❶ 分析数据的软件有哪些
1、Excel
Excel作为入门级的工具,是最基础也是最主要的数据分析工具,它可以进行各种数据的处理、统计分析和辅助决策操作,数据透视图是Excel中最重要的工具,如果不考虑性能和数据量,它可以处理绝大部分的分析工作。正所谓初级学图表,中级学函数透视表,高级学习VBA。EXCEL功能的强大只有那些正真学过它的人才能知道
2、SQL
毫不夸张地说,SQL是数据方向所有岗位的必备技能,入门比较容易,概括起来就是增删改查。SQL需要掌握的知识点主要包括数据的定义语言、数据的操纵语言以及数据的控制语言;在数据的操纵语言中,理解SQL的执行顺序和语法顺序,熟练掌握SQL中的重要函数,理解SQL中各种join的异同。总而言之,要想入行数据分析,SQL是必要技能。
3、Smartbi
Smartbi是专业的BI工具,基于统一架构实现数据采集、查询、报表、自助分析、多维分析、移动分析、仪表盘、数据挖掘以及其他辅助功能,并且具有分析报告、结合AI进行语音分析等特色功能。十多年的发展历史,国产BI软件中最全面和成熟稳定的产品。广泛应用于金融、政府、电信、企事业单位等领域。完善的在线文档和教学视频,操作简便易上手。
4、Tableau
Tableau这款软件 与 Excel 的数据透视图有异曲同工之处,都是可以直接用鼠标来选择行、列标签来生成各种不同的图形图表。但Tableau的设计、色彩及操作界面给人一种简单,清新的感觉,做出来的图比 excel 的更美观。
5、SPSS
SPSS界面操作比较简单,只要认识软件基本界面和功能,准备好数据输入进行分析,软件会就自动给你算出分析结果。但要想读透SPSS给出的分析结果,需要比较扎实的统计学知识。侧重于统计分析类模型,能解决绝大部分统计学问题。
❷ 常用的大数据分析软件有哪些
目前市场上的数据分析工具还是比较多的,国内跟国外都有,我就介绍几款主流的给楼主。版
国外:
Tableau:自身定位是权一款可视化工具,与Qlikview的定位差不多,可视化功能很强大,对计算机的硬件要求较高,部署较复杂。目前移动端只支持IOS系统。
Qlikview:最大的竞争者是Tableau,同Tableau和国内众多BI一样,是属于新一代的轻量化BI产品,体现在建模、部署和使用上。只能运行在windows系统,C/S的产品架构。采用内存动态计算,数据量小时,速度很快;数据量大时,吃内存很厉害性能偏慢。
Cognos:传统BI工具中最被广泛使用的,已被IBM收购。拥有强大的数据库平台、在数据管理、数据整合以及中间件领域专业功底深厚。偏操作型,手工建模,一旦需求变化需要 重新建模,学习要求较高。
国内:
FineBI:帆软旗下的自助性BI产品,轻量化的BI工具,部署方便,走多维分析方向。后期采用jar包升级换代,维护方便,最具性价比。
永洪BI:敏捷BI软件,产品稳定性较高。利用sql处理数据,不支持程序接口,实施交由第三方外包。
❸ 常见的数据分析软件有哪些
好的数据分析工具可以让数据分析事半功倍,更容易处理数据。分析一下市面上流行的四款大数据分析软件:
一、Excel
Excel使用人群众多是新手入门级数据分析工具,也是最基本的数据分析工具之一。Excel主要学习使用常用函数、快捷键操作、基本图表制作、数据透视表等。Excel具有多种强大的功能,可以满足大多数数据分析工作的需要。而且Excel提供了相当友好的操作界面,对于有基本统计理论的用户来说更容易上手。
二、SQL软件
SQL是一种数据库语言,它具有数据操作和数据定义功能,交互性强,能给用户带来很大方便。SQL专注于Select、聚合函数和条件查询。关联库是目前应用较广的数据库管理系统,技术较为成熟。这类数据库包括mysql.SQLServer.Oracle.Sybase.DB2等等。
SQL作为一种操作命令集,以其丰富的功能受到业界的广泛欢迎,成为提高数据库运行效率的保证。SQLServer数据库的应用可以有效提高数据请求和返回速度,有效处理复杂任务,是提高工作效率的关键。
三、Python软件
Python提供了能够简单有效地对对象进行编程的高级数据结构。Python语法和动态类型,以及解释性语言的本质,使它成为大多数平台上写脚本和快速开发应用的编程语言,并可用于可定制软件中的扩展程序语言。丰富的Python标准库提供了源代码或机器代码,适用于各种主要系统平台。Python有极其简单的解释文档,所以更容易上手。
四、BI工具
BI工具是商业智能(Busines Inteligence)分析工具的英文缩写。它是一个完整的大数据分析解决方案,可以有效地整合企业中现有的数据,快速准确地提供报表和帮助领导作出决策的数据依据,帮助企业做出明智的业务决策。BI工具是根据数据分析过程设计的。首先是数据处理,数据清理,然后是数据建模,最后是数据可视化,用图表识别问题,影响决策。
在思迈特软件Smartbi的例子中,Smartbi以工作流的形式为库表提取数据模型的语义,通过可视化工具来处理数据,使其成为具有语义一致性和完整性的数据模型;它也增强了自助式数据集建立数据模型的能力。该系统支持的数据预处理方法有:采样、分解、过滤与映射、列选择、空值处理、合并列、合并行、元数据编辑、线选择、重复值清除、排序等等。
它能通过表格填写实现数据采集和补录,并能对数据源进行预先整合和处理,通过简单的拖放产生各种可视图。同时,提供了丰富的图标组件,可实时显示相关信息,便于利益相关者对整个企业进行评估。
目前市场上的大数据分析软件很多,如何选择取决于企业自身的需求。因此,企业在购买数据分析软件之前,首先要了解企业数据分析的目的是什么。假如你是数据分析的新手,对需求了解不多,不妨多试试BI工具,BI工具在新手数据分析方面还是比较有优势的。
❹ 常见的大数据分析工具有哪些
