① 大数据在智慧交通中起了哪些作用
大数据用于智能交通的积极意义
第一,大数据的虚拟性可以解决跨越行政区域的限制。交通大数据的虚拟性,有利于其信息跨越区域管理,只要多方共同遵照相关的信息共享原则,就能在已有的行政区域下解决跨域管理问题。
第二,大数据具有信息集成优势和组合效率。大数据有助于建立综合性立体的交通信息体系,通过将不同范围、不同区域、不同领域的“数据仓库”加以综合,构建公共交通信息集成利用模式,发挥整体**通功能,这样才能发现新价值,带来新机会。例如气象、交通、保险部门的数据结合起来,可高效率地研究交通领域防灾减灾;IC卡数据结合抽样调查,能更快捷、更精确测得城市交通流分布状况。
第三,大数据的智能性能较好的配置交通资源。通过对大数据的分析处理,可以辅助交通管理制定出较好的统筹与协调解决方案。一方面减少各个交通部门运营的人力和物力,另一方面可有些提升道理交通资源的合理利用。如根据大数据结果确定多模式地面公交网络高效配置和客流组织方案,多层次地面公交主干网络绿波通行控制以及交通信号自适应控制。
第四,大数据的快速性和可预测性能提升交通预测的水平。在对各个部门的数据进行准确提炼和构建合适的交通预测模型后,可以有效模拟交通未来运行状态,验证技术方案的可行性。而在实时交通预测领域,大数据的快速信息处理能力,对于车辆碰撞、车辆换道、驾驶员行为状态检测等实时预测也有非常高的可靠性。
第五,提高交通运行效率。大数据技术能促进提高交通运营效率、道路网的通行能力、设施效率和调控交通需求分析。交通的改善所涉及工程量较大,而大数据的大体积特性有助于解决这种困境。
大数据的实时性,使处于静态闲置的数据被处理和需要利用时,即可被智能化利用,使交通运行的更加合理。大数据技术具有较高预测能力,可降低误报和漏报的概率,随时针对交通的动态性给予实时监控。因此,在驾驶者无法预知交通的拥堵可能性时,大数据亦可帮助用户预先了解。
第六,提高交通安全水平。主动安全和应急救援系统的广泛应用有效改善了交通安全状况,而大数据技术的实时性和可预测性则有助于提高交通安全系统的数据处理能力。在驾驶员自动检测方面,驾驶员疲劳视频检测、酒精检测器等车载装置将实时检测驾车者是否处于警觉状态,行为、身体与精神状态是否正常。同时,联合路边探测器检查车辆运行轨迹,大数据技术快速整合各个传感器数据,构建安全模型后综合分析车辆行驶安全性,从而可以有效降低交通事故的可能性。在应急救援方面,大数据以其快速的反应时间和综合的决策模型,为应急决策指挥提供辅助,提高应急救援能力,减少人员伤亡和财产损失。
第七,提供环境监测方式。大数据技术在减轻道路交通堵塞、降低汽车运输对环境的影响等方面有重要的作用。通过建立区域交通排放的监测及预测模型,共享交通运行与环境数据,建立交通运行与环境数据共享试验系统,大数据技术可有效分析交通对环境的影响。同时,分析历史数据,大数据技术能提供降低交通延误和减少排放的交通信号智能化控制的决策依据,建立低排放交通信号控制原型系统与车辆排放环境影响仿真系统。
② 大数据室如何应用的有什么大数据平台的推荐呢
一、医疗大数据 看病更高效
除了较早前就开始利用大数据的互联网公司,医疗行业是让大数据分析最先发扬光大的传统行业之一。医疗行业拥有大量的病例,病理报告,治愈方案,药物报告等等。如果这些数据可以被整理和应用将会极大地帮助医生和病人。我们面对的数目及种类众多的病菌、病毒,以及肿瘤细胞,其都处于不断的进化的过程中。在发现诊断疾病时,疾病的确诊和治疗方案的确定是最困难的。
在未来,借助于大数据平台我们可以收集不同病例和治疗方案,以及病人的基本特征,可以建立针对疾病特点的数据库。如果未来基因技术发展成熟,可以根据病人的基因序列特点进行分类,建立医疗行业的病人分类数据库。在医生诊断病人时可以参考病人的疾病特征、化验报告和检测报告,参考疾病数据库来快速帮助病人确诊,明确定位疾病。在制定治疗方案时,医生可以依据病人的基因特点,调取相似基因、年龄、人种、身体情况相同的有效治疗方案,制定出适合病人的治疗方案,帮助更多人及时进行治疗。同时这些数据也有利于医药行业开发出更加有效的药物和医疗器械。
医疗行业的数据应用一直在进行,但是数据没有打通,都是孤岛数据,没有办法进行大规模应用。未来需要将这些数据统一收集起来,纳入统一的大数据平台,为人类健康造福。政府和医疗行业是推动这一趋势的重要动力。
二、生物大数据 改良基因
