导航:首页 > 网络数据 > 大数据在神经科学应用背景

大数据在神经科学应用背景

发布时间:2022-12-28 03:18:00

1. 大数据+人工智能的运用前景

现在已知的有交通灯调节,通过大数据知道每个时间的车流,人工智能进行计算,缩短停车时间,提高通行效率。

2. 大数据应用在哪个领域

可以应用在云计算方面。

大数据具体的应用:

1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。

2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。

3、统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。

4、麻省理工学院利用手机定位数据和交通数据建立城市规划。

5、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。

6、医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。

7、及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。

8、为成千上万的快递车辆规划实时交通路线,躲避拥堵。

9、分析所有SKU,以利润最大化为目标来定价和清理库存。

10、根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。

(2)大数据在神经科学应用背景扩展阅读:

大数据的用处:

1、与云计算的深度结合。大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。

自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。

2、科学理论的突破。随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。

参考资料:

网络--大数据

3. 大数据在哪些领域有应用前景

1、电商行业
电商行业是最早将大数据用于精准营销的行业,它可以根据消费者的习惯提前生产物料和物流管理,这样有利于美好社会的精细化生产。随着电子商务的越来越集中,大数据在行业中的数据量变得越大,并且种类非常多。在未来的发展中,大数据在电子商务中有大多的想象,其中主要包括预测趋势,消费趋势,区域消费特征,顾客消费习惯,消费者行为,消费热点和影响消费的重要因素。
2、金融行业
大数据在金融行业的使用是非常广泛的,主要使用在交易过程中。现在许多股权交易都是使用大数据算法进行的。这些算法能够越来越多地考虑社交媒体和网站新闻,并且决定接下来的几秒内是选择购买还是出售。
3、生物技术
基因技术是人类未来挑战疾病的重要武器。科学家可以利用大数据技术的应用,这样能够加速他们自己的基因和其他动物基因的研究过程,并且还能成为人类未来克服疾病的重要武器之一。技术不仅可以改良作物,还可以利用遗传技术培育人体器官,消灭细菌等。

4. 大数据与AI深度融合,进入智能社会时代

大数据与AI深度融合,进入智能社会时代
什么是人工智能
人工智能(AI)是研究、开发用于模拟、延伸和扩展人的理论、技术及应用系统的一门新技术科学。人工智能分为计算智能、感知智能、认知智能三个阶段。首先是计算智能,机器人开始像人类一样会计算,传递信息,例如神经网络、遗传算法等;其次是感知智能,感知就是包括视觉、语音、语言,机器开始看懂和听懂,做出判断,采取一些行动,例如可以听懂语音的音箱等;第三是认知智能,机器能够像人一样思考,主动采取行动,例如完全独立驾驶的无人驾驶汽车、自主行动的机器人。
什么是大数据
大数据(bigdata),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据是以数据为核心资源,将产生的数据通过采集、存储、处理、分析并应用和展示,最终实现数据的价值。
大数据与人工智能相辅相成
大数据的积累为人工智能发展提供燃料。IDC、希捷科技曾发布了《数据时代2025》白皮书。报告显示,到2025年全球数据总量将达到163ZB。这意味着,2025年数据总量将比2016全球产生的数据总量增长10倍多。其中属于数据分析的数据总量相比2016年将增加50倍,达到5.2ZB(十万亿亿字节);属于认知系统的数据总量将达到100倍之多。爆炸性增长的数据推动着新技术的萌发、壮大为深度学习的方法训练计算机视觉技术提供了丰厚的数据土壤。
大数据主要包括采集与预处理、存储与管理、分析与加工、可视化计算及数据安全等,具备数据规模不断扩大、种类繁多、产生速度快、处理能力要求高、时效性强、可靠性要求严格、价值大但密度较低等特点,为人工智能提供丰富的数据积累和训练资源。以人脸识别所用的训练图像数量为例,网络训练人脸识别系统需要2亿幅人脸画像。
数据处理技术推进运算能力提升。人工智能领域富集了海量数据,传统的数据处理技术难以满足高强度、高频次的处理需求。AI芯片的出现,大大提升了的大规模处理大数据的效率。目前,出现了GPU、NPU、FPGA和各种各样的AI-PU专用芯片。传统的双核CPU即使在训练简单的神经网络培训中,需要花几天甚至几周时间而AI芯片能提约70倍的升运算速度。
算法让大量的数据有了价值。无论是特斯拉的无人驾驶,还是谷歌的机器翻译;不管是微软的“小冰”,还是英特尔的精准医疗,都可以见到“学习”大量的“非结构化数据”的“身影”。“深度学习”“增强学习”“机器学习”等技术的发展都推动着人工智能的进步。以计算视觉为例,作为一个数据复杂的领域传统的浅层算法识别准确率并不高。自深度学习出现以后,基于寻找合适特征来让机器识别物体几乎代表了计算机视觉的全部图像识别精准度从70%+提升到95%。由此可见,人工智能的快速演进,不仅需要理论研究,还需要大量的数据作为支撑。
人工智能推进大数据应用深化。在计算力指数级增长及高价值数据的驱动下,以人工智能为核心的智能化正不断延伸其技术应用广度、拓展技术突破深度,并不断增强技术落地(商业变现)的速度,例如,在新零售领域,大数据与人工智能技术的结合,可以提升人脸识别的准确率,商家可以更好地预测每月的销售情况;在交通领域,大数据和人工智能技术的结合,基于大量的交通数据开发的智能交通流量预测、智能交通疏导等人工智能应用可以实现对整体交通网络进行智能控制;在健康领域,大数据和人工智能技术的结合,能够提供医疗影像分析、辅助诊疗、医疗机器人等更便捷、更智能的医疗服务。同时在技术层面,大数据技术已经基本成熟,并且推动人工智能技术以惊人的速度进步;产业层面,智能安防、自动驾驶、医疗影像等都在加速落地。
随着人工智能的快速应用及普及,大数据不断累积,深度学习及强化学习等算法不断优化,大数据技术将与人工智能技术更紧密地结合,具备对数据的理解、分析、发现和决策能力,从而能从数据中获取更准确、更深层次的知识,挖掘数据背后的价值,催生出新业态、新模式。