大数据分析的前瞻性使得很多公司以及企业都开始使用大数据分析对公司的决策做出帮助,而大数据分析是去分析海量的数据,所以就不得不借助一些工具去分析大数据,。一般来说,数据分析工作中都是有很多层次的,这些层次分别是数据存储层、数据报表层、数据分析层、数据展现层。对于不同的层次是有不同的工具进行工作的。下面小编就对大数据分析工具给大家好好介绍一下。
首先我们从数据存储来讲数据分析的工具。我们在分析数据的时候首先需要存储数据,数据的存储是一个非常重要的事情,如果懂得数据库技术,并且能够操作好数据库技术,这就能够提高数据分析的效率。而数据存储的工具主要是以下的工具。
1、MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力。
2、SQL Server的最新版本,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了。
3、DB2,Oracle数据库都是大型数据库了,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台;
接着说数据报表层。一般来说,当企业存储了数据后,首先要解决报表的问题。解决报表的问题才能够正确的分析好数据库。关于数据报表所用到的数据分析工具就是以下的工具。
1、Crystal Report水晶报表,Bill报表,这都是全球最流行的报表工具,非常规范的报表设计思想,早期商业智能其实大部分人的理解就是报表系统,不借助IT技术人员就可以获取企业各种信息——报表。
2、Tableau软件,这个软件是近年来非常棒的一个软件,当然它已经不是单纯的数据报表软件了,而是更为可视化的数据分析软件,因为很多人经常用它来从数据库中进行报表和可视化分析。
第三说的是数据分析层。这个层其实有很多分析工具,当然我们最常用的就是Excel,我经常用的就是统计分析和数据挖掘工具;
1、Excel软件,首先版本越高越好用这是肯定的;当然对Excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;
2、SPSS软件:当前版本是18,名字也改成了PASW Statistics;我从3.0开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件。
最后说表现层的软件。一般来说表现层的软件都是很实用的工具。表现层的软件就是下面提到的内容。
1、PowerPoint软件:大部分人都是用PPT写报告。
2、Visio、SmartDraw软件:这些都是非常好用的流程图、营销图表、地图等,而且从这里可以得到很多零件;
3、Swiff Chart软件:制作图表的软件,生成的是Flash
❺ 大数据分析到底需要多少种工具
一、hadoop
Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。
Hadoop带有用 Java 语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。
二、HPCC
HPCC,High Performance Computing and Communications(高性能计算与通信)的缩写。1993年,由美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项目:高性能计算与 通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆 比特网络技术,扩展研究和教育机构及网络连接能力。
三、Storm
Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。Storm很简单,支持许多种编程语言,使用起来非常有趣。Storm由Twitter开源而来,其它知名的应用企业包括Groupon、淘宝、支付宝、阿里巴巴、乐元素、 Admaster等等。
Storm有许多应用领域:实时分析、在线机器学习、不停顿的计算、分布式RPC(远过程调用协议,一种通过网络从远程计算机程序上请求服务)、 ETL(Extraction-Transformation-Loading的缩写,即数据抽取、转换和加载)等等。Storm的处理速度惊人:经测 试,每个节点每秒钟可以处理100万个数据元组。Storm是可扩展、容错,很容易设置和操作。
四、Apache Drill
为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。Apache Drill 实现了 Google's Dremel。该项目将会创建出开源版本的谷歌Dremel Hadoop工具(谷歌使用该工具来为Hadoop数据分析工具的互联网应用提速)。而“Drill”将有助于Hadoop用户实现更快查询海量数据集的目的。
通过开发“Drill”Apache开源项目,组织机构将有望建立Drill所属的API接口和灵活强大的体系架构,从而帮助支持广泛的数据源、数据格式和查询语言。
五、RapidMiner
RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。
六、 Pentaho BI
Pentaho BI 平台不同于传统的BI 产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。它的出现,使得一系列的面向商务智能的独立产品如Jfree、Quartz等等,能够集成在一起,构成一项项复杂的、完整的商务智能解决方案。
Pentaho BI 平台构建于服务器,引擎和组件的基础之上。这些提供了系统的J2EE 服务器,安全,portal,工作流,规则引擎,图表,协作,内容管理,数据集成,分析和建模功能。这些组件的大部分是基于标准的,可使用其他产品替换之。