自人类基因组计划完成以来,以美国为代表,世界主要发达国家纷纷启动了生命科学基础研究计划,如国际千人基因组计划、DNA网络全书计划、英国十万人基因组计划等。这些计划引领生物数据呈爆炸式增长,目前每年全球产生的生物数据总量已达EB级,生命科学领域正在爆发一次数据革命,生命科学某种程度上已经成为大数据科学。
我们来看看今天的准妈妈们,除了要准备尿布、奶瓶和婴儿装,她们还会把基因测试列入计划单。基因测试能让未来的父母对于他们未出生的baby的健康有更多的了解。对基因携带者筛查和胚胎植入前诊断,使一个家庭孕育小孩的过程产生了巨大改变。
当下,我们所说的生物大数据技术主要是指大数据技术在基因分析上的应用,通过大数据平台人类可以将自身和生物体基因分析的结果进行记录和存储,利用建立基于大数据技术的基因数据库。大数据技术将会加速基因技术的研究,快速帮助科学家进行模型的建立和基因组合模拟计算。基因技术是人类未来战胜疾病的重要武器,借助于大数据技术的应用,人们将会加快自身基因和其它他生物的基因的研究进程。未来利用生物基因技术来改良农作物,利用基因技术来培养人类器官,利用基因技术来消灭害虫都即将实现。
与全球蒸蒸日上的生物大数据创新发展热潮相比,中国的研发及应用才拉开帷幕。我国有四大方面非常欠缺:其一,国内现有的生物大数据分析能力虽然与欧美相差不大,但是在数据分析构架、软件系统与先进的IT技术接轨上有待提升。其二,国外在生物大数据领域的领先人才多,尽管我们也有国际顶级刊物上发表的论文和成果,总体而言,国内高水准团队还是少。其三,欧美讲求成果应用,层出不穷的分析软件可被实验室、临床、产业多方应用。其四,在生物大数据理论研究、标准制定和广泛应用上,中国都亟待全面跟进。
三、金融大数据 理财利器
金融行业的大数据面临的往往是同样的问题,但是情况可能要好点,类似企业和个人的一些信用记录现在有全国性质的统一数据库能够拿到部分数据。但是对于单个银行来说,同样是无法拿到用户在其他银行的行为记录数据的,其二银行本身在做很多信贷风险分析的时候,确实需要大量数据做相关性分析,但是很多数据来源于政府各个职能部门,包括工商税务,质量监督,检察院法院等,这些数据短期仍然是无法拿到。还有就是企业或个人本事日常产生的各种行为数据更难拿到,那么对客户的风险性评估还是得借用原来的老方法而已。
大数据在金融行业应用范围较广,典型的案例有花旗银行利用IBM沃森电脑为财富管理客户推荐产品;美国银行利用客户点击数据集为客户提供特色服务,如有竞争的信用额度;招商银行利用客户刷卡、存取款、电子银行转帐、微信评论等行为数据进行分析,每周给客户发送针对性广告信息,里面有顾客可能感兴趣的产品和优惠信息。
可见,大数据在金融行业的应用可以总结为以下五个方面:
(1)精准营销:依据客户消费习惯、地理位置、消费时间进行推荐
(2)风险管控:依据客户消费和现金流提供信用评级或融资支持,利用客户社交行为记录实施信用卡反欺诈
(3)决策支持:利用抉策树技术进抵押贷款管理,利用数据分析报告实施产业信贷风险控制
(4)效率提升:利用金融行业全局数据了解业务运营薄弱点,利用大数据技术加快内部数据处理速度
(5)产品设计:利用大数据计算技术为财富客户推荐产品,利用客户行为数据设计满足客户需求的金融产品
四、零售大数据 最懂消费者
零售行业大数据应用有两个层面,一个层面是零售行业可以了解客户消费喜好和趋势,进行商品的精准营销,降低营销成本。另一层面是依据客户购买产品,为客户提供可能购买的其它产品,扩大销售额,也属于精准营销范畴。另外零售行业可以通过大数据掌握未来消费趋势,有利于热销商品的进货管理和过季商品的处理。零售行业的数据对于产品生产厂家是非常宝贵的,零售商的数据信息将会有助于资源的有效利用,降低产能过剩,厂商依据零售商的信息按实际需求进行生产,减少不必要的生产浪费。
未来考验零售企业的不再只是零供关系的好坏,而是要看挖掘消费者需求,以及高效整合供应链满足其需求的能力,因此信息科技技术水平的高低成为获得竞争优势的关键要素。不论是国际零售巨头,还是本土零售品牌,要想顶住日渐微薄的利润率带来的压力,在这片红海中立于不败之地,就必须思考如何拥抱新科技,并为顾客们带来更好的消费体验。