5. 如何理解互联网 与物联网云计算大数据的关系

我们在互联网进化论和互联网神经学的研究过程中,提出“互联网正在向着与人类大脑高度相似的方向进化,它将具备自己的视觉、听觉、触觉、运动神经系统,也会拥有自己的记忆神经系统、中枢神经系统、自主神经系统。另一方面,人脑至少在数万年以前就已经进化出所有的互联网功能,不断发展的互联网将帮助神经学科学家揭开大脑的秘密。科学实验将证明大脑中也经拥有Google一样的搜索引擎,Facebook一样的SNS系统,IPv4一样的地址编码系统,思科一样的路由系统。”
之前也根据这一研究结果所绘制的“互联网虚拟大脑结构图”对互联网与云计算,大数据,物联网,工业4.0(工业互联网)的关系进行了阐释。
1.物联网是互联网大脑的感觉神经系统
因为物联网重点突出了传感器感知的概念,同时它也具备网络线路传输,信息存储和处理,行业应用接口等功能。而且也往往与互联网共用服务器,网络线路和应用接口,使人与人(Human ti Human ,H2H),人与物(Human to thing,H2T)、物与物( Thing to Thing,T2T)之间的交流变成可能,最终将使人类社会、信息空间和物理世界(人机物)融为一体
2.云计算是互联网大脑的中枢神经系统
在互联网虚拟大脑的架构中,,互联网虚拟大脑的中枢神经系统是将互联网的核心硬件层,核心软件层和互联网信息层统一起来为互联网各虚拟神经系统提供支持和服务,从定义上看,云计算与互联网虚拟大脑中枢神经系统的特征非常吻合。在理想状态下,物联网的传感器和互联网的使用者通过网络线路和计算机终端与云计算进行交互,向云计算提供数据,接受云计算提供的服务。
3.大数据是互联网智慧和意识产生的基础
随着博客、社交网络、以及云计算、物联网等技术的兴起,互联网上数据信息正以前所未有的速度增长和累积。互联网用户的互动,企业和政府的信息发布,物联网传感器感应的实时信息每时每刻都在产生大量的结构化和非结构化数据,这些数据分散在整个互联网网络体系内,体量极其巨大。这些数据中蕴含了对经济,科技,教育等等领域非常宝贵的信息[52]。这就是互联网大数据兴起的根源和背景。
与此同时,深度学习为代表的机器学习算法在互联网领域的广泛使用,使得互联网大数据开始与人工智能进行更为深入的结合,这其中就包括在大数据和人工智能领域领先的世界级公司,如网络,谷歌,微软等。2011年谷歌开始将“深度学习”运用在自己的大数据处理上,互联网大数据与人工智能的结合为互联网大脑的智慧和意识产生奠定了基础。
4.工业4.0或工业互联网本质上是互联网运动神经系统的萌芽
互联网中枢神经系统也就是云计算中的软件系统控制工业企业的生产设备,家庭的家用设备,办公室的办公设备,通过智能化,3D打印,无线传感等技术使的机械设备成为互联网大脑改造世界的工具。同时这些智能制造和智能设备也源源不断向互联网大脑反馈大数据数,供互联网中枢神经系统决策使用。
5.互联网+的核心是互联网进化和扩张,反映互联网从广度、深度融合和介入现实世界的动态过程
互联网+是2015年在中国迅速升温的新互联网概念,这其中离不开国家的倡议,腾讯的大力推动,张晓峰,杜军主编的《互联网+,国家战略行动路线图》等书的深入研究。对于这个原创于本土并被广泛关注的互联网概念,我们应该给与大力支持,更因为互联网+的确深刻刻画了互联网发展形态。
我们无法用上面单独的一张图表示我们对互联网+的理解。这是因为互联网+本质上反映互联网从广度、深度侵蚀现实世界的动态过程。互联网从1969年在大学实验室里诞生,不断扩张,从美国到美洲,从亚洲,欧洲到非洲,南极洲,应用领域从科研,到生活,从娱乐到工作,从传媒到工业制造业。互联网+提出者,易观国际的于扬老师认为互联网像黑洞一样,不断把这个世界吞噬进来。其实互联网+反映了于扬老师的互联网黑洞论进一步提升,+这个符号可以看做是一张黑洞的入口或嘴。这也是为什么我们叫互联网+,而不叫+互联网。

