可,即"让数据自己发声",这些,彻底推翻了人类以前探索数据的方法,展现了一个全新的世界。
这种观念以惊人的力量给现知识状况带来了巨大的冲击,通过对海量数据的分析,获得巨大价值的产品和服务,或深刻的洞见。比如谷歌公司,2009年h1n1流行之时,通过检测检索词条,处理34。5亿个不同的数据模型,通过预测并与2007、2008年的美国疾控中心记录的实际流感病例进行对比后,确定了45条检索词条组合,并将其用于一个特定的数学模型后,预测结果与官方数据相关系数高达97%,这种大数据技术,以前所未有的方式,通过海量数据分析得出流感所传播的范围,为预测流感提供了一种更快速、高效的工具。
同时,虽然大数据可为人类造福、对抗病症,但这仅限于掌握这门技术而言,若不重视这种技术,当我们的对手早于我们一步构建这种数据网络之时,便是我们的灾难,想想,大数据虽核心的在于预测,当敌人通过这种手段预测我方下一步的行动,将是可怕的—比如你的.导弹将从何处发射,将飞往哪,你的军队动向、目标,总之所有一切"未来"将掌控于敌手,敌方甚至可以借此发现那些将来有"大作为"的人,从而进行渗透或扼杀,这对我们的发展无疑是致命的,所以,尽快加速大数据系统的构建进程是必须的。
对于我们国防生,也必须顺应这种发展趋势,未来的时代必将是数据极易获取,数据网络共享化的时代,通过这些数据,建立数据模型,可以准确分析并给出适合每一个人的计划,如运动量、训练强度,可以"先知、先觉",及时发现一个人的负面情绪前及时疏导,这些必将成为现实,我们必须跟进时代,做好准备,去应对大数据时代的一切!
“除了上帝,任何人都必须用数据来说话。”——这是《大数据》中出现的让人印象深刻的一句话,也是全书力图传递的信息。在数字信息时代,数据和空气一样遍布生活,对于有些人来说,数据无意义,而对于有些人来说,数据,即真相。
美国是《大数据》的主角,全书通过讲述美国半个多世纪信息开放、技术创新的历史,公共财政透明的曲折、《数据质量法》背后的隐情、全民医改法案的波澜、统一身份证的百年纠结、街头警察的创新传奇、美国矿难的悲情历史、商务智能的前世今生、数据开放运动的全球兴起,Web3·0与下一代互联网的未来图景等等,为读者一一细解数据创新给公民、政府、社会带来的种种挑战和变革。
透过全书,一个立体的美国及美国人民的思想呈现在我们面前——美国人民执著于个人隐私的保护,却又不遗余力地推动着政府信息的透明与公开。
读完此书,对生活中的数据及数据处理突然有了很大的兴趣。如果有一天,处处以数据说话,那么,政治、制度、生活将更加清明,事故、将降到最低点。
作为信息技术教师,是有必要阅读此书的!有慧根的教师将能从书中挖掘出信息技术特有的文化以及能用于教学的鲜活案例。
每天能用来阅读的时间很少,总是要等到夜深疲倦时才有空打开书本,总是在眼睛极不舒服的情况下坚持阅读,《大数据》就这样在坚持中溶入我的思想……
读完《大数据》,我才意识到这并不是一本枯燥无味的书籍。作者运用案例和讲故事的方式,把美国数据开放、收集、使用背后的立法故事、公民故事、技术故事、商业故事娓娓道来,引人入胜,令我大开眼界。
我在想,大数据概念对于教育来说会产生什么样的实用价值呢?一直以来,中国教育在研究教育的数字化,比如数字化校园,这个思路就是把我们教育的内容进行数字化,其结果指向的就是电子教材的研发或者是教学过程的数字化。美其名曰,这是教育技术的重要内涵。在教学过程中,学生的行为表现都可以被数据化,而这项研究不是任何一个专业可以深入下去的,它的专业性太强,所以我才会想到,所谓教育技术与其研究教育的数字化,不如研究教育的数据化来得实在,来的有意义。长期以来,我们并不了解教育对一个人的影响具体会如何表现,我们有的只是一个轮廓,我们也并不确定一个教师的行为对学生具体产生了哪些影响。所以,人们对教育一直有一个深深的质疑,它是不是科学的?大数据概念至少提出了关注“是什么”比“为什么”要有实际意义得多。而我们的教育恰好需要把注意力从“为什么”转移到“是什么”上面来,只有如此,才能把教育从为什么发展成“可能成为什么”上来,这会是一次思想上的革命。而对于现在地位岌岌可危的教育技术来说,把研究的重点从数字化转移到数据化上面,这才是它的出路。
如何将数据融入教学,教育者首先通过标准化全科教学处方,实现了教师授课模板和教学内容的标准化,保证每个教学过程和内容是可控的,然后结合每天的教学内容,处理好面对的数据,处理好数据,自然也就处理好了课堂的反馈,最终形成了既注重教学体验又以教学结果为导向的教学体系。
与此同时,不仅要注重课上的学生资源,在课后还要对这些资源进行跟踪处理。这与过去的教育教学显然是不同的,面对大数据时代的到来,教学有所改变是必然的。所以,无论环境怎么变换,数据如何复杂,我们都不能不去改变自己的教学去迎合将来的这个大数据时代。
舍恩伯格的《大数据时代》,让我重新审视了"大数据"这个在信息时代异军突起的热点词汇,作为信息安全专业的我,对大数据这个词本身有着更多的热忱。
在网络上搜索到的解释是:"大数据",或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。特点:数量、速度、品种、真实性。
而舍恩伯格认为,大数据并不能定义一个确切的概念。他提到"大数据是人们获得新的认知,创造新的价值的源泉;大数据还是改变市场、组织机构,以及政府和公民关系的方法。"这是一种更具有人文色彩和社会意义的诠释。