❻ 常用的大数据分析软件有哪些
数据分析软件有Excel、SAS、R、SPSS、Tableau Software。
1、Excel
为Excel微软办公套装软件的一个重要的组成部分,它可以进行各种回数据的处理、答统计分析和辅助决策操作,广泛地应用于管理、统计财经、金融等众多领域。
5、Tableau Software
Tableau Software用来快速分析、可视化并分享信息。Tableau Desktop 是基于斯坦福大学突破性技术的软件应用程序。它可以以在几分钟内生成美观的图表、坐标图、仪表盘与报告。
❼ 企业如何进行大数据分析
1、数据存储和管理
MySQL数据库:部门和Internet公司通常使用MySQL存储数据,优点是它是免费的,并且性能,稳定性和体系结构也都比较好。
SQLServer:SQLServer2005或更高版本集成了商业智能功能,可为中小型企业提供数据管理,存储,数据报告和数据分析。
DB2和Oracle数据库是大型数据库,适用于拥有大量数据资源的企业。
2、数据清理类
EsDataClean是一种在线数据清理工具,不管是规则定义还是流程管理都无需编写sql或代码,通过图形化界面进行简单配置即可,使得非技术用户也能对定义过程和定义结果一目了然。
3、数据分析挖掘
豌豆DM更适合初学者。它易于操作且功能强大。它提供了完整的可视化建模过程,从训练数据集选择,分析索引字段设置,挖掘算法,参数配置,模型训练,模型评估,比较到模型发布都可以通过零编程和可视化配置操作,可以轻松简便地完成。
4.数据可视化类
亿信ABI是具有可视化功能的代表性工具。当然,它不仅是可视化工具,而且还是集数据分析、数据挖掘和报表可视化的一站式企业级大数据分析工具。
关于企业如何进行大数据分析,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
❽ 数据分析需要掌握些什么知识
数据分析需要掌握的知识:
1、数学知识
数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。
对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。
2、分析工具
对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。
对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。
3、分析思维
比如结构化思维、思维导图、或网络脑图、麦肯锡式分析,了解一些smart、5W2H、SWOT等等那就更好了。不一定要掌握多深多全,但一定要了解一些。
4、数据库知识
大数据大数据,就是数据量很多,Excel就解决不了这么大数据量的时候,就得使用数据库。如果是关系型数据库,比如Oracle、mysql、sqlserver等等,你还得要学习使用SQL语句,筛选排序,汇总等等。非关系型数据库也得要学习,比如:Cassandra、Mongodb、CouchDB、Redis、 Riak、Membase、Neo4j 和 HBase等等,起码常用的了解一两个,比如Hbase,Mongodb,redis等。
5、开发工具及环境
比如:Linux OS、Hadoop(存储HDFS,计算Yarn)、Spark、或另外一些中间件。目前用得多的开发工具Java、python等等语言工具。
❾ SQLSERVER大数据库解决方案
在微软的大数据解决方案中,数据管理是最底层和最基础的一环。
灵活的数据管理层,可以支持所有数据类型,包括结构化、半结构化和非结构化的静态或动态数据。
在数据管理层中主要包括三款产品:SQLServer、SQLServer并行数据仓库和
Hadoop on Windows。
针对不同的数据类型,微软提供了不同的解决方案。
具体来说,针对结构化数据可以使用SQLServer和SQLServer并行数据仓库处理。
非结构化数据可以使用Windows Azure和WindowsServer上基于Hadoop的发行版本处理;而流数据可以使用SQLServerStreamInsight管理,并提供接近实时的分析。
1、SQLServer。去年发布的SQLServer2012针对大数据做了很多改进,其中最重要的就是全面支持Hadoop,这也是SQLServer2012与SQLServer2008最重要的区别之一。今年年底即将正式发布的SQLServer2014中,SQLServer进一步针对大数据加入内存数据库功能,从硬件角度加速数据的处理,也被看为是针对大数据的改进。
2、SQLServer并行数据仓库。并行数据仓库(Parallel Data Warehouse Appliance,简称PDW)是在SQLServer2008 R2中推出的新产品,目前已经成为微软主要的数据仓库产品,并将于今年发布基于SQLServer2012的新款并行数据仓库一体机。SQLServer并行数据仓库采取的是大规模并行处理(MPP)架构,与传统的单机版SQLServer存在着根本上的不同,它将多种先进的数据存储与处理技术结合为一体,是微软大数据战略的重要组成部分。
3、Hadoop on Windows。微软同时在Windows Azure平台和WindowsServer上提供Hadoop,把Hadoop的高性能、高可扩展与微软产品易用、易部署的传统优势融合到一起,形成完整的大数据解决方案。微软大数据解决方案还通过简单的部署以及与Active Directory和System Center等组件的集成,为Hadoop提供了Windows的易用性和可管理性。凭借Windows Azure上基于Hadoop的服务,微软为其大数据解决方案在云端提供了灵活性。