想象一下这样的场景,当顾客在地铁候车时,墙上有某一零售商的巨幅数字屏幕广告,可以自由浏览产品信息,对感兴趣的或需要购买的商品用手机扫描下单,约定在晚些时候送到家中。而在顾客浏览商品并最终选购商品后,商家已经了解顾客的喜好及个人详细信息,按要求配货并送达顾客家中。未来,甚至顾客都不需要有任何购买动作,利用之前购买行为产生的大数据,当你的沐浴露剩下最后一滴时,你中意的沐浴露就已送到你的手上,而虽然顾客和商家从未谋面,但已如朋友般熟识。
五、电商大数据 精准营销法宝
电商是最早利用大数据进行精准营销的行业,除了精准营销,电商可以依据客户消费习惯来提前为客户备货,并利用便利店作为货物中转点,在客户下单15分钟内将货物送上门,提高客户体验。马云的菜鸟网络宣称的24小时完成在中国境内的送货,以及京的刘强东宣传未来京东将在15分钟完成送货上门都是基于客户消费习惯的大数据分析和预测。
电商可以利用其交易数据和现金流数据,为其生态圈内的商户提供基于现金流的小额贷款,电商业也可以将此数据提供给银行,同银行合作为中小企业提供信贷支持。由于电商的数据较为集中,数据量足够大,数据种类较多,因此未来电商数据应用将会有更多的想象空间,包括预测流行趋势,消费趋势、地域消费特点、客户消费习惯、各种消费行为的相关度、消费热点、影响消费的重要因素等。依托大数据分析,电商的消费报告将有利于品牌公司产品设计,生产企业的库存管理和计划生产,物流企业的资源配制,生产资料提供方产能安排等等,有利于精细化社会化大生产,有利于精细化社会的出现。
六、农牧大数据 量化生产
大数据在农业应用主要是指依据未来商业需求的预测来进行农牧产品生产,降低菜贱伤农的概率。同时大数据的分析将会更见精确预测未来的天气气候,帮助农牧民做好自然灾害的预防工作。大数据同时也会帮助农民依据消费者消费习惯决定来增加哪些品种的种植,减少哪些品种农作物的生产,提高单位种植面积的产值,同时有助于快速销售农产品,完成资金回流。牧民可以通过大数据分析来安排放牧范围,有效利用牧场。渔民可以利用大数据安排休渔期、定位捕鱼范围等。
由于农产品不容易保存,因此合理种植和养殖农产品对十分重要。如果没有规划好,容易产生菜贱伤农的悲剧。过去出现的猪肉过剩、卷心菜过剩、香蕉过剩的原因就是农牧业没有规划好。借助于大数据提供的消费趋势报告和消费习惯报告,政府将为农牧业生产提供合理引导,建议依据需求进行生产,避免产能过剩,造成不必要的资源和社会财富浪费。农业关乎到国计民生,科学的规划将有助于社会整体效率提升。大数据技术可以帮助政府实现农业的精细化管理,实现科学决策。在数据驱动下,结合无人机技术,农民可以采集农产品生长信息,病虫害信息。相对于过去雇佣飞机成本将大大降低,同时精度也将大大提高。
七、交通大数据 畅通出行
交通作为人类行为的重要组成和重要条件之一,对于大数据的感知也是最急迫的。近年来,我国的智能交通已实现了快速发展,许多技术手段都达到了国际领先水平。但是,问题和困境也非常突出,从各个城市的发展状况来看,智能交通的潜在价值还没有得到有效挖掘:对交通信息的感知和收集有限,对存在于各个管理系统中的海量的数据无法共享运用、有效分析,对交通态势的研判预测乏力,对公众的交通信息服务很难满足需求。这虽然有各地在建设理念、投入上的差异,但是整体上智能交通的现状是效率不高,智能化程度不够,使得很多先进技术设备发挥不了应有的作用,也造成了大量投入上的资金浪费。这其中很重要的问题是小数据时代带来的硬伤:从模拟时代带来的管理思想和技术设备只能进行一定范围的分析,而管理系统的那些关系型数据库只能刻板的分析特定的关系,对于海量数据尤其是半结构、非结构数据无能为力。
尽管现在已经基本实现了数字化,但是数字化和数据化还根本不是一回事,只是局部的提高了采集、存储和应用的效率,本质上并没有太大的改变。而大数据时代的到来必然带来破解难题的重大机遇。大数据必然要求我们改变小数据条件下一味的精确计算,而是更好的面对混杂,把握宏观态势;大数据必然要求我们不再热衷因果关系而是相关关系,使得处理海量非结构化数据成为可能,也必然促使我们努力把一切事物数据化,最终实现管理的便捷高效。
目前,交通的大数据应用主要在两个方面,一方面可以利用大数据传感器数据来了解车辆通行密度,合理进行道路规划包括单行线路规划。另一方面可以利用大活数据来实现即时信号灯调度,提高已有线路运行能力。科学的安排信号灯是一个复杂的系统工程,必须利用大数据计算平台才能计算出一个较为合理的方案。科学的信号灯安排将会提高30%左右已有道路的通行能力。在美国,政府依据某一路段的交通事故信息来增设信号灯,降低了50%以上的交通事故率。机场的航班起降依靠大数据将会提高航班管理的效率,航空公司利用大数据可以提高上座率,降低运行成本。铁路利用大数据可以有效安排客运和货运列车,提高效率、降低成本。