6. 大数据时代是什么意思大数据是在什么背景下提出的

大数据时代:

最早提出大数据时代到来的是全球知名咨询公司麦肯锡, 大数据在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。

大数据提出的背景:

进入2012年,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。

它已经上过《纽约时报》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的国金证券、国泰君安、银河证券等写进了投资推荐报告。

数据正在迅速膨胀并变大,它决定着企业的未来发展,虽然很多企业可能并没有意识到数据爆炸性增长带来问题的隐患,但是随着时间的推移,人们将越来越多的意识到数据对企业的重要性。

正如《纽约时报》2012年2月的一篇专栏中所称,“大数据”时代已经降临,在商业、经济及其他领域中,决策将日益基于数据和分析而作出,而并非基于经验和直觉。

哈佛大学社会学教授加里·金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”

(6)大数据在神经科学应用背景扩展阅读

大数据影响

现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。

随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。大数据(Big data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。

大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。

在现今的社会,大数据的应用越来越彰显他的优势,它占领的领域也越来越大,电子商务、O2O、物流配送等,各种利用大数据进行发展的领域正在协助企业不断地发展新业务,创新运营模式。

有了大数据这个概念,对于消费者行为的判断,产品销售量的预测,精确的营销范围以及存货的补给已经得到全面的改善与优化。

“大数据”在互联网行业指的是这样一种现象:互联网公司在日常运营中生成、累积的用户网络行为数据。这些数据的规模是如此庞大,以至于不能用G或T来衡量。

大数据到底有多大?一组名为“互联网上一天”的数据告诉我们,一天之中,互联网产生的全部内容可以刻满1.68亿张DVD;发出的邮件有2940亿封之多(相当于美国两年的纸质信件数量)。

发出的社区帖子达200万个(相当于《时代》杂志770年的文字量);卖出的手机为37.8万台,高于全球每天出生的婴儿数量37.1万……

截止到2012年,数据量已经从TB(1024GB=1TB)级别跃升到PB(1024TB=1PB)

EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别。国际数据公司(IDC)的研究结果表明,2008年全球产生的数据量为0.49ZB,2009年的数据量为0.8ZB,2010年增长为1.2ZB,2011年的数量更是高达1.82ZB,相当于全球每人产生200GB以上的数据。

而到2012年为止,人类生产的所有印刷材料的数据量是200PB,全人类历史上说过的所有话的数据量大约是5EB。IBM的研究称,整个人类文明所获得的全部数据中,有90%是过去两年内产生的。而到了2020年,全世界所产生的数据规模将达到今天的44倍。

每一天,全世界会上传超过5亿张图片,每分钟就有20小时时长的视频被分享。然而,即使是人们每天创造的全部信息——包括语音通话、电子邮件和信息在内的各种通信,以及上传的全部图片、视频与音乐,其信息量也无法匹及每一天所创造出的关于人们自身的数字信息量。

这样的趋势会持续下去。我们现在还处于所谓“物联网”的最初级阶段,而随着技术成熟,我们的设备、交通工具和迅速发展的“可穿戴”科技将能互相连接与沟通。

科技的进步已经使创造、捕捉和管理信息的成本降至2005年的六分之一,而从2005年起,用在硬件、软件、人才及服务之上的商业投资也增长了整整50%,达到了4000亿美元。

大数据的精髓

大数据带给我们的三个颠覆性观念转变:是全部数据,而不是随机采样;是大体方向,而不是精确制导;是相关关系,而不是因果关系。

A.不是随机样本,而是全体数据:在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样(随机采样,以前我们通常把这看成是理所应当的限制,但高性能的数字技术让我们意识到,这其实是一种人为限制);

