导航:首页 > 网络数据 > 大数据知识管理

大数据知识管理

发布时间:2022-12-28 02:06:13

『壹』 学大数据需要什么基础知识和能力

大数据的发展历程总体上可以划分为三个重要阶段,萌芽期、成熟期和大规模应用期,20世纪90年至21世纪初,为萌芽期,随着,一批商业智能工具和知识管理技术的开始和应用,度过了数据萌芽。

21世纪前十年则为成熟期,主要标志为,大数据解决方案逐渐走向成熟,形成了并行计算与分布式系统两大核心技,谷歌的GFS和MapRece等大数据技术受到追捧,Hadoop平台开始大行期道,2010年以后,为大规模应用期,标志为,数据应用渗透各行各业,数据驱动决策,信息社会智能化程度快速提高。

点击链接加入群聊【大数据学习交流群】:互联网科技发展蓬勃兴起,人工智能时代来临,抓住下一个风口。为帮助那些往想互联网方向转行想学习,却因为时间不够,资源不足而放弃的人。我自己整理的一份最新的大数据进阶资料和高级开发教程, 欢迎进阶中和进想深入大数据的小伙伴加入。

数据时代的到来,也推动了数据行业的发展,包括企业使用数据获取价值,促使了大量人员从事于数据的学习,学习大数据需要掌握基础知识,接下从我的角度,为大家做个简要的阐述。

学习大数据需要掌握的知识,初期了解概念,后期就要学习数据技术,主要包括:

1.大数据概念

2.大数据的影响

3.大数据的影响

4.大数据的应用

5.大数据的产业

6.大数据处理架构Hadoop

7.大数据关键技术

8.大数据的计算模式

后三个牵涉的数据技技术,就复杂一点了,可以细说一下:

1.大数据处理架构Hadoop:Hadoop的特性、Hadoop生态系统、Hadoop的安装与使用;

2.大数据关键技术技术:数据采集、数据存储与管理、数据处理与分析、数据隐私与安全;

3.大数据处理计算模式:批处理计算、流计算、图计算、查询分析计算

数据的核心技术就是获取数据价值,获取数据前提是,先要有数据,这就牵涉数据挖掘了。

一、java语言以java语言为基础掌握面向对象编程思想所涉及的知识,以及该知识在面向对象编程思想中的应用,培养学生设计程序的能力。掌握程度:精通

二、数据结构与算法掌握基于JAVA语言的底层数据结构和算法原理,并且能够自己动手写出来关于集合的各种算法和数据结构,并且了解这些数据结构处理的问题和优缺点。掌握程度:熟练。
三、数据库原理与MYSQL数据库掌握关系型数据库的原理,掌握结构化数据的特性。掌握关系型数据库的范式。通过MYSQL数据库掌握通过SQL语言与MYSQL数据库进行交互。熟练掌握各种复杂SQL语句的编写。掌握程度:熟练。
四、LINUX操作系统全面了解LINUX。详解LINUX下的管理命令、用户管理、网络配置管理等。掌握SHELL脚本编程,能够根据具体业务进行复杂SHELL脚本的编写。掌握程度:精通。
五、Hadoop技术学习Hadoop技术的两个核心:分布式文件系统HDFS和分布式计算框架MapRece。掌握MR的运行过程及相关原理,精通各种业务的MR程序编写。掌握Hadoop的核心源码及实现原理。掌握使用Hadoop进行海量数据的存储、计算与处理。掌握程度:精通。
六、分布式数据库技术:精通分布式数据库HBASE、掌握Mongodb及了解其它分布式数据库技术。精通分布式数据库原理、应用场景、HBASE数据库的设计、操作等,能结合HIVE等工具进行海量数据的存储于检索。掌握程度:精通。
七、数据仓库HIVE精通基于hadoop的数据仓库HIVE。精通HIVESQL的语法,精通使用HIVESQL进行数据操作。内部表、外部表及与传统数据库的区别,掌握HIVE的应用场景及Hive与HBase的结合使用。掌握程度:精通。
八、PYTHON语言精通PYTHON语言基础语法及面向对象。精通PYTHON语言的爬虫、WEB、算法等框架。并根据业务可以基于PYTHON语言开发完成的业务功能和系统。掌握程度:精通。
九、机器学习算法熟练掌握机器学习经典算法,掌握算法的原理,公式,算法的应用场景。熟练掌握使用机器学习算法进行相关数据的分析,保证分析结果的准确性。掌握程度:熟练。
十、Spark高级编程技术掌握Spark的运行原理与架构,熟悉Spark的各种应用场景,掌握基于SparkRDD的各种算子的使用;精通SparkStreaming针对流处理的底层原理,熟练应用SparkSql对各种数据源处理,熟练掌握Spark机器学习算法库。达到能够在掌握Spark的各种组件的基础上,能够构建出大型的离线或实时的业务项目。掌握程度:精通。
十一、真实大数据项目实战通过几个真实的大数据项目把之前学习的知识与大数据技术框架贯穿,学习真实的大数据项目从数据采集、清洗、存储、处理、分析的完整过程,掌握大数据项目开发的设计思想,数据处理技术手段,解决开发过程中遇到的问题和技术难点如何解决。