八、教育大数据 因材施教
随着技术的发展,信息技术已在教育领域有了越来越广泛的应用。考试、课堂、师生互动、校园设备使用、家校关系……只要技术达到的地方,各个环节都被数据包裹。
在课堂上,数据不仅可以帮助改善教育教学,在重大教育决策制定和教育改革方面,大数据更有用武之地。美国利用数据来诊断处在辍学危险期的学生、探索教育开支与学生学习成绩提升的关系、探索学生缺课与成绩的关系。举一个比较有趣的例子,教师的高考成绩和所教学生的成绩有关吗?究竟如何,不妨借助数据来看。比如美国某州公立中小学的数据分析显示,在语文成绩上,教师高考分数和学生成绩呈现显著的正相关。也就是说,教师的高考成绩与他们现在所教语文课上的学生学习成绩有很明显的关系,教师的高考成绩越好,学生的语文成绩也越好。这个关系让我们进一步探讨其背后真正的原因。其实,教师高考成绩高低某种程度上是教师的某个特点在起作用,而正是这个特点对教好学生起着至关重要的作用,教师的高考分数可以作为挑选教师的一个指标。如果有了充分的数据,便可以发掘更多的教师特征和学生成绩之间的关系,从而为挑选教师提供更好的参考。
大数据还可以帮助家长和教师甄别出孩子的学习差距和有效的学习方法。比如,美国的麦格劳-希尔教育出版集团就开发出了一种预测评估工具,帮助学生评估他们已有的知识和达标测验所需程度的差距,进而指出学生有待提高的地方。评估工具可以让教师跟踪学生学习情况,从而找到学生的学习特点和方法。有些学生适合按部就班,有些则更适合图式信息和整合信息的非线性学习。这些都可以通过大数据搜集和分析很快识别出来,从而为教育教学提供坚实的依据。
在国内尤其是北京、上海、广东等城市,大数据在教育领域就已有了非常多的应用,譬如像慕课、在线课程、翻转课堂等,其中就应用了大量的大数据工具。
毫无疑问,在不远的将来,无论是针对教育管理部门,还是校长、教师,以及学生和家长,都可以得到针对不同应用的个性化分析报告。通过大数据的分析来优化教育机制,也可以做出更科学的决策,这将带来潜在的教育革命。不久的将来个性化学习终端,将会更多的融入学习资源云平台,根据每个学生的不同兴趣爱好和特长,推送相关领域的前沿技术、资讯、资源乃至未来职业发展方向,等等,并贯穿每个人终身学习的全过程。
九、体育大数据 夺冠精灵
从《点球成金》这部电影开始,体育界的有识之士们终于找到了向往已久的道路,那就是如何利用大数据来让团队发挥最佳水平。从足球到篮球,数据似乎成为赢得比赛甚至是奖杯的金钥匙。
大数据对于体育的改变可以说是方方面面,从运动员本身来讲,可穿戴设备收集的数据可以让自己更了解身体状况。媒体评论员,通过大数据提供的数据更好的解说比赛,分析比赛。数据已经通过大数据分析转化成了洞察力,为体育竞技中的胜利增加筹码,也为身处世界各地的体育爱好者随时随地观赏比赛提供了个性化的体验。
尽管鲜有职业网球选手愿意公开承认自己利用大数据来制定比赛策划和战术,但几乎每一个球员都会在比赛前后使用大数据服务。有教练表示:“在球场上,比赛的输赢取决于比赛策略和战术,以及赛场上连续对打期间的快速反应和决策,但这些细节转瞬即逝,所以数据分析成为一场比赛最关键的部分。对于那些拥护并利用大数据进行决策的选手而言,他们毋庸置疑地将赢得足够竞争优势。”
十、环保大数据 对抗PM2.5
前年7月21日北京遭遇特大暴雨,在一天之内,平均降雨量达164毫米,也是北京市61年以来最大规模暴雨。此次暴雨因来势凶猛而给广大市民生活带来巨大影响。其实,摊上这种事儿,最主要的还是需要气象部门及时、准确地做出预警,并协同其他运营商部门,将这种预警信息第一时间下发到北京市民(包括在京旅行的人士)。也正是如此,前年的那场暴雨不仅暴露出了管理工作上的漏洞,也引起了业内人士关于一场“大数据”的探讨。
气象对社会的影响涉及到方方面面。传统上依赖气象的主要是农业、林业和水运等行业部门,而如今,气象俨然成为了二十一世纪社会发展的资源,并支持定制化服务满足各行各业用户需要。借助于大数据技术,天气预报的准确性和实效性将会大大提高,预报的及时性将会大大提升,同时对于重大自然灾害,例如龙卷风,通过大数据计算平台,人们将会更加精确地了解其运动轨迹和危害的等级,有利于帮助人们提高应对自然灾害的能力。天气预报的准确度的提升和预测周期的延长将会有利于农业生产的安排。