本书中,主要从三个方面论述,即思维变革、商业变革和管理变革。而舍恩伯格更是着重阐明三大观点:
一、更多:不是随机样本,而是全体数据。
二、更杂:不是精确性,而是混杂性。
三、更好:不是因果关系,而是相关关系。
对于观点一,我不敢苟同,毕竟大数据的实现需要一定的技术支持,而显然,现在这种技术还不够成熟,同时一些简单的事情运用大数据反倒是问题更加复杂化,因此这种大叔据的繁杂处理方式更适用于一些特定的情况,比如商业预测,人类dna的研究等。
而对第二种观点,我是十分赞同舍恩伯格所说的"大数据的简单算法比小数据的简单算法有效"。在计算机行业迅速发展中,一种新的简单可行的算法的出现,远没有计算机在运算速度和存储容量的发展快,而大数据算法似乎更能迎合这种大趋势。
观点三中提到的相关关系在大数据中可是重量级的,它能较快找到事物规律和对应的解决措施,当然,也不能完全忽视因果关系,毕竟人们在思维上更能够接受因果关系分析出的结果,而大数据预测的需要人们慢慢的适应才能接受。当我们完成相关关系的分析而又不满足于只知道"是什么"的时候,我们就可以转而研究"为什么"了,毕竟问题的根本在于因果。而舍恩伯格的全体数据和相关关系是大数据时代下的一种捷径。
但是在信息时代,信息安全问题的日趋凸显,数据独裁与隐私保护之间的矛盾更是立于风口浪尖,成为众矢之的,舍恩伯格在本书的最后章节曾试图寻找一种解决方式来摆脱这一种困境,但最终没能做到,但是他提出"大数据并不是一个充斥着算法的和机器的冰冷世界,人类的作用仍无法被完全代替。"这里表明人在数据时代同样的重要,数据是为人类服务的,也就该人类驱使下完成相应的目的。
在这样的大环境下,常引起我更多的思考和担忧。
大数据时代对于我们同是机遇与挑战,一些国家已开始步入大数据时代的行列,并在各个领域开始研究和使用。而对于我国庞大的人口,以及较大的领土面积,都可以在大数据时代为我们提供数据的保障,而能否面临挑战,在大国之间的新一轮角色角逐间崭露头角,我们更需要解决技术等方面的问题,更应在政策上逐步开放各领域的数据,保证数据来源、权限等问题得到解决,不断学习先进的计算机技术,缩小与其他国家的差距。
工业化、信息化,我们都向世界交出了一份让世界不能小觑的答案;
大数据时代的数据化我们又将怎样在新的风暴中所向披靡,如果大数据时代是一种必然趋势,那这就是我们这一代人的责任,是我们新的战场!
;⑥ 什么和大数据随之在整个供应链中被广泛应用
什么和大数据随之在整个供应链中被广泛应用
什么和大数据随之在整个供应链中被广泛应用,在数字化时代,数据分析逐步成为从业人员的必备技能之一。所以我们应该注重做好数据分析。那么什么和大数据随之在整个供应链中被广泛应用?
大数据时代对采购和供应链带来的挑战和机遇
1、大数据时代及其特征
大数据(Big Data)是指所涉及的规模巨大的数据。随着时代的不断进步以及科技的飞速发展,互联网、物联网、移动通讯、管理信息化、电子商务等技术不断相互渗透,并作用到国家、企业和民生的方方面面,今天,人们用大数据来描述和定义信息爆炸时代产生的海量数据,以及在合理时间内达到撷取、管理、处理、并整理成为帮助人们处理事务和决策等更积极目的的资讯与知识。
美国互联网数据中心指出,互联网上的数据每年将增长50%,每两年便将翻一番,而目前世界上90%以上的数据都是最近几年才产生的。2020年,全世界所产生的数据规模将达到今天的44倍。从这些数据每天增加的数量来看,世界目前已进入大数据时代。
大数据时代凸显了数据资源的重要意义。2012年奥巴马政府宣布投资2亿美元拉动大数据相关产业的发展,将“大数据战略”上升为国家战略,将大数据定义为“未来的新石油”,把对数据的占有和控制视为陆权、海权、空权之外的另一种国家核心资产。2013年,法国政府发布了其《数字化路线图》,列出了将会大力支持的5项战略性高新技术,“大数据”就是其中一项。
2012年,日本总务省发布2013年行动计划,明确提出“通过大数据和开放数据开创新市场”。联合国在2012年发布的大数据政务白皮书中指出,大数据对于联合国和各国政府来说是一个历史性的机遇。我国也将大数据产业看作为战略性产业,成立了“大数据专家委员会”。
在“大数据”2014年十大趋势预测中,包括了数据商品化与数据共享联盟化,大数据生态环境逐步发展等内容。同时,大数据专家委员会预测,2014年大数据在互联网和电子商务、金融(股市预测、金融分析)、健康医疗(流行病监控和预测等)、生物信息、制药等方面将会有令人瞩目的应用。
大数据时代是大数据价值充分发挥的时代。据赛门铁克公司的调研报告,全球企业的信息存储总量已达2.2ZB(1ZB=1024EB,1EB=1024PB),年增67%。世界上每分钟产生1700TB 的数据,但是吸引我们的不仅仅是这个庞大的数字本身,而是我们如何利用这些数据做些什么。
大数据可以运用到各行各业,在宏观经济方面,IBM日本公司建立经济指标预测系统,从互联网新闻中搜索影响制造业的480项经济数据,计算采购经理人指数的预测值;印第安纳大学利用谷歌公司提供的心情分析工具,从近千万条网民留言中归纳出六种心情,进而对道琼斯工业指数的变化进行预测,准确率达到87%;