B.不是精确性,而是混杂性:研究数据如此之多,以至于我们不再热衷于追求精确度;之前需要分析的数据很少,所以我们必须尽可能精确地量化我们的记录,随着规模的扩大,对精确度的痴迷将减弱;拥有了大数据,我们不再需要对一个现象刨根问底,只要掌握了大体的发展方向即可。

适当忽略微观层面上的精确度,会让我们在宏观层面拥有更好的洞察力;

C.不是因果关系,而是相关关系:我们不再热衷于找因果关系,寻找因果关系是人类长久以来的习惯,在大数据时代,我们无须再紧盯事物之间的因果关系,而应该寻找事物之间的相关关系;相关关系也许不能准确地告诉我们某件事情为何会发生,但是它会提醒我们这件事情正在发生。

7. 大数据能为社会心理学带来什么

大数据能为社会心理学带来什么

社会心理学是以科学的方法研究人们的思想、情感和行为如何受到他人影响的一门学科,它以社会现象为研究导向,旨在探寻个体和群体社会心理现象的发生、发展及其规律,深刻了解社会群体行为背后的动机与目的。自20世纪40年代信息科技革命以来,社会心理学在研究方法上经历了多次变革。第一次变革发轫于20世纪70年代前后,从那时起,心理学家开始运用计算机实施具体的心理实验。第二次变革发生于网络技术突飞猛进的20世纪90年代,其代表性事件是基于网络的心理学问卷诞生、虚拟的网络心理学实验室成立、关于网络的心理学实验研究成果在《科学》上发表。大数据时代的到来则使社会心理学迎来了第三次变革,以瞬时生产并存贮的海量网络数据为支撑的大数据样本,正逐渐成为研究者观察和预测人类个体和群体心理行为特征与规律的宝贵资源。可以预见,大数据将为社会心理学的发展带来变革与挑战。

大数据给社会心理学带来研究方法上的变革。以往的社会心理学通常基于问卷、数据统计、抽样调查和实验室研究分析心理数据,而在大数据时代,真实、准确、及时的大数据样本将为社会心理学研究方法的变革带来崭新机遇。随着研究的日益深入,也许我们能够发现,以往所从事的研究可能只是冰山一角,其潜在的内容需要通过大数据逐一揭示。借助大数据,社会心理学能够在很大程度上摆脱对实体实验室的依赖,最大限度、最为高效地扩充潜在的研究对象,使社会心理学的研究不再只局限于实验室小样本或问卷调查采集的随机样本,从而面向尽可能全面的数据、趋近于总体的样本,这就使社会心理学的研究基础发生了翻天覆地的变化。与此同时,大数据还能够为社会心理学的研究提供更为多样化、异质化的样本,并使研究者摆脱时间、空间的限制,尽可能避免社会期许效应,最大程度规避研究对象在测试过程中受到的各种复杂、无关干扰。在我国,已有不少学者投身大数据的洪流,利用新的研究方法开展社会心理学研究。例如,清华大学彭凯平教授建立了“行为与大数据研究实验室”、中国科学院心理学研究所蔡华俭教授创建了“云端心理实验室”、朱廷劭教授基于大数据开发了“国人心理地图”,这些有价值的尝试都将带动中国社会心理学朝向大数据时代迈进。

大数据拓宽和加深了社会心理学研究的广度和深度。大数据时代,一切事物都被数据化:情绪变成了数据、思维变成了数据、行为模式变成了数据、认知变成了数据、沟通变成了数据、关系变成了数据……受此影响,社会心理学的研究视角和研究领域不断更新和扩展,很多传统的社会心理学问题,如社会心态、个体行为偏好、集群行为、社会态度与公众情绪、动态人际互动与人际关系、社会认知、主观幸福感等,都可能借助大数据得到更为准确的、可视化的测量和呈现。例如,大数据网络实验室可以通过记录用户的网络使用情况提取用户的网络行为特征,分析用户的心理属性和网络行为的关联模式;大数据心理健康系统可以为犯罪矫正人员、精神病患者、特殊心理儿童等建立心理健康档案;借助大数据检测和评估社会心态,能够获取大众的社会心理态势,及时发现社会不稳定因素和风险,为社会治理提供科学、客观的研究报告和应对方案等。