尤其是进入秋冬季以来,我国多个城市爆发雾霾天气,空气污染严重。随着PM2.5对于人体健康的危害日益被公众熟知,人们对于“雾霾假”的呼声也越来越高。有人调侃,重度污染天走在上班路上就是一台“人肉吸尘器”。
由此看来,依靠大数据分析北京或其他城市空气污染的形成及对策,任重道远。一是数据的来源。高耗能企业的生产规模、排放量这些数据是否层层上报,准确统计?掌握此数据的部门是否能向社会公开?北京500万辆汽车所加汽油到底有哪些成分,产生的尾气对空气污染指数的“贡献”率到底多大?二是要冲破数据挖掘分析应用的技术壁垒,当然前提就是数据公开。
在美国NOAA(国家海洋暨大气总署)其实早就在使用大数据业务。每天通过卫星、船只、飞机、浮标、传感器等收集超过35亿份观察数据。收集完毕后,NOAA会汇总大气数据,海洋数据,以及地质数据,进行直接测定,绘制出复杂的高保真预测模型,将其提供给NWS(国家气象局)做出气象预报的参考数据。目前,NOAA每年新增管理的数据量就高达30PB。由NWS生成的最终分析结果,就呈现在日常的天气预报和预警报道上。
十一、食品大数据 舌尖上的安全
民以食为天,食品安全问题直是国家的重点关注问题,关系着人们的身体健康和国家安全。近几年,毒胶囊、镉大米、瘦肉精、洋奶粉等食品安全事件不断考验着消费者的承受力,让消费者对食品安全产生了担忧。
近几年外国旅游者减少了到中国旅游,进口食品大幅度增加,这其中一个主要原因就是食品安全问题。随着科学技术和生活水平的不断提高,食品添加剂及食品品种越来越多,传统手段难以满足当前复杂的食品监管需求,从不断出现的食品安全问题来看,食品监管成了食品安全的棘手问题。此刻,通过大数据管理将海量数据聚合在一起,将离散的数据需求聚合能形成数据长尾,从而满足传统中难以实现的需求。在数据驱动下,采集人们在互联网上提供的举报信息,国家可以掌握部分乡村和城市的死角信息,挖出不法加工点,提高执法透明度,降低执法成本。国家可以参考医院提供的就诊信息,分析出涉及食品安全的信息,及时进行监督检查,第一时间进行处理,降低已有不安全食品的危害。参考个体在互联网的搜索信息,掌握流行疾病在某些区域和季节的爆发趋势,及时进行干预,降低其流行危害。政府可以提供不安全食品厂商信息,不安全食品信息,帮助人们提高食品安全意识。
当然,有专业人士认为食品安全涉及到从田头到餐桌的每一个环节,需要覆盖全过程的动态监测才能保障食品安全,以稻米生产为例,产地、品种、土壤、水质、病虫害发生、农药种类与数量、化肥、收获、储藏、加工、运输、销售等环节,无一不影响稻米安全状况,通过收集、分析各环节的数据,可以预测某产地将收获的稻谷或生产的稻米是否存在安全隐患。
大数据不仅能带来商业价值,亦能产生社会价值。随着信息技术的发展,食品监管也面临着众多的各种类型的海量数据,如何从中提取有效数据成为关键所在。可见,大数据管理是一项巨大挑战,一方面要及时提取数据以满足食品安全监管需求;另一方面需在数据的潜在价值与个人隐私之间进行平衡。相信大数据管理在食品监管方面的应用,可以为食品安全撑起一把有力的保护伞。
十二、政府调控和财政支出 大数据令其有条不紊
政府利用大数据技术可以了解各地区的经济发展情况,各产业发展情况,消费支出和产品销售情况,依据数据分析结果,科学地制定宏观政策,平衡各产业发展,避免产能过剩,有效利用自然资源和社会资源,提高社会生产效率。大数据还还可以帮助政府进行监控自然资源的管理,无论是国土资源、水资源、矿产资源、能源等,大数据通过各种传感器来提高其管理的精准度。同时大数据技术也能帮助政府进行支出管理,透明合理的财政支出将有利于提高公信力和监督财政支出。
大数据及大数据技术带给政府的不仅仅是效率提升、科学决策、精细管理,更重要的是数据治国、科学管理的意识改变,未来大数据将会从各个方面来帮助政府实施高效和精细化管理。政府运作效率的提升,决策的科学客观,财政支出合理透明都将大大提升国家整体实力,成为国家竞争优势。大数据带个国家和社会的益处将会具有极大的想象空间。
十三、舆情监控大数据 名探柯南
《黑猫警长》大家都很熟悉,它讲述的是“黑猫警长”如何精明能干、对坏人穷追不舍、跌宕起伏的故事情节。拿到大数据时代背景下的话,虽然它也能体现“黑猫警长”的尽职尽责、聪明能干,但更多的会归结到一个问题:为何还是如此的被动、低效?疾病可以预防,难道犯罪不能预防么?