在制造业方面,华尔街对冲基金依据购物网站的顾客评论,分析企业产品销售状况;一些企业利用大数据分析实现对采购和合理库存量的管理,通过分析网上数据了解客户需求、掌握市场动向,等等。
据麦肯锡公司测算:大数据将给美国医疗服务业带来3000亿美元的价值,使美国零售业净利润增长达到60%,使制造业产品开发、组装成本下降50%,而大数据所带来的新需求,将推动整个信息产业的创新发展;根据经济与商业研究中心的最新研究,大数据将为英国经济增加2160亿英镑(约合3467亿美元)以上的潜在收益。
2、大数据时代对采购和供应链带来的挑战和机遇
首先,商务环境和商务模式变得越来越复杂,且更加动荡、多样和个性化。其二,电子商务业务模式的飞速发展打破了国家疆界,使得跨境业务速增、商业活动频繁,同时伴随着数据量的剧增。。其三,大数据应用处理成为企业和社会竞争发展的重要焦点。其四,有效挖掘大数据成为时代面临的重要课题。最后,许多企业对大数据的重要性认识不足,没有充分了解其价值。
供应链管理中,及时和准确的数据,为什么如此重要?
1 、供应链中数据的类型
数据有许多类型,其中有一种分类方法是把它分为静态和动态数据,前者包括了公司基本信息、产品型号、采购价格、BOM等等相对固定的信息。
后者主要是一些交易性的信息,比如生产线每日的产量、客户订单数量、仓库实际收货数量、运输所在位置等等变动的信息。
静态数据做到准确即可,没有实时性的要求,比如公司的名称一般不会发生变动,只需要确保公司地址、法人和开户银行等信息是正确的。
动态数据的要求就很高了,不仅要准确,还要能反映出每时每刻的实际情况。
大家都有网购的经验,在商品出库以后,快递公司会每隔一段时间刷新包裹所在位置,这是通过车载GPS定位实现的,然后根据卡车配送计划,大致上能给出派送的时间。通过一台卡车上的GPS,可以跟踪整车的货物,这是1对N的关系,因此实现动态数据的成本并不高。
离散型制造业的情况就复杂多了,一件商品需要从原材料供应商开始追溯,进入工厂以后,需要经过若干个不同生产加工中心,然后完成组装、检验,最终才能入库,配送给下游的经销商或零售商。
我们很少会在原材料上放置追踪】定位装置,除非这批货物价值很高,或是有这方面的强制监管要求,比如药品。
如果想要跟踪生产进度,就需要使用工业4、0的技术,在每台设备上装传感器,完成加工后,系统自动上传数据。如果要在每台生产和内部搬运设备上都安装传感器,对于一家工厂来说负担太大,性价比不高,除了少数的行业标杆企业以外,对于大多数工厂来说,想要做实时数据的想法并不强烈。
2、 为什么供应链需要及时和准确的数据?
话虽如此,供应链对于数据及时和准确性是有很强的需求的,因为我们要在所有的生产、分销、采购和售后服务之间建立数据的无缝链接。除此之外,还有两个关键因素使得我们必须获得及时和准确性。
2、1增强供应链可视性
对于供应链上的玩家来说,关键的可视性问题包括了货物的预计生产出货时间,比如供应商承诺了30天交货,但是实际上他需要45天,因为一些原材料涨价了,供应商需要更多的时间在市场上找到货源,他不愿意买更贵的原料,因为这会增加成本,除非客户愿意接受供应商的调价请求。
原料和零部件库存的所处位置也属于可视性,客户需要根据这些信息,来安排后续的生产和销售计划,并且非常依赖于信息的准确性。当供应商承诺货物将会在某日送到客户工厂后,供应链就把这个信息输入系统,并以此为依据来制定生产计划,销售根据生产完成日期来通知客户,环环相扣。
一旦供应商的信息有误,货物晚于承诺时间到达,就会影响到供应链下游的安排,所谓的“计划赶不上变化”就发生了。
追踪交货期和库存位置仅是可视性的初阶水平,更深层次的要求是可以预警供应链中断风险。根据现有的信息,我们需要判断何时何地会出现缺货,以及对生产和销售的影响是什么。
比如,生产线缺少某种零部件,所以会停线4个小时。如果每小时产量是100套产品,每套售价是200元,那么造成的损失就等于4*100*200=80000元。
当然在现实世界中计算的方式更加复杂,某种原料的短缺会牵涉到N多产品和N多客户。如果我们能增强可视性,就能够预见到未来的潜在供应短缺,并能够在第一时间里作出反应。
要实现这点,就必须让数据及时和准确地在供应链上下游之间自动传输,尽量减少人为的干预的环节。
2、2提高计划的'有效性
预测计划的重要输入是历史销售记录,以数据为基础,结合预测模型,制定出中长期的预测。
对于制造企业来说,财务需要供应链提供的输入,来制定未来的商业计划和各类预算,比如库存、采购金额、运费等等。
底层数据的准确性非常重要,所有的计划都是在这些数据的基础上,配以数据模型,然后“加工”出来的。供应链会花费一定的时间在数据维护上,就是要确保基础数据的准确性。
我们知道预测有一个定律,近期的准确性高于远期的,就像是预测天气一样,天气预报上关于明天的天气是最准的,越往后准确性越低。
供应链为了增强预测准确性,就需要拿到最新的数据,这样做出来的计划准确性就越高。现在的需求波动越来越频繁,可能一天一个样,想要做出最准确的判断,必须用最新的数据。
3、 获取及时和准确的数据的关键事项
考虑到以上的两点动因,供应链一直在努力获得最及时和准确的数据。这里有几个需要特别留意的点值得大家关注。
3、1自动化数据采集