大数据宣告社会心理学预测时代的到来。社会心理学有四项基本功能,即描述、阐释、预测和控制,传统社会心理学多关注描述和阐释两项功能,对于预测和控制则显得有些捉襟见肘。大数据时代,这种状况将获得很大改观。由于大数据时代的社会心理学研究不再过多依赖随机采样,而是通过处理和分析相关数据获取结论,这有助于预测能力的提升。例如,有关心理健康的预测,可以利用被试的网络痕迹代替通过问卷收集的答案,并且用机器学习的方法建立基于网络行为的心理健康预测模型,通过模型计算得出被试的心理健康状态评分;关于幸福感的预测可以对社会公众进行幸福感知的预测;关于社会心态、社会风险判断、群体情绪和集群行为、经济发展信心和政府信任的预测,可以预知和评估国民的社会态度,并根据某类群体社会态度的时间性变化研判社会舆情、引导社会舆论等。2010年美国印第安纳大学的约翰博伦教授发现,Twitter网站上的平静类情绪能显著预测未来2至6天美国道琼斯工业平均指数的结果。我国南开大学乐国安教授团队基于微博与股票的大数据研究发现,微博网民情绪的起伏不仅与中国社会发生的重要事件存在明显对应关系,还在一定程度上能够预测我国证券综合指数及其每天交易量的变化。这表明,大数据的背后是人的心理表现,大数据带来的巨大变革必将使社会心理学在预测与控制方面大展身手。

大数据可能给社会心理学研究带来的风险。随着计算科学、数据挖掘等信息分析技术的迅速发展,高效处理和分析海量数据正在成为可能,在此背景下,社会心理学研究者在研究过程中利用大数据、树立大数据思维显得极为重要。但也要认识到,大数据也有可能会给社会心理学研究带来风险。风险之一在于网络用户隐私权和安全感风险。以Facebook为例,其瞬时可以生成详尽的用户心理数据,如包括种族、性格、智商、幸福感、政治观点、宗教信仰等在内的人口特征资料,一旦掌握了这些数据,便可以自动建立起模型。这提示我们,网络数据的使用应注意透明度是否合理,以及合理界定网络控制权的外延和边界。风险之二是研究方法问题。社会心理学面向的是个人、群体和社会,但大数据所带来的研究方法的改变却使得社会心理学研究者可能更多地关注数据,这或许会使某些研究者误入“数据万能论”的误区。事实上,大数据背后所分析的是每个鲜活的个体,是每个个体的心理与行为,他们是庞大数据神经元的突触。大数据的研究方法并不能完全取代以往的研究方法,大数据的网络实验室也不能完全取代实体实验室,只有关注“人”,只有坚持研究方法上的兼容并包,社会心理学才能在大数据时代获得长足发展。

以上是小编为大家分享的关于大数据能为社会心理学带来什么的相关内容,更多信息可以关注环球青藤分享更多干货

8. 对大数据的理解与思考

对大数据的理解与思考
首先,大数据的到来,对人们的观念将带来深远的影响。
我们以前习惯认为:找到现象背后的原因,比清楚现象是什么更重要。通过“塔吉特怀孕预测”的例子可以看到,通过关联分析、聚类分析等数据挖掘方法,大家很容易找到事物之间的关系。但是,这些大数据分析结果,并不会直接告诉我们,事物之间为什么存在这些关系。在不清楚为什么存在这些关系之前,又的确看到了这些关系带来了价值;所以,在大数据应用领域就需要改变以前的思考方。即:先找到“是什么”再去找“为什么”;清楚是什么,与搞清楚为什么同等重要。
手工统计时代,出于收集全部数据非常困难或代价巨大的原因,很多数据分析都是采用抽样数据;但是,现在不同了,随着信息技术的发展,现在很多领域都能够方便的收集到全量数据。诸如无纸化办公的兴起、信息系统的使用、电子商务的发展等等,都为收集全量数据提供了便捷的条件。那么,这时候数据的“样本”=“全体数据”。这相对以前来说,也是革命性的影响。
在抽样分析时代,个别样本的质量甚至决定结果的质量。在大数据时代,这也变了,可以允许个别数据的不精确,甚至错误。举个简单例子来说明这个道理,比如在温室大棚里放一只温度计,当这只温度计有问题时,整个温度都是不准确的。若在大棚里均匀分布十几只温度计,其中一只有问题,对温室大棚温度的统计结果无碍大事,基本可以忽略其影响。
其次,大数据应用,影响商业变革和社会进步。
大数据应用正改变着企业的业务发展方式。比如:京东、天猫通过对交易数据的“二次利用”,寻找目标客户、定向推荐商品。也正是这些数据的二次利用给他们提供了大量价值,促进了这些企业的发展,推动着他们在营销、供应链与客户服务等领域的管理变革。同时,交易数据并不因为二次利用,而降低其价值;这也是,大数据应用与传统资源使用不同的地方。
数据的“混搭”分析,推动着商业发展和社会的进步。比如历史天气信息与航班误点信息,这两个不同领域的信息一块儿分析,便可以推算未来几天航班的误点率。再比如,通过神经中枢肿瘤患病率和手机使用时间长短之间的大数据关联分析,来研究神经中枢肿瘤患病率是否与手机使用时间长短有关系等等。
大数据的应用,也促生了很多商业机会。随着大数据时代的到来,形成了很多大数据拥有公司,以及大数据技术公司;数据与技术的结合变促生了很多大数据应用,因此带来了很多商业机会。例如,现在很多商业银行对自己大量客户的交易信息分析,规划新的理财产品,与其他商家合作,联合搞定向促销等等。
再次,大数据时代不再有个人隐私,将形成新的信息安全机制。
现在还经常听到诸如某某窥探我的隐私之类的话语,但是,在大数据时代几乎没有个人隐私,这不是骇人听闻。因为,现在微博、搜索引擎、社交网络、电商购物,已经成了我们生活中必不可少的一部分。根据每个人在互联网上留下的痕迹,通过大数据分析,很容易分析出一个人的爱好、习惯、性格、癖好等等。所以,大家都被“第三只眼”实时监控着,在大数据时代,几乎没有个人隐私!
没有个人隐私,是否就代表每个人可以随便传播别人隐私了呢?答案当然是否定的。因为传播别人隐私是不道德的,甚至是违法的。所以,现在新的信息安全规则正在重新定位,其中一个基调是:让数据使用者承担责任,不能滥用别人的隐私;我个人感觉这也比较合理。
总结
大数据只是“新概念”,并不是“新事物”。过去数据就存在,只是我们没有收集这些数据。但是,现在收集了这些数据,这个世界变得不一样了;它更新了人们过去对数据应用的认识,加快了商业和社会发展的新陈代谢,从中也让大家也看到了很多机会。大数据时代,已经到来。极目远眺,也看不到尽头。