答案是肯定的。美国密歇根大学研究人员就设计出一种利用“超级计算机以及大量数据”来帮助警方定位那些最易受到不法份子侵扰片区的方法。具体做法是,研究人员通过大量的多类型数据(从人口统计数据到毒品犯罪数据到各区域所出售酒的种类、治安状况、流动人口数据等等),创建一张波士顿犯罪高发地区热点图。同时,还将相邻片区等各种因素加入到数据模型中,并根据历史犯罪记录和地点统计并不断修正所得出的预测数据。
国家正在将大数据技术用于舆情监控,其收集到的数据除了解民众诉求,降低群体事件之外,还可以用于犯罪管理。大量的社会行为正逐步走向互联网,人们更愿意借助于互联网平台来表述自己的想法和宣泄情绪。社交媒体和朋友圈正成为追踪人们社会行为的平台,正能量的东西有,负能量的东西也不少。一些好心人通过微博来帮助别人寻找走失的亲人或提供可能被拐卖人口的信息,这些都是社会群体互助的例子。国家可以利用社交媒体分享的图片和交流信息,来收集个体情绪信息,预防个体犯罪行为和反社会行为。最近警方通过微搏信息抓获了聚众吸毒的人,处罚了虐待小孩的家长。
大数据技术的发展带来企业经营决策模式的转变,驱动着行业变革,衍生出新的商机和发展契机。驾驭大数据的能力已被证实为领军企业的核心竞争力,这种能力能够帮助企业打破数据边界,绘制企业运营全景视图,做出最优的商业决策和发展战略。其实,不论是哪个行业的大数据分析和应用场景,可以看到一个典型的特点还是无法离开以人为中心所产生的各种用户行为数据,用户业务活动和交易记录,用户社交数据,这些核心数据的相关性再加上可感知设备的智能数据采集就构成一个完整的大数据生态环境。
③ 大数据应用案例有哪些
案例如下:
1、交通大数据畅通出行
交通作为人类行为的重要组成和重要条件之一,对于大数据的感知也是最急迫的。近年来,我国的智能交通已实现了快速发展,许多技术手段都达到了国际领先水平。交通的大数据应用主要在两个方面,一方面可以利用大数据传感器数据来了解车辆通行密度,合理进行道路规划包括单行线路规划。另一方面可以利用大活数据来实现即时信号灯调度,提高已有线路运行能力。
2、教育大数据因材施教
在课堂上,数据不仅可以帮助改善教育教学,在重大教育决策制定和教育改革方面,大数据更有用武之地。利用数据来诊断处在辍学危险期的学生、探索教育开支与学生学习成绩提升的关系、探索学生缺课与成绩的关系。
3、环保大数据对抗PM2.5
在美国NOAA(国家海洋暨大气总署)其实早就在使用大数据业务。每天通过卫星、船只、飞机、浮标、传感器等收集超过35亿份观察数据。收集完毕后,NOAA会汇总大气数据,海洋数据,以及地质数据,进行直接测定,绘制出复杂的高保真预测模型,将其提供给NWS(国家气象局)做出气象预报的参考数据。
大数据特点
1、大容量
例如,IDC最近的报告预测到2020年,世界数据量将扩大50倍.目前,大数据的规模仍然是不断变化的指标,单一数据集的规模范围从数十TB到数PB不同.简单来说,存储1PB数据需要2万台配备50GB硬盘的PC.此外,各种意想不到的来源可以产生数据。
2、多样性
数据多样性的增加主要是由于网络日志、社交媒体、网络检索、手机通话记录、传感器网络等数据类型。
3、高速
高速描述的是数据创建和移动的速度.在高速网络时代,通过实现软件性能优化的高速计算机处理器和服务器,创建实时数据流已成为流行趋势.企业不仅要知道如何快速创建数据,还要知道如何快速处理、分析和返回用户,以满足他们的实时需求。
④ 互联网 大数据在智能交通上有哪些应用
之前有看过一篇有关商业智能在公交领域的文章,主要体现在公交的智能化信息管内理方面
具体的应用容如下:
(1)应用功能不能实现完全自动化。
(2)网络负载大,应用开发和维护繁琐。
(3)由于系统存在功能不足,需要大量人手进行分析报表工作。
(4)系统本身的技术架构己经落后,不能满足用户不断提出的对数据应用的要求。
(5)近十年累积的改动和扩展,使到系统过于庞大,接口很多,多种技术和平台混合使用,应用和维护成本高。
(6)信息系统间共享数据的需求客观存在,但由于各系统的开发时间、开发工具、部门要求以及在数据库的选择等不同原因,分布在网络中的不同系统中的数据相互独立,无法实现真正的信息资源共享。
(7)每个信息系统都有私有的数据库,对于同一事物,可能在不同的系统中被赋予不同的意义,带来语义混乱。不同系统中存储格式存在差异,这些在综合处理时都会带来很大的麻烦同时,跨系统调用数据也会严重影响性能。
这是有关FineBI的应用,具体的你可以查一下
⑤ 大数据和智慧交通有哪些应用的案例
智能交通成为改善城市交通的关键所在。为此,及时、准确获取交通数据并构建交通数据处理模型是建设智能交通的前提,而这一难题可以通过大数据技术得到解决。
智能交通整体框架主要包括物理感知层、软件应用平台及分析预测及优化管理的应用。其中物理感知层主要是对交通状况和交通数据的感知采集;软件应用平台是将各感知终端的信息进行整合、转换处理,以支撑分析预警与优化管理的应用系统建设;分析预测及优化管理应用主要包括交通规划、交通监控、智能诱导、智能停车等应用系统。