如有可能的话,应该尽量在实时情况下收集、传输数据。数据存储在供应链内部和外部的各个节点上,为了提升数据可靠性和及时性,最好的办法就是自动化采集。
在内部实施这点相对容易,只需要投资数字化工具,实施IT项目就可以实现。
在外部伙伴实施起来难度就高了,其中的最大阻力是害怕共享数据后的商业机密泄露。
供应商担心客户知道了他的上游供应商的信息,可能会跳过中间商,不让他继续赚差价。因此在做系统对接的时候,要确保只分享可以分享的数据,比如包装规格之类的。
3、2控制对相关数据的访问
根据使用者在公司中的职能,给予特定的数据访问权限,比如采购订单只能由采购计划员进行创建和修改,公司里的其他人只有查看的权限。
对于外部伙伴也是一样,客户可以查看供应商的库存商品数量信息,但他绝对不能访问商品的成本分析等商业机密。
3、3努力提升、维护数据的准确性
我们需要不断提升数据的准确性,其中关键在于数据采集和输入。我们要定期维护数据,比如系统中库存或是倒冲过账出现了负数,说明某些地方的数据存在问题,流程可能有漏洞,需要我们找到问题点并且尽快处理掉。
数据是供应链的根基,为我们制定各类计划提供了基础。实现准确和及时的数据虽然有点小贵,但是在供应链大中断时期(the Great Supply Chain Disruption),投资必然能带来相应的回报。
大数据成为供应链利器
在中国供应链大数据份额中,零售业、制造业、服务业(非金融)、医疗业占比最多,约占83%市场份额,而能源仅占1%。而据易观智库预测,2016年中国供应链大数据市场将达到60亿左右(不含供应链金融部分)。
该报告把供应链大数据分为结构数据、非结构数据、传感器数据及新类型数据四种,涵盖了交易数据、时间段数据、库存数据、客户服务数据、位置数据等各个方面。报告显示,目前,大数据已经被广泛应用于包括物流、服务和金融等供应链环节。
有效推进物流模式变革
在供应链中,大数据的作用首先体现在物流中。2014年12月26日,中国物流信息中心公布的数据显示,1-11月,全国社会物流总额196.9万亿元,按可比价格计算,增长8.3%,较上年同期回落1.3个百分点。而从近五年的情况来看,物流企业资产规模增速逐步放缓,物流企业经营效益偏弱。
在这种情况下,物流企业需要从价值延伸的角度提供超过客户预期的服务,以高效物流+增值服务的思路发展,而大数据是物流企业提供增值服务的基础要素。另外,随着众多专业化物流模式的兴起,降低供应链成本的核心将是数据资产的运用,大数据能够有效地推进高效率的`物流模式变革,是降低物流成本费用的有效手段。
利用大数据,企业可以与中国气象服务中心合作,收集高速公路信息,提供全国高速公路的天气预报和道路实况服务,可以优化行车路线,并对车辆和货物状态进行实时监控、评估和预警,对产品的运输进行智能追溯。
企业通过大数据,依据物流的时间、成本、服务、物流数据、客户需要等决策因素,可以对风险进行有效预测和评估,制定出合理、准确和科学的决策。利用物流数据,企业可以进行详细的区域和网店预测,帮助电商平台和快递公司迅速做出决策。
例如,亚马逊已经申请专利的“预测性物流”就是个利用大数据洞察用户需求的典范。“预测性物流”会检测用户的鼠标在商品上的停留时间,再综合考虑用户的购买历史、搜索记录、愿望清单等。
从而根据这些海量数据预判用户的购买行为,提前将这些商品运出仓库,放到托运中心寄存,等到用户真的下单了,就可以立即开始运送商品。通过利用大数据,亚马逊大幅缩减了商品的送货时间。
构建预测模式提高协同效应
根据大数据的分析,物流企业可以构建预测模式,实现对产品销量的精准预测,进而实现对未来库存量的精准计算,使工厂、区域市场、本地市场的库存配置更加合理,从而提高协同效应。企业可以通过充分掌握供应链物流过程中的所有基础数据,结合企业自身的资源、能力状况,对整个供应链进行必要的控制和监督。
例如,神州租车的车辆租用率曾经在达到一定程度后出现了瓶颈,一部分车辆出现空置状态。通过使用SAP推出的数据库平台SAPHana,神州租车优化了流程,将车辆使用率再次提高了15%。
提供精准金融服务
通过大数据技术进行行业分析和价格波动分析,能够尽早提出预警,规避信贷风险,可以对目标客户进行资信评估、审批短期小额贷款,以及精准金融和物流服务贷款。
例如,为了实现银行和中小外贸企业之间的对接、打破信息不对等的状态,阿里巴巴旗下一达通公司运用自身的系统处理能力,将监管、申请、投放、还款、放贷等相关融资工作纳入一个统一的信息化网络处理平台,通过全程掌控交易流程。
获取交易环节的详细数据和信息,以第三方服务平台的角色验证企业贸易真实性,实现各方信息交互、业务协同、交易透明,从而为解决中小企业融资难问题找到可行的方案。
在供应链金融中,大数据还可以提供诸多的增值服务。利用大数据,从源头获取用户需求信息,洞察潜在需求,为供应链提供信息咨询;可以对供应链金融上下游客户进行全方位信用管理,形成互动的监管和控制机制,降低交易成本和风险;对供应链绩效进行分析与预测,指导供应链管理,尤其是供应链协同数据的运营。
⑦ 《大数据时代》读后感
导语:读完《大数据》,我才意识到这并不是一本枯燥无味的书籍。作者运用案例和讲故事的方式,把美国数据开放、收集、使用背后的立法故事、公民故事、技术故事、商业故事娓娓道来,引人入胜,令我大开眼界。以下是我为大家精心整理的《大数据时代》读后感,欢迎大家参考!