9. 大数据分析在疾病与健康研究方面的应用

大数据分析在疾病与健康研究方面的应用

大数据分析技术将在以上方面发挥着特殊的作用。

一、疾病与健康研究

在疾病与健康研究方面,我们可将其分为三个子方面:健康研究、亚健康研究和疾病研究。

1、健康研究

中国是地域辽阔的多民族国家,不同地区不同种群的人的基因和健康指标有所不同,同一地区同一种群的人在不同的性别和年龄上健康标准也有差异。深入研究和分析上述人群的健康规律,对卫生保健、健康促进、疾病预防和治疗有着重大的指导意义。例如:
1.1 对体检数据分析和挖掘,得出不同地区、不同人群的健康差异,以确定精确的不同人群的健康标准,针对不同人群制定适宜的防病,治病方法以及预后标准,并量身打造个性化,地区化的健康评估模型。

1.2 在制定不同地区不同人群的参考值时,可进一步分析健康指标在不同性别、年龄和季节的差别,以及权重比,从而完善适合于国人全面的系统化的更科学的健康参考值。

1.3 人体存在的内在平衡,使得各个可观察数据间有其特有的规律,基于经验只能发现简单的规律如钙、磷常数等,使应用数据挖掘等大数据分析技术可以主动发现复杂的系统性的人体医学规律,大幅提升防病,治病以及预后推测的技术水平,并且也对亚健康有个更科学的判断依据,以及了解健康到亚健康的逐渐失衡的过程。

1.4 对孕妇在孕产期、产后及新生儿的健康数据进行深入分析,研究孕产妇和新生儿的健康规律,开发对孕产妇和新生儿的健康评价和因素的评估模型,给出更科学的孕产妇和新生儿保健的指导。

1.5 对儿童成长的体检数据分析和挖掘,研究儿童的健康规律,开发对儿童成长的评价和因素的评估模型,分别适应中国辽阔的地域和众多的人群,给出更科学的儿童成长发育指导。

1.6 对老年人的健康数据分析和研究,研究老年人的健康特点,开发对老年人健康的评价和因素的评估模型,给出更科学的老年人养生的指导。

1.7 对健康人的精神和心理数据进行深入分析,制定健康人的精神和心理参考标准,开发对健康精神和心理的评价和影响因素的评估模型,给出更科学的精神和心理卫生方面的保健指导。

2、亚健康研究

世界卫生组织将机体无器质性病变,但是有一些功能改变的状态称为“第三状态”,也称为“亚健康状态”,主要包括:功能性改变,而不是器质性病变;体征改变,但现有医学技术不能发现病理改变;生命质量差,长期处于低健康水平;慢性疾病伴随的病变部位之外的不健康体征。

对亚健康进行深入分析与研究对保持健康状态,预防和纠正亚健康状态以及对疾病的预防和治疗都有十分重要的意义。例如:

2.1 研究亚健康与疾病间的相互关系。研究各种可观察指标(体检数据)在亚健康中的权重,以及在不同地区、人群中的分布。应用时间序列,线性/非线性回归研究亚健康观察指标之间的关联性。通过亚健康体检数据挖掘,分析导致疾病的影响因素,建立评估模型来预测危险度,并进一步建立疾病的预测模型。