系统利用先进的视频监控、智能识别和信息技术手段,增加可管理空间、时间和范围,不断提升管理广度、深度和精细度。整个系统由信息综合应用平台、信号控制系统、视频监控系统、智能卡口系统、电子警察系统、信息采集系统、信息发布系统等组成。以达到四方面的目标:提高通行能力、减少交通事故、打击违章事件、出行信息服务。
在各城市建设智慧交通的过程中,将产生越来越多的视频监控、卡口电警、路况信息、管控信息、营运信息、GPS定位信息、RFID识别信息等数据,每天产生的数据量可以达到PB级别,并且呈现指数级增长。
⑥ 大数据和智慧交通有哪些应用的案例
大数据方面的应用案例
在医疗方面,纽约的mountsinai医院利用数千名患者的数据、历年汇报的流感爆发数据等数据与病毒的变异过程做交叉比对。通过这种工作,科学家和医生可以预测病毒如何传播,以及对抗这些病毒的最佳途径;甚至有可能使用预测分析来判断病毒的传播方式,然后采取行动来限制这一传播。据说这家医院有望在未来阻止流感的发生。
在交通方面,浙江某城市与英特尔合作,安装了1000个数字监控设备,100个智能监测点系统,超过300个检查点的电子警察,和500多个视频监控系统。通过更有效地监测交通和拥堵数据,改善交通流量,减少道路交通事故。
在废物处理方面, 英国曼彻斯特垃圾处理局有一套系统,能够利用数据使得产生的垃圾被尽可能多的再次利用。通过对来自不同地区的卡车进出加工厂时进行称重,能够了解每个地区所产生的垃圾数量。这些数据帮助当局出台了相应的政策,鼓励那些特定的社区更好的垃圾回收和垃圾减量。
在建筑方面, 住房慈善机构hact从400,000座住房中持续不断地收集数据,并进行了各种数据分析。通过数据来发现设计、建造、布局中存在的潜在问题,进而在建造新的楼宇时优化相关的参数,避免这些问题,改进政府保障房的的维修,规划空间合理使用。
智能应用服务,Google提供的大数据分析智能应用包括客户情绪分析、交易风险(欺诈分析)、产品推荐、消息路由、诊断、客户流失预测、法律文案分类、电子邮件内容过滤、政治倾向预测、物种鉴定等多个方面。据称,大数据已经给Google每天带来2300万美元的收入。例如,一些典型应用如下:
(1)基于Map Rece,Google的传统应用包括数据存储、数据分析、日志分析、搜索质量以及其他数据分析应用。
(2)基于Dremel系统, Google推出其强大的数据分析软件和服务 — BigQuery,它也是Google自己使用的互联网检索服务的一部分。Google已经开始销售在线数据分析服务,试图与市场上类似亚马逊网络服务(Amazon Web Services)这样的企业云计算服务竞争。这个服务,能帮助企业用户在数秒内完成万亿字节的扫描。
(3)基于搜索统计算法,Google推出搜索引擎的输写纠错、统计型机器翻译等服务。
(4)Google的趋势图应用。通过用户对于搜索词的关注度,很快的理解社会上的热点是什么。对广告主来说,它的商业价值就是很快的知道现在用户在关心什么,他们应该在什么地方投入一个广告。据此,Google公司也开发了一些大数据产品,如“Brand Lift in Adwords”、“Active GRP”等,以帮助广告客户分析和评估其广告活动的效率。
(5)Google Instant。输入关键词的过程,Google
Instant 会边打边预测可能的搜索结果。
谷歌的大数据平台架构仍在演进中,追去的目标是更大数据集、更快、更准确的分析和计算。这将进一步引领大数据技术发展的方向。
在竞选方面,直到2012年,奥巴马的数据团队对数以千万计的选民邮件进行了大数据挖掘,精确预测出了更可能拥护奥巴马的选民类型,并进行了有针对性的宣传,从而帮助奥巴马成为了美国历史上唯一一位在竞选经费处于劣势下实现连任的总统。只要数据量够大,够及时,挖掘够深刻,就可以洞悉每个选民的投票几率。
在教育方面,"以物联网、云计算等综合技术的成熟为基础,在学生管理数据库中挖掘出有价值的数据,经过过程性和综合性的考虑,找到学生各种行为之间的内在联系,考量背后的逻辑关系,并作出恰当的教学决策。以某集团最新出版的全球少儿美语旗舰课程为例,引入了首款应用于少儿英语学习领域的MyEnglishLab在线学习辅导系统(以下简称MEL),应用大数据技术全程实时分析学生个体和班级整体的学习进度、学情反馈和阶段性成果,从而及时找到问题所在对症下药,实现对学习过程和结果的动态管理。
智慧交通的应用案例
根据ITS114的不完全统计,截至2015年12月31日,包括城市智慧交通和高速公路机电市场的全年千万项目统计规模为182.5亿,其中主要分为四大市场1.交通管控市场千万项目规模为84.24亿。2.智慧交通/智能运输市场千万项目规模为20.33亿。3.高速公路机电市场千万项目规模为75.8亿。4.平安城市千万项目规模为56.6亿。以上四个市场都有着很多的智慧交通方面的应用案例。