『贰』 大数据技术在灾害档案数据管理中的应用优势

1.大数据技术对实现灾害档案智能管理提供强大保障。2.大数据技术对实现灾害档案数据挖掘提供有力支持。3.大数据技术对实现灾害档案知识管理提供有效支持。4.大数据技术对实现灾害档案数据可视化提供有力支持。

『叁』 如何开展大数据时代下的电子会计档案管理工作

档案是复内部最为规范的知识,是制存在的历史依据,做好档案管理工作是一个健康发展的需要,档案管理工作是管理工作的一部分,是提高工作质量和工作效率的基础条件,是维护历史真实面貌的一项重要工作,是衡量一个管理水平的重要尺度。会博通知识管理系统提供承载档案全生命周期管理的管理体系。档案的采集与形成:对于档案的信息化采集,支持多种采集渠道以及多种采集方法。可以按照内部管理的习惯以及需要,匹配采用符合自身需要的档案管理规范,对实体档案与电子档案进行统一管理。档案的信息化存储:对于来说,如何把档案进行有序化管理,是档案管理的重点,会博通综合档案管理能有效帮助,对档案进行分门别类的有序化管理。并且,系统提供例如封面、背脊、目录、备考表等表格打印,辅助档案人员轻松地完成对纸质档案的手工处理。档案的信息化利用:在如今信息化管理时代,档案并非单单把档案封存在档案室或系统中,而是利用档案借阅、归还与发放,搜索,提醒,历史版本,水印防扩散等功能,助力日后的生产经营管理提供重复利用、历史借鉴以及促进改善与创新的重要材料。

『肆』 大数据给企业带来哪些决策

大数据对企业的作用:

1、实时准确地监控、追踪竞争对手动态,是企业获取竞争情报的利器。

2、及时获取竞争对手的公开信息以便研究同行业的发展与市场需求。

3、为企业决策部门和管理层提供便捷、多途径的企业战略决策工具。

4、大幅度地提高企业获取、利用情报的效率,节省情报信息收集、存储、挖掘的相关费用,是提高企业核心竞争力的关键。

5、提高企业整体分析研究能力、市场快速反应能力,建立起以知识管理为核心的“竞争情报数据仓库”,提高核心竞争力。大数据对现代企业管理决策的影响有哪些
在目前的企业管理过程中,也逐渐对大数据时代下的企业管理与决策模式引起了足够
的重视。结合目前的实际情况来看,企业在内外部的管理模式上涉及到的内容不断增多,
从而呈现出了非常明显的复杂性,这对于企业决策以及决定性关系的数据分析工作带来了
一定的影响。文章主要针对大数据对现代企业管理决策产生的影响进行了深入的分析,并
结合实际情况提出了一些有效的应对措施,希望能为相关人员提供合理的参考依据。
已为您找到9篇相关文档
关键词:大数据;现代企业;管理;决策;影响
如今,各国经济之间实现了有效的结合,这就造成企业在发展过程中所面临的市场竟
争压力不断的增加,对于相关的企业而言,而竞争不仅体现在了企业之间,同时还体现在
了企业的管理方面。针对这种现象,对于相关的决策人员而言,一定要对目前市场环境进
行全面的了解,从而才能保证最终所做的决策具备一定的合理性。因此,一定要对大数据
的真正含义进行全面的了解,这样才有助于企业的管理人员做出正确的管理决策,从而促
]进企业可以在未来实现更加稳定的发展。