对于畅销书刊、热点话题、时尚科技,始终不太感兴趣。书刊,喜欢有一定年份的;话题,钟情于务虚的观点;新奇的产品于我无缘,习惯使用成熟的科技产品。既不清高,也非冷漠,就是要与现实保持一定的距离,给自己留一点思考的空间。这一习惯最近破了例。由于工作的原因,耳濡目染,“大数据”这个新兴概念开始频繁步入我的视野。按捺不住内心的好奇,网购《大数据时代》,手不释卷,三天读完,颇有收获。此书有如下特点。
首先,作者站在理论的制高点上,条理清楚地阐述了大数据对人类的工作、生活、思维带来的革新,大数据时代的三种典型的商业模式,以及大数据时代对于个人隐私保护、公共安全提出的挑战。其次,文中的事例贴近现实生活,贴近时代,令读者既印象深刻,又感同身受。此外,作者没有使用大量的专业术语,没有假装一副专业的面孔。纵观全书,遣词造句,均通俗易懂。
作者认为大数据时代具有三个显著特点。一、人们研究与分析某个现象时,将使用全部数据而非抽样数据;二、在大数据时代,不能一味地追求数据的精确性,而要适应数据的多样性、丰富性、甚至要接受错误的数据。三、了解数据之间的相关性,胜于对因果关系的探索。“是什么”比“为什么”重要。
作者指出,随着技术的发展,数据的存储与处理成本显著降低,人们现在有能力从支离破碎的、看似毫不相干的数据矿渣中抽炼出真知烁见。在大数据时代,三类公司将成为时代的宠儿。一是拥有大数据的公司与组织。如政府、银行、电信公司、全球性互联网公司(阿里巴巴、淘宝网)。二是拥有数据分析与处理技术的专业公司,如亚马逊、谷歌。三是拥有创新思维的公司,他们可能既不掌握大数据,也没有专业技术,但却擅长使用大数据,从大数据中找到自己的理想天地。
面对即将来临的大数据时代,个人将如何应对自如?这是个严肃的问题。
“除了上帝,任何人都必须用数据来说话。”——这是《大数据》中出现的让人印象深刻的一句话,也是全书力图传递的信息。在数字信息时代,数据和空气一样遍布生活,对于有些人来说,数据无意义,而对于有些人来说,数据,即真相。
美国是《大数据》的主角,全书通过讲述美国半个多世纪信息开放、技术创新的历史,以别开生面的经典案例——奥巴ma建设“前所未有的开放政府”的雄心、公共财政透明的曲折、《数据质量法》背后的隐情、全民医改法案的波澜、统一身份证的百年纠结、街头警察的创新传奇、美国矿难的悲情历史、商务智能的前世今生、数据开放运动的全球兴起,以及云计算、Facebook和推特等社交媒体、Web3·0与下一代互联网的未来图景等等,为读者一一细解数据创新给公民、政府、社会带来的种种挑战和变革。
透过全书,一个立体的美国及美国人民的思想呈现在我们面前——美国人民执著于个人隐私的保护,却又不遗余力地推动着政府信息的透明与公开。
读完此书,对生活中的数据及数据处理突然有了很大的兴趣。如果有一天,处处以数据说话,那么,政治、制度、生活将更加清明,事故将降到最低点。
作为信息技术教师,是有必要阅读此书的!有慧根的教师将能从书中挖掘出信息技术特有的文化以及能用于教学的鲜活案例。
每天能用来阅读的时间很少,总是要等到夜深疲倦时才有空打开书本,总是在眼睛极不舒服的情况下坚持阅读,《大数据》就这样在坚持中溶入我的思想……
读完《大数据》,我才意识到这并不是一本枯燥无味的书籍。作者运用案例和讲故事的方式,把美国数据开放、收集、使用背后的立法故事、公民故事、技术故事、商业故事娓娓道来,引人入胜,令我大开眼界。
我在想,大数据概念对于教育来说会产生什么样的实用价值呢?一直以来,中国教育在研究教育的数字化,比如数字化校园,这个思路就是把我们教育的内容进行数字化,其结果指向的就是电子教材的研发或者是教学过程的数字化。美其名曰,这是教育技术的重要内涵。在教学过程中,学生的行为表现都可以被数据化,而这项研究不是任何一个专业可以深入下去的,它的专业性太强,所以我才会想到,所谓教育技术与其研究教育的数字化,不如研究教育的数据化来得实在,来的有意义。长期以来,我们并不了解教育对一个人的影响具体会如何表现,我们有的只是一个轮廓,我们也并不确定一个教师的行为对学生具体产生了哪些影响。所以,人们对教育一直有一个深深的质疑,它是不是科学的?大数据概念至少提出了关注“是什么”比“为什么”要有实际意义得多。而我们的教育恰好需要把注意力从“为什么”转移到“是什么”上面来,只有如此,才能把教育从为什么发展成“可能成为什么”上来,这会是一次思想上的革命。而对于现在地位岌岌可危的教育技术来说,把研究的重点从数字化转移到数据化上面,这才是它的出路。
如何将数据融入教学,教育者首先通过标准化全科教学处方,实现了教师授课模板和教学内容的标准化,保证每个教学过程和内容是可控的,然后结合每天的教学内容,处理好面对的数据,处理好数据,自然也就处理好了课堂的反馈,最终形成了既注重教学体验又以教学结果为导向的教学体系。
与此同时,不仅要注重课上的学生资源,在课后还要对这些资源进行跟踪处理。这与过去的教育教学显然是不同的,面对大数据时代的`到来,教学有所改变是必然的。所以,无论环境怎么变换,数据如何复杂,我们都不能不去改变自己的教学去迎合将来的这个大数据时代。
3月11日下午两节课后,我校全体教师和受邀而来的金南学区各友好学校的领导及教师汇聚于多媒体教室,共同分享、交流《大数据》读后感。
老师们从:何谓大数据;立足国情对大数据进行探讨;大数据在教育教学中的主要应用等几个方面畅谈了自己的感悟。