具体的在交通管控市场方面, 当前各个省积极构建的交通运行监测与应急指挥系统,还有围绕着视频、图像分析,从而实现在治安、交通、工业制造、汽车、人工智能等等诸多领域的应用亦是智慧交通的典型案例。如深圳榕享的"交通仿真与智能管控机器人"可实时采集视频检测数据与线圈检测数据,将采集的交通流数据、信号配时等数据输入到建立的仿真路网模型中,进行实时的交通系统仿真。通过一体化交通仿真模型,机器人能快速找出路网拥堵点以及分析路网的常发性拥堵点,并对交通流运营状况的演变进行预测和分析。在交通仿真与智能管控机器人平台上,还可对城市的任意交叉口的交通环境进行设置,周边居民可将相关建议"告知"机器人,实时模拟交叉口改良效果,实现全民参与、全民实践、全民创新的交通管理新模式。
智慧交通/运输方面各种“专车”“快车”“拼车”“代驾”平台类和软件数据类的实例比比皆是,如我们都熟知的“滴滴快递”“uber"“e代驾”等app应用。
交通工具新型技术案例方面:如无人驾驶、自动驾驶、智能车等等;在2015年12月互联网大会上李彦宏展示的无人车,李书福展现的自动驾驶技术都体现了当前智能交通工具的发展。 更近一点的是,汽车电子标识、ETC、车路协同。2015年的新能源客车市场呈爆发性增长,新能源客车销量达到37363辆,同比增长213.19%,同时2015年国务院印发《新能源公交车推广应用考核办法(试行)》、《电动汽车充电基础设施发展指南》等等政策文件,可预见的是新能源汽车将会造就一个巨大的市场,建立在新能源汽车之上的车联网也将搭上顺风车。
平安城市也有很多已经成型的智慧交通案例。平安城市是基于GIS数字地图技术,高度整合治安监控、智能交通、数字城管、应急指挥等子系统,改变传统的静态管理和单点管理,实现实时、动态的联动管理新模式,实现了整个城市的治安、交通、城管、应急联动等各个职能部门的联动,建立了高效的城市部门联动机制,提高了城市的集成化、智慧化管理水平。根据高清视频监控系统的特点和应用需求,结合当前与今后一定时期内图像监控系统与图像应用系统的发展需要,建设一套先进的平安城市综合应用平台,为指挥调度、调查取证、应急处置、交通管理等多种后台应用提供及时、可靠的视频图像信息,服务于实战。市面上常见的平安城市系统具备的主要功能大部分都有:人脸卡口功能;交通事件检测功能;智能检索功能;道路违法抓拍功能;车辆稽查布控功能;非现场执法;分析研判功能;交通事态监控功能;视频质量检测功能;智能应用管理功能;数据格式及通信功能;远程控制功能;指挥调度功能;勤务管理功能; 设备运行状态监测功能。
⑦ 交通大数据行业的现状是什么
交通大数据行业的现状是什么?作为人类行为的重要组成部分和重要条件之一,对大数据的感知是最为迫切的。近年来,我国的智能交通发展迅速,许多技术手段已达到国际领先水平。问题和困难,但是,非常突出,也从城市发展的角度,智能交通的潜在价值并没有被有效的挖掘:知觉和交通信息的集合是有限的,大量的数据管理系统中存在的不能共享使用,有效的交通情况分析预测疲劳,公共交通信息服务难以满足需求。虽然有不同的建筑概念和投资在不同地区,整个智能交通的现状特点是低效率和智能不足,这使得许多先进的技术和设备未能发挥应有的作用,还会导致大量的投资浪费。最重要的是在困难时期的损害较小的数据:管理理念和技术设备仿真时间只有在某种程度上,和关系数据库管理系统的分析只能严格的特定关系,对于大规模数据,尤其是半结构化和非结构化数据。
虽然数字化已经基本实现,但是数字化和数字化并不是一回事。它只是提高了本地收集、存储和应用的效率,但本质上没有太大的改变。大数据时代的到来,必将为解决难题带来巨大机遇。大数据必然要求我们改变小数据条件下的盲目和精确计算,但更好地面对困惑,把握宏观形势;大数据不可避免地要求我们关注的不是因果关系而是相关性,这使得处理大量的非结构化数据成为可能,促使我们将一切都数字化,最终实现方便高效的管理。
交通大数据行业的现状是什么?目前,大数据在交通中的应用主要有两个方面。一方面,大数据传感器数据可以用来了解车辆的交通密度,合理的道路规划可以包括单车道的路线规划。另一方面,可以利用大量的实时数据实现信号量的实时调度,提高现有线路的运行能力。信号灯的科学布置是一项复杂的系统工程,需要利用大数据计算平台制定出更加合理的方案。科学信号系统将使现有道路的通行能力提高约30%。在美国,政府基于特定路段的交通事故信息增加了更多的交通信号灯,从而将事故发生率降低了50%以上。依托大数据实现机场航班起降,提高航班管理效率。航空公司可以利用大数据来增加乘客容量和降低运营成本。铁路利用大数据有效安排客运和货运列车,提高效率和降低成本。
交通大数据行业的现状如何?这个领域的大数据工程师是这样的,作为人类行为的重要组成部分和重要条件之一,对大数据的感知也是最为迫切的。近年来,我国的智能交通得到了快速发展,你能处理好吗?如果