2.2 研究亚健康与健康间的相互关系。通过对体检人群的地区、职业、年龄等因素的分析,研究最新的健康和亚健康的人群分布。不同的人群地区环境不同,生活习惯不同,加入亚健康医学指标以外的相关外部数据(如职业、饮食、习惯、性格、爱好等)后,可发现综合因素对亚健康的影响,以及这些因素的各自权重,及相关关系,从而探究出亚健康的原因,对预防和治疗亚健康起着指导作用。

2.3 研究亚健康治疗和预后的研究。通过对亚健康治疗和预后的数据分析,评价治疗效果,评估最佳治疗方案,进一步开展对专科亚健康治疗和预后的研究,同时研究其与疾病的关系。

2.4 对精神和心理亚健康的研究。如对常见的精神亚健康状态:如神经衰弱、抑郁、焦虑和强迫等症状,进行数据归纳整理、分析挖掘,从而导出精神和心理亚健康的新知识发现,探究出精神疾病的原因,对预防和治疗精神疾病起着指导作用。

2.5 将住院和社区健康管理数据相结合,进行因素权重分析和多因素的特性抽取,最后形成模型指导治疗。最理想的情况是个体化评估模型,为每个病人建立专用预测模型。

3、疾病研究

中国面临的严重危害人民健康的疾病包括:

传染性疾病,如结核病、艾滋病、SARS、禽流感、甲型H1N1流感等;

慢性非传染性疾病,如恶性肿瘤、脑血管病、心脏病、糖尿病等;

精神和心理疾病;

小儿出生缺陷。

对患有各种疾病的病人的医学数据及相关数据的研究分析,对各种疾病的预防和治疗都有十分重要的价值。例如:

3.1 对传染性疾病,如结核病、艾滋病、SARS、禽流感、甲型H1N1流感等疾病的研究。应用数据挖掘技术对传染性疾病的数据进行分析,找出传染性疾病的发病规律,揭示传染性疾病的病因,进一步摸索出传染性疾病的变异规律,建立传染性疾病的预测模型。

3.2 对慢性非传染性疾病,如恶性肿瘤、脑血管病、心脏病、糖尿病等疾病的研究。应用数据仓库技术和数据挖掘技术对慢性常见病的数据进行分析,找出慢性常见病的发病规律,探索慢性常见病的病因,进一步摸索出慢性常见病的并发症规律,科学评估各种治疗方案的疗效,建立慢性常见病的预测模型。

3.3 对精神和心理疾病的研究。应用数据仓库技术、数据挖掘技术和数理统计技术对精神和心理疾病的数据进行分析,从广泛的多变量集中找出影响精神和心理疾病的主要因素,在遗传学、后天影响和病理学等多方面探索精神和心理疾病的病因,科学评估各种治疗方案的疗效,建立精神和心理疾病的预测模型。

3.4 对小儿出生缺陷的研究。应用大数据分析技术对儿童出生缺陷的数据进行分析,从广泛的大变量集中找出影响儿童出生缺陷的主要因素,在环境、遗传学、病理学等多方面探索儿童出生缺陷的病因,建立儿童出生缺陷的预测模型。

3.5 针对门诊和住院病人数据在线分析统计学差异,寻找阳性案例,为研究提供素材,并为科研的预实验提供思路和准备。对住院数据进行多维度分析和挖掘,横向达到单病种的水平,纵向包括所有可观测数据,所收集来的知识有很大可能会启发医学专家有新发现。

3.6不同 治疗手段和治疗效果的在线分析。结合收集来的大量资料全面分析,尽量提前全面的了解治疗的临床效果。

3.7 药品治疗效果在线分析,治疗效果、副作用、对其他疾病的效果评估。结合收集来的大量资料全面分析,尽量提前全面的了解新药和老药。目前的药品不良反应主要靠医生的通报,对医生的职业素养和敏感有很大的依赖,而使用数据挖掘及数据库中的知识发现,可以极大限度地改进这项工作。

二、环境与健康研究

环境因素对健康造成的损害较其他健康损害复杂,是微量、慢性、长期和不可逆转的。环境健康影响与公众利益息息相关,环境健康损害如得不到妥善处理还将转化为社会、经济问题。环境与公共健康研究以人类生态系统可持续发展研究为基础,关怀人类现在和未来的健康与安全,从环境研究途径关注社会、经济活动对人类生理和心理的健康影响,探索环境变迁对人民健康造成危害的预防和治理措施。

应用大数据分析技术对环境健康的研究,主要包括发现案例、发病机理和临床治疗研究,预防和治理各类环境流行病在污染源以及污染途径控制的研究等。例如:
1. 应用大数据分析技术研究环境因素对健康的影响,实行 一体化的环境和健康监测,并在全国实现数据共享。