『伍』 大数据的生命周期的九个阶段

大数据的生命周期的九个阶段
企业建立大数据的生命周期应该包括这些部分:大数据组织、评估现状、制定大数据战略、数据定义、数据收集、数据分析、数据治理、持续改进。

一、大数据的组织
没有人,一切都是妄谈。大数据生命周期的第一步应该是建立一个专门预算和独立KPI的“大数据规划、建设和运营组织”。包括高层的首席数据官,作为sponsor,然后是公司数据管理委员会或大数据执行筹划指导委员会,再往下就是大数据的项目组或大数据项目组的前身:大数据项目预研究团队或大数据项目筹备组。这个团队是今后大数据战略的制定和实施者的中坚力量。由于人数众多,建议引入RACI模型来明确所有人的角色和职责。
二、大数据的现状评估和差距分析
定战略之前,先要做现状评估,评估前的调研包括三个方面:一是对外调研:了解业界大数据有哪些最新的发展,行业顶尖企业的大数据应用水平如何?行业的平均尤其是主要竞争对手的大数据应用水准如何?二是对内客户调研。管理层、业务部门、IT部门自身、我们的最终用户,对我们的大数据业务有何期望?三是自身状况摸底,了解自己的技术、人员储备情况。最后对标,作差距分析,找出gap。
找出gap后,要给出成熟度现状评估。一般而言,一个公司的大数据应用成熟度可以划分为四个阶段:初始期(仅有概念,没有实践);探索期(已经了解基本概念,也有专人进行了探索和探讨,有了基本的大数据技术储备);发展期(已经拥有或正在建设明确的战略、团队、工具、流程,交付了初步的成果);成熟期(有了稳定且不断成熟的战略、团队、工具、流程,不断交付高质量成果)。
三、大数据的战略
有了大数据组织、知道了本公司大数据现状、差距和需求,我们就可以制定大数据的战略目标了。大数据战略的制定是整个大数据生命周期的灵魂和核心,它将成为整个组织大数据发展的指引。
大数据战略的内容,没有统一的模板,但有一些基本的要求:
1. 要简洁,又要能涵盖公司内外干系人的需求。
2. 要明确,以便清晰地告诉所有人我们的目标和愿景是什么。
3. 要现实,这个目标经过努力是能达成的。
四、大数据的定义
我认为:“数据不去定义它,你就无法采集它;无法采集它,你就无法分析它;无法分析它,你就无法衡量它;无法衡量它,你就无法控制它;无法控制它,你就无法管理它;无法管理它,你就无法利用它”。所以“在需求和战略明确之后,数据定义就是一切数据管理的前提”。
五、 数据采集
1. 大数据时代的数据源很广泛,它们可能来自于三个主要方面:现有公司内部网各应用系统产生的数据(比如办公、经营生产数据),也有来自公司外互联网的数据(比如社交网络数据)和物联网等。
2.大数据种类很多,总的来讲可以分为:传统的结构化数据,大量的非结构化数据(比如音视频等)。
3. 数据采集、挖掘工具很多。可以基于或集成hadoop的ETL平台、以交互式探索及数据挖掘为代表的数据价值发掘类工具渐成趋势。
4. 数据采集的原则:在数据源广泛、数据量巨大、采集挖掘工具众多的背景下,大数据决策者必须清楚地确定数据采集的原则:“能够采集到的数据,并不意味着值得或需要去采集它。需要采集的数据和能够采集到的数据的"交集",才是我们确定要去采集的数据。”
六、数据处理和分析
业界有很多工具能帮助企业构建一个集成的“数据处理和分析平台”。对企业大数据管理者、规划者来讲,关键是“工具要满足平台要求,平台要满足业务需求,而不是业务要去适应平台要求,平台要去适应厂商的工具要求”。那么这个集成的平台应该有怎样的能力构成呢?它应该能检索、分类、关联、推送和方便地实施元数据管理等。见下图:
七、 数据呈现
大数据管理的价值,最终要通过多种形式的数据呈现,来帮助管理层和业务部门进行商业决策。大数据的决策者需要将大数据的系统与BI(商业智能)系统和KM(知识管理)系统集成。下图就是大数据的各种呈现形式。
八、 审计、治理与控制
1.大数据的审计、治理和控制指的是大数据管理层,组建专门的治理控制团队,制定一系列策略、流程、制度和考核指标体系,来监督、检查、协调多个相关职能部门的目标,从而优化、保护和利用大数据,保障其作为一项企业战略资产真正发挥价值。
2.大数据的治理是IT治理的组成部分,大数据的审计是IT审计的组成部分,这个体系要统筹规划和实施,而不是割裂的规划和实施。
3.大数据的审计、治理与控制的核心是数据安全、数据质量和数据效率。
九、 持续改进
基于不断变化的业务需求和审计与治理中发现的大数据整个生命周期中暴露的问题,引入PDCA等方法论,去不断优化策略、方法、流程、工具,不断提升相关人员的技能,从而确保大数据战略的持续成功!