张萌老师说:大数据体量庞大、结构复杂、是产生巨大价值的数据集合。大数据这种方法在中国的国情下需要以更加科学、合适的方式进行实践,不可生搬硬套。
董译雯老师说:在你我感叹《大数据》里深植于美国民众血液中的自由、民主、严谨的价值观的同时,可否想过中国教育体制下的孩子们身上还残留多少独立与自我意识?作为典型的八零后,我们这一代人身上最缺失的便是独立思考能力。但愿,我的学生哪怕是因为我所做的一点点努力而开始思考“我”这个字的含义,足矣!
张红杰老师说:很感谢校长给我们推荐了《大数据》这本书。在教学工作中,应该有大数据意识,创新意识。学习一些专业的教学统计法、数据分析法,从中发现一些教育现象,并采取相应的策略。让我们的教育教学工作少一些随意和盲目,多一份严谨与科学。
白媛媛老师通过文中的三个事例,结合教学实际,谈了自己教学中对数据使用的价值;结合自己的工作,谈了如何实现工作的最高境界。
交流活动尾声,身为阅读《大数据》的倡议者、发起者、以及忠实的读者韩校长幽默风趣的同大家分享了他读后的感悟:我们心中要装着学校,因为我们个人的命运依赖群体的命运;工作要追求精细化,不能做胡适书中的“差不多”先生;尊重数据,拥有数据意识,建立数据团队!
此次活动从寒假期间倡导读《大数据》一书,到开学伊始的分组沙龙,再到今日的阅读共享,现已圆满告一段落。相信此次活动定会增强我校全体教师的数据意识,掌握大数据,运用大智慧助推我校的教育教学上一个新的台阶!
⑧ 什么是大数据时代
什么是大数据时代:
利用相关算法对海量数据的存储、处理与分析,从海量数据中发现价值,服务于生产和生活。
大数据无处不在,社会各行各业都可以找到大数据的印记,在金融,餐饮,电信,体育,娱乐等领域都可以感受到大数据对各行各业的影响
大数据的特点:
1、更多,更乱,但内部有关系可循。
示例:
大约20年前,亚马逊刚成立时,杰夫·贝索斯让50个书评员来为他卖书,他意识到不仅仅可以请人来写书评,还可以用数据技术来提供图书推荐。起初他使用的是小数据,不是大数据,把客户进行分类,比如说有人对中国旅游或者是对园艺感兴趣,系统会自动提供推荐。他的同事告诉他,刚刚开始使用这个数据推荐时,使用体验并不好;在进一步分析后,亚马逊决定不对人进行分类,而是对用户的需求分类。这个做法做法非常成功,以至于到今天,推荐系统为亚马逊带去30%的销售收入。
这就是数据收集和再处理。亚马逊有交易数据,每买一本书就是一个交易,然后对这个数据进行分析。但今天我们已不再满足于交易数据了,转而收集起沟通数据。你看了某一个书评、某一个交流会给商家更多的信息和细节。
2、数据可以被重复使用(数据的产生和收集本身并没有直接产生服务,最具价值的部分在于:当这些数据在收集以后,会被用于不同的目的,数据被重新再次使用)
示例:
比方说这家公司实时车辆交通数据采集商Inrix,该公司目前有1亿个手机端用户。Inrix可以帮助你开车,避开堵车,为司机呈现路的热量图,红的就表面堵车。如果只提供数据,这个产品没什么特色,
但值得一提的是,Inrix并没有用交警的数据,这个软件的每位用户在使用过程中会给服务器发送实时数据,比如走的多快,走到哪里,这样每个客户都是探测器。
大数据时代的思维:
每天早上起来想一下,这么多数据我能用来干什么,这些价值在哪里可以找到,能不能找到一个别人以前都没有做过的事情。你的想法和思路,是最重要的资产。
示例:
我们可以通过大数据来确定哪些地方会有火灾。以前防火检查员只有13%的时间可以准备预测,现在他们找到火灾隐患的概率达到了70%,比以前提高了6倍。将效率提高6倍是一个巨大无比的进步,未来的公共服务业可以由此获得更多便利。
⑨ 《大数据时代》的读后感
当认真看完一本名著后,大家心中一定有很多感想,为此需要认真地写一写读后感了。你想知道读后感怎么写吗?下面是我收集整理的《大数据时代》的读后感范文(通用5篇),仅供参考,大家一起来看看吧。
对于畅销书刊、热点话题、时尚科技,始终不太感兴趣。书刊,喜欢有一定年份的。话题,钟情于务虚的观点。新奇的产品于我无缘,习惯使用成熟的科技产品。既不清高,也非冷漠,就是要与现实保持一定的距离,给自己留一点思考的空间。这一习惯最近破了例。由于工作的原因,耳濡目染,“大数据”这个新兴概念开始频繁步入我的视野。按捺不住内心的好奇,网购《大数据时代》,手不释卷,三天读完,颇有收获。此书有如下特点。
首先,作者站在理论的制高点上,条理清楚地阐述了大数据对人类的工作、生活、思维带来的革新,大数据时代的三种典型的商业模式,以及大数据时代对于个人隐私保护、公共安全提出的挑战。其次,文中的事例贴近现实生活,贴近时代,令读者既印象深刻,又感同身受。此外,作者没有使用大量的专业术语,没有假装一副专业的面孔。纵观全书,遣词造句,均通俗易懂。
作者认为大数据时代具有三个显著特点。
一、人们研究与分析某个现象时,将使用全部数据而非抽样数据。
二、在大数据时代,不能一味地追求数据的精确性,而要适应数据的多样性、丰富性、甚至要接受错误的数据。
三、了解数据之间的相关性,胜于对因果关系的探索。“是什么”比“为什么”重要。
作者指出,随着技术的发展,数据的存储与处理成本显著降低,人们现在有能力从支离破碎的、看似毫不相干的数据矿渣中抽炼出真知烁见。在大数据时代,三类公司将成为时代的宠儿。一是拥有大数据的公司与组织。如政府、银行、电信公司、全球性互联网公司(阿里巴巴、淘宝网)。二是拥有数据分析与处理技术的专业公司,如亚马逊、谷歌。三是拥有创新思维的公司,他们可能既不掌握大数据,也没有专业技术,但却擅长使用大数据,从大数据中找到自己的理想天地。