2. 应用大数据分析技术研究环境污染对儿童的影响,以解决环境对儿童所造成的不健康和疾病迅速增长的问题,从而给予儿童特殊注意的环境和健康指导。

3. 应用大数据分析技术开展职业病和职业多发病的预防预测。对于各种职业的发病分布和严重程度,以及对职业病的深入分析。不仅包括传统意义的职业病,也包括不同职业的不同的疾病分布和在病因中的权重。另外,还可以分析不同职业的暴露特点进而对病因进行研究。

4. 应用大数据分析技术开展对空气污染显著提高城市人群呼吸道和过敏性疾病的发生 率的研究。

5. 应用大数据分析技术开展噪声污染损害儿童的听力和干扰他们的学习能力的研究。

6. 应用大数据分析技术开展快餐业的发展使肥胖病发病率不断增长的研究,尤其是不合理的营养对儿童健康的影响。

7. 应用大数据分析技术开展对转基因生物技术的应用对自然界生物和人类基因的潜在影响的研究。

三、医药生物技术与健康

生物技术涵盖生命科学的所有领域,医药生物技术是生物技术的重要组成部分。当今人类面临的人口、食物、健康、环境和资源问题,无不与之紧密相关。医药生物技术最鲜明的特点是大量新思想、新技术、新材料、新方法和新产品引入医学研究和医疗保健之中,如全新的医学成像技术、基因工程技术、微电子技术、干细胞工程技术、组织工程技术、纳米技术、生物芯片技术、克隆技术、酶工程技术、细胞工程技术、发酵工程技术、蛋白质工程技术、生物医学工程技术、基因组与蛋白质组技术、生物信息技术和中医药技术等及其产品,将大大提高疾病预防、诊断、治疗和药物设计研制水平,以及对突发事件(如传染病和生物恐怖等)的检测、预防与治疗水平。

以大数据分析技术为核心的生物信息技术在由众多新技术构成的医药生物技术中发挥有独特的作用。例如:

1. 利用生物信息技术进行生物信息的存储与获取。

2. 利用生物信息技术开展基因的序列对比、测序和拼接。

3. 利用生物信息技术进开展基因预测。

4. 利用生物信息技术进行生物进化与系统发育分析。

5. 利用生物信息技术进行蛋白质结构预测和RAN结构预测。

6. 利用生物信息技术进行分子设计和药物设计。

7. 利用生物信息技术进行肿瘤分类及遗传学分析。

8. 利用生物信息技术开展在生物分子层面对精神病的研究及遗传学分析。

9. 利用生物信息技术开展在生物分子层面对如H1N1等传染病的研究。

四、卫生宏观决策支持

卫生宏观决策支持系统是以数据仓库为数据中心、以数据挖掘为技术核心、以商务智能为展现工具的综合卫生信息平台。它可以建立在各级别卫生系统上,如医院、地区卫生系统、全国卫生系统,为各级卫生部门提供智能决策系统,深入了解卫生系统的历史和现在,把握卫生系统业务发展的未来,评估卫生系统内部各部门的业务效绩,帮助各级决策者提供最佳实施方案,给决策者一双慧眼,清晰认知系统内各方面变化趋势和业务得失,使对系统各部门的评价、考核、奖励更加科学、公正、客观,使系统内各级关系更加和谐,积极发挥各部门的潜能,提高系统的整体业务水平和经济效益。使用商务智能辅助决策,可以提供各种有价值的信息,各种事件的关联,以及不同于微观的角度分析各种卫生信息,如预防接种基本数据,传染病报告等等。

以上是小编为大家分享的关于 大数据分析在疾病与健康研究方面的应用的相关内容,更多信息可以关注环球青藤分享更多干货

阅读全文

与大数据在神经科学应用背景相关的资料

热点内容
64位win7下部分32位程序不能运行 浏览:206
dnf90版本剑魂钝器流 浏览:649
陌秀直播苹果怎么下载ipad 浏览:732
简述网络直接市场调查方式有哪些 浏览:683
怎么连接移动网络设置 浏览:781
电脑网卡怎么连接网络连接不上网吗 浏览:838
刷子公司网站怎么做 浏览:272
86版本艾尔文测试 浏览:714
深宫曲文件夹是哪个 浏览:618
苹果u盘修复工具哪个好用 浏览:124
微信动态表情包搞笑 浏览:436
可以去哪里找编程老师问问题 浏览:608
win10lol全屏 浏览:25
qq图片动态动漫少女 浏览:122
sai绘图教程视频 浏览:519
如何分析加载减速法数据 浏览:672
手机怎么免费转换pdf文件格式 浏览:668
在哪个网站可以驾照年检 浏览:89
iphone可以播放ape吗 浏览:991
matlabp文件能破解吗 浏览:817

友情链接