『陆』 如何做好大数据时代的档案管理工作

档案是机构内部最为规范的知识,是机构存在的历史依据,做好档案专管理工作是一个机属构健康发展的需要,档案管理工作是机构管理工作的一部分,是提高机构工作质量和工作效率的基础条件,是维护历史真实面貌的一项重要工作,是衡量一个机构管理水平的重要尺度。会博通知识管理系统提供承载档案全生命周期管理的管理体系。档案的采集与形成:对于档案的信息化采集,支持多种采集渠道以及多种采集方法。机构可以按照内部管理的习惯以及需要,匹配采用符合自身需要的档案管理规范,对实体档案与电子档案进行统一管理。档案的信息化存储:对于企业来说,如何把档案进行有序化管理,是档案管理的重点,3Hmis综合档案管理能有效帮助企业,对档案进行分门别类的有序化管理。并且,系统提供例如封面、背脊、目录、备考表等表格打印,辅助档案人员轻松地完成对纸质档案的手工处理。档案的信息化利用:在如今信息化管理时代,档案并非单单把档案封存在档案室或系统中,而是利用档案借阅、归还与发放,搜索平台,提醒,历史版本,水印防扩散等功能,助力企业日后的生产经营管理提供重复利用、历史借鉴以及促进改善与创新的重要材料。

『柒』 大数据背景下构建市场监管知识库的战略价值

大数据背景下构建市场监管知识库的战略价值_数据分析师考试

“大数据浪潮,汹涌来袭,与互联网的发明一样,这绝不仅仅是信息技术领域的革命,更是在全球范围启动透明政府、加速企业创新、引领社会变革的利器”,涂子沛在《大数据:正在到来的数据革命》一书中这样写道。面对移动互联和信息技术的不断兴起和发展,大数据已经越多越多的占据着人们的生活,就连风靡全球的NBA比赛也不例外。专业的数据分析师会在每场比赛中记录每位球员的得分多少、哪个区域得分较多等一系列数据,以此分析每位球员的命中率,为整支队伍的球队建设和战略战术助力献策,甚至可以预测每个赛季的比赛结果等等。大数据已经深入到人们日常生活的方方面面,当然对于政府部门也是同样,大数据背景下,政府机构也将构建行政执法知识体系,构建市场监管知识库,为进一步提高执政能力做出更大努力。

一、大数据引领政府市场监管走向新征程

2014年8月,深圳市市场和质量监督管理委员召开了关于大市场监管职能转变及监管方式创新的征求意见会,会上提及了《深圳市市场和质量监督管理委员会关于推进大市场监管职能转变及监管方式创新的意见(征求意见稿)》,在此意见中提出了要将“大数据”监管应用于市场监管,而这也是这一意见稿中的突出亮点之一。运用大数据进行市场监管,必将是未来市场监管发展的必经趋势。在整个市场监管体系中,搭建行政执法知识体系显得尤为重要,构建市场监管知识库成为其中不可或缺的一部分。

在市场监监管的知识库中包括数字博物馆、特色词库、业务条线、精品专区以及热搜等五个模块,其中业务条线可以细化为:竞争执法、消费维权、网络监管、商标监管、广告监管、合同监管、质量监管和食品药品监管等多个方面,逐步开展大数据监管专项研究,运用科学的数据分析方法,全面提高监管能力和效率。

二、政府构建大数据市场监管知识库的巨大战略价值

从我国政府的发展现状和未来发展方向来看,合理利用大数据是我国建设服务型政府有利的技术支持和根本保障,而积极构建市场监管知识库却是利用大数据的最好体现。构建市场监管知识库的战略价值主要体现在以下四个方面:

第一,有利于政府决策的科学化。市场监管知识库的构建,将为政府在市场监管方面提供更多的知识、案例、数据,帮助政府合理有效的利用这些资源,做出分析和判断,提出更合理更科学的决策,减少各方行政资源的浪费,极大地提升了政府的行政效率,提高市场监管的精准度,使不良企业逐渐退出市场,保障了企业经营运转的良好市场环境。

第二,有利于政府机构的精简化。利用大数据构建知识库,可以使政府机构逐渐走向扁平化,精简职能部门,使职能相近或重复的部门进行合并和删减,加快信息和知识的传递速度,减少有效数据的误用,增加数据的效用性,保证市场监管的速度和时效,更好的完成市场监管的职能,并且有效的进行职能部门的知识管理和知识传递。

第三,有利于维护消费者权益。从构建知识库的模块和业务条线来看,市场监管的涉及面逐渐扩大,几乎将损害消费者权益的方面全部纳入进来,加之大数据的收集和分析,能够切实有效的处理不合法的消费行为和事件,为消费者营造良好的消费环境和市场氛围,也为相关产业的发展和政策的制定提供可靠科学的数字依据。

第四,有利于政府创新能力的培养。利用大数据构建市场监管知识库,从一定意义上讲,就是符合信息社会的发展趋势,加快政府从传统型转向服务型和知识型的新举措,是政府行政能力创新的极大体现,是市场监管由此走向知识管理的必经之路,只有不断加强知识库的建设,完善政府在市场监管方面的知识管理,才能使我国政府的行政能力不断增强,创新能力不断增强,进而不断提升我国的竞争实力。

三、国外政府大数据的实践与战略

不仅我国政府在不断利用大数据构建知识库,在国外也早已掀起了构建大数据政府的热潮。早在2013年3月29日,奥巴马政府便公布了“大数据研发计划”(Big Data Research and Development Initiative),目的便是希望政府机构可以积极利用和挖掘大数据,不断巩固市场监管的数据基础和地位,实现政府的智能决策,为大数据的政府时代奠定基础。

此外,还有法国政府也在积极响应大数据的时代号召。2013年,法国生产振兴部部长Arnaud Montebourg、数字经济部副部长Fleur Pellerin和投资委员Louis Gallois在第二届巴黎大数据大会(le congrès Big Data)的第二天共同宣布了“法国政府为促进大数据领域的发展,将以新兴企业、软件制造商、工程师、信息系统设计师等为目标,开展一系列的投资计划”这项重大决定,目前,法国政府将投入1150万欧元用于支持7个未来投资项目,这足以证明法国政府对于大数据领域发展的高度重视,而这些决定的目的也是想通过发展大数据及其实践作用,进一步促进法国在大数据领域的发展以及大数据对政府和对民众生活的重大意义。

除了欧美发达国家的大数据政府战略之外,2013年6月,日本安倍内阁公布了新IT战略——“创建最尖端IT国家宣言”,该宣言强调了2013年~2020年,日本政府以发展开放公共数据和大数据为核心的新IT国家战略,旨在把日本建设成为一个具有“世界最高水准的广泛运用信息产业技术的社会”。由此可以看出,世界各国都已在大数据的浪潮中不断前进,奋勇向前。

四、我国政府的大数据实践案例

2013年11月15日党的十八届三中全会上正式发布了《中共中央关于全面深化改革若干重大问题的决定》,其中提到了国家治理体系和治理能力现代化。这就要求我国政府不断提高行政效率,加快转变为服务创新型政府,而这一目标的实现,离不开大数据的支持。对于大数据的的利用,我国政府在摸索的道路中也取得了一定的成就。

例如,在2013年召开的第二届工商行政管理创新发展高层研讨会上,大数据挖掘技术构建的企业发展工商指数这一创举成为了会议的焦点之一。这一指数的构建样本来源于国家工商总局的国家经济户籍库,其数据量多达5500万家的企业和个体户。由此可见,构建大数据市场监管的知识库体系,可以为大数据的后续利用提供样本和服务,进一步体现了知识库构建的重大战略价值。该指数是一个名为“企业发展和宏观经济发展关系研究”课题组进行构建的,其成员分别是国家工商总局、首经贸财税数据研究所以及著名的龙信数据公司,它将在预测宏观经济走势方面发挥着不可小视的作用。一旦具有一个先导性的指标体系,我国政府就能在经济政策和宏观调控方面做出更为科学严谨的决策,为我国的经济发展贡献力量。这一指数的提出,从一定意义上肯定我国政府在大数据利用方面的努力,也为后续其他部门政府在监管和行政中利用大数据知识库提供了借鉴和模板,希望能从已有和逐渐被挖掘的数据中提取更多的信息,产生更大的价值,实现真正的政府行政信息化。