面对即将来临的大数据时代,个人将如何应对自如?这是个严肃的问题。
如今说起新媒体和互联网,必提大数据,似乎不这样说就OUT了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作——舍恩佰格的《大数据时代》。维克托·迈尔舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和IBM等全球企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的.预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,才能能与之进行一场思想上的对话。
舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。
在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:
一、更多:不是随机样本,而是全体数据。
二、更杂:不是精确性,而是混杂性。
三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。
一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?
我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。
我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。
世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出”不是因果关系,而是相关关系。“这一论断时,他在书中还说道:”在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。“由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。
大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可”量化“,大数据的定量分析有力地回答”是什么“这一问题,但仍然无法完全回答”为什么“。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。
在风险社会中信息安全问题日趋凸显。如何摆脱大数据的困境?舍恩伯格在最后一节”掌控“中试图回答,但基本上属于老生常谈。我想,或许凯文·凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:”大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考的答案,帮助是暂时的,而更好的方法和答案还在不久的未来。“谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考的.答案。
此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。
读完《大数据时代》这本书后,我意识到:我们即将或正在迎接由书面到电子的跳跃之后的又一重大变革。
这本书介绍了大数据时代来临后,接踵而至的三项变革——商业变革、管理变革和思维变革。
其实,这场变革已经打响。商业领域由于大数据时代的到来而推陈出新。前几年,一家名为Farecast的公司,让预订到更优惠的机票价格不再是梦想。公司利用航班售票的数据来预测未来机票价格的走势。现在,使用这种工具的乘客,平均每张机票可以省大约50美元,这就是大数据给人们带来的便利。
大家应该都知道2009年出现的H1N1型流感,就拿美国为例,疾控中心每周只进行一次数据统计,而病人一般都是难以忍受病痛的折磨才会去医院就诊,因此也导致了信息的滞后。然而,对于飞速传播的疾病,Google公司却能及时地作出判断,确定流感爆发的地点,这便是基于庞大的数据资源,可见大数据时代对公共卫生也产生了重大的影响!
在我看来,如果想在在大数据时代里畅游,不仅要学会分析,而且还要能够大胆地决断。
在美国,每到七、八月份时,正是台风肆虐之时,防涝用品也摆上了商品货架。沃尔玛公司注意到,每到这时,一种蛋挞的销售量较其他月份明显增加。于是,商家作了大胆的推测,出现这样的结果源于两种物品的相关性,便将这种蛋挞摆在了防涝用品的旁边。这样的举措大大增加了利润,这就是属于世界头号零售商的大数据头脑!
大数据时代的到来,可以让我们的生活更加便利。但是,如果让大数据主宰一切,也存在一定的风险。
大家应该都知道电子地图,它可以为人们指引方向。但大家应该还不知道,它会默默地积累人们的行程数据,通过智能分析可以推断出哪里是自己的家,哪里是工作单位。我们的隐私就这样被不为人知地收集着。
大数据时代的到来,让我们的生活更安全,更方便,但与此同时,我们的隐私不再是隐私,数据的收集变得无所不包、无孔不入。世界已经向大数据时代迈进了一小步,一个崭新的时代正向我们走来。让我们用知识武装大脑,做好准备,迎接新时代的到来!
首先,想谈一谈何为大数据,何为大数据时代。大数据是一种资源,也是一种工具。它提供一种新的思维方式去理解当今这个信息化世界。为何说是一种新的思维方式:在信息缺乏的时代或模拟时代,我们更倾向于精确性的思维方式,就像是”钉是钉,铆是铆”,而在这种传统的思维方式下,我们得到问题的答案只有一个。
而在大数据时代下,我们打破了这种思维方式,换句话说,我们接受结果的不确定性。简言概括之,我认为大数据是一种预测模型。在大数据时代下,我们关注的不是因果,即为什么是这样,而更关心”是什么”这种相关关系。换句话说,在这种新思维的思考方式下,我们探究问题背后的原因也是不可行的。我们所做的是利用大数据这种工具,让数据自己说话!
其次,我想谈下如何利用大数据提升我军战斗力。当然,大数据分析并不是精准的预测,精准的预测也是不存在的。大数据只能有利于我们理解现在和预测未来的可能性。
作为军人,我所关注的是如何利用好大数据的工具提升我军战斗力,打赢这场信息化战争。毫无疑问,现在我们打的不是刀对刀,枪对枪的战争,更不是模拟时代,当代乃是数字时代,打的是信息化战争!
四次战争的大胜,美军的战争形态从机械化转向信息化,而且相应的在战场取胜的时间也越来越短,这正是大数据时代下的必然结果。而我军正在转向信息化的过程中。在此战争形态的过程中,我们需要更多的计算分析师,大数据分析师,数学家等高等技术性人才来打赢这场信息化战争。这正是大数据时代下我们不得不有的基础。我军战斗力的提升迫在眉睫!
当然大数据是一把双刃剑,利用好了取胜也是得心应手,相反,利用不好会导致不可估量的损失。
毕竟,这只是一种预测模型,得不到精准的预测结果。我们更要让数据为我们所用,不要被庞大的数据库框住我们的思维。为适应时代的发展,在这个适者生存,弱肉强食的世界,大数据时代下的残酷竞争已经给我们敲响警钟,一场悄无声息的信息化战争已经打响!
去年的“云计算”炒得热火朝天的,今年的“大数据”又突袭而来。仿佛一夜间,各厂商都纷纷改旗换帜,推起“大数据”来了。于是乎,各企业的CIO也将热度纷纷转向关注“大数据”来了。有一张来自《程序员》微博的漫画很形象。我觉得这张图,很真实地反映了现实中小企业云计算,大数据的现状。
不过话又还得说回来,《大数据时代》是本好书。
当然,很多IT知名人士也大力推荐,写了好多读后感来表述对这本书的喜欢没看此书之前,对所谓大数据的概念基本上是一头雾水,虽则有了解关注过现在也比较火热的BI,觉得也差不多,可能就是更多的数据,更细致的数据分析与数据挖掘。看过此书后,感觉到之前的想法,只能算是中了一小半吧---巨量的数据,而另一前:着眼于数据关联性,而非数据精确性,或许才是大数据与现时BI的不同,不仅仅是方法,更多的时思想方法。不过坦白讲,到底是数据的关联性重佳,还是数据的精确性更好,还真的需要时间来检验一下,至少从现在的数据分析方法来论,更多的倾向于数据的精确性。
看完此书,我心中的一些问题:
1、什么是大数据?
查了查网络,是这样定义的:大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity这个好像是IBM的定义吧。
以个人的观点来看:数据海量,存储海量都是大数据的基本原型吧。
2、大数据适合什么样的企业?
诚然,大数据的前提是海量的数据,只有拥有巨量的数据资源,方能从中查找出数据的关联性,才可以让通过专业化的处理,让其为企业产生价值。针对电信运营,互联网应用这样海量用户的数据的大企业,也是在应用大数据的道路上拥有得天独厚的条件,但是针对中小企业呢?销售订单数据?若非百年老店,估计数据也是少得可怜,能用的可能只有消费者数据了吧。貌似大多数厂商,用来举例的也就是消费都购买行为分析为最多。
同样,在公共事业类的政府机构,大数据的作用也许也能很好的发挥。反而感觉在大多数中小型企业应用大数据,似乎有点大题小作。书中说:大数据是企业竞争力。诚然,数据是一个企业的核心无形资源(利用得好的话),但是否所有的数据,或都换则方式说:所有的企业都以大数据为竞争力,是否真的合适么?是否在中小企业中,会显示得小题大做呢?
3、大数据带来的影响
当一波又一波的IT技术热潮源源不断地向我们铺面而来的时候,你甚至都没有做好准备,你都要开始迎接它所给你带来的影响了。经过物联网,云计算的推波助澜下,大数据开始登场了。但它到底给我们带来了什么呢?
1)预测未来书中以Google成功预测了未来可能发生流感的案例来开篇,表明通过大数据的应用,可以为我们的生活起一个保驾护航的指向标。实质很简单,技术改变世界。
2)变革商业大数据所带来的商机,同时会衍生出一系列与大数据相关的商业机遇与商业模式,数据的潜在价值会源源不断地发挥作用可以容易想到的是未来有专门的数据收集,数据分析,数据生成的一条数据产业链产生。影响的,当然是IT公司
3)变革思维书中所说:因为有海量的数据作基础,未来,我们可能更关注数据的相关,而非精细度。对这条,本人还是持保留意见的。
⑩ 亚马逊大数据存在哪些问题
亚马逊大数据存在产品损坏,产品质量问题,退货。亚马逊通过多种工具在云端扩展其大数据应用,如数据储存、数据收集、数据处理、数据分享和数据合作。