五、结语

大数据时代已经来临,它代表着信息技术未来发展的战略走向,也将引发技术领域跨越式发展。如何利用好这一“21世纪的新石油”成了我国政府面临的新机遇也是新挑战。只有不断加快数据的收集,加强数据的分析,完善数据的利用,才能不断健全政府的市场监管职能,打造公开透明的服务型政府,成为极具竞争力的知识型政府。

以上是小编为大家分享的关于大数据背景下构建市场监管知识库的战略价值的相关内容,更多信息可以关注环球青藤分享更多干货

『捌』 协同办公系统中的大数据知多少

协同办公系统中的大数据知多少

协同办公系统中有哪些重要的数据,可以做到这么多事情呢?可以说,企业内的人事数据、财务数据、业务数据、生产数据、项目数据、调查数据等都可以在协同办公系统中生成,它们是如何生成的呢?

通过对华天动力协同办公系统用户的调研,我们发现数据来自两个方面:

一方面,数据来自协同办公系统自身的生成。

首先,协同办公系统的工作流表单中包含了大量财务、人事、业务、行政等数据,这些数据在审批完毕后就会保存在协同办公系统中,日积月累,就成为一个庞大的数据库,也是一笔宝贵的财富。

其次,协同办公系统的任务管理、人事管理、知识管理、客户管理等功能中也会产生大量的数据,当这些功能中的数据积累到一定量级后,就会形成各种有意义的统计报表,为经营管理和决策提供科学依据。

另一方面,数据来自协同办公系统外部的整合。

作为一种面向企业管理的工具,协同办公系统正成为一个数据集成和展示的平台,各种数据在这里汇总,统一提供给管理者使用。有的企业在协同办公系统中构建接口,提取第三方业务系统的数据;有的企业在协同办公系统中设置数据窗口,直接由人工录入数据。这些工作使得协同办公系统中的数据越来越多,也越来越有价值。

既然数据有了,那么问题来了,怎么利用好这些数据呢?

优秀的协同办公系统提供了强大的报表工具,可以对系统内的数据进行及时、准确的汇总和统计。

以华天动力协同办公系统为例,它集成了国内最为领先的报表工具,可以让用户轻松自定义各种类型的统计报表和展示图形,如条状图、饼状图等,对系统内的数据实现360度无死角的统计汇总。

这些统计报表设置完成后,就可以自动实时更新,并且可以直接推送给相关主管查阅。重要的`是,所有的数据都支持穿透查询,可以一直追溯到数据的源头。

华天动力协同办公系统还提供了“管理驾驶舱”的功能,在一个界面上向管理者集中展示各种统计报表和图形,这就是充分利用大数据的直观表现。

在优秀的协同办公系统身上,对数据的应用已经非常好。基于商业智能的理念,协同办公系统可以将数据以不同诉求、不同纬度、更细的粒度呈现给管理者,让管理者通过这种直观、客观、美观的方式,更智慧更理性地做出判断以及预测,从而制定合理的决策。 ;

阅读全文

与大数据知识管理相关的资料

热点内容
求一个好看的qq分组 浏览:850
intsum编程是什么意思 浏览:782
没有大数据如何贷款 浏览:29
衣服补丁是哪个文件 浏览:234
docker映射路径文件 浏览:280
多文件格式支持多级权限管控 浏览:907
什么网站能翻译中文 浏览:677
查看win10数字激活 浏览:324
车商悦怎么下载app 浏览:797
有人微信骚扰我老婆 浏览:47
dxe文件数据如何导入cad 浏览:988
vb字体标准还原代码 浏览:394
乐高机器人编程属于什么类 浏览:102
iphone4s固件怎么区分 浏览:953
win10用不了钉钉 浏览:202
xp系统硬盘安装win10系统安装教程 浏览:616
万象会员资料保存哪个文件 浏览:800
json文件的读取数据 浏览:463
js字符串中加法 浏览:685
儿童体重指数安卓 浏览:738

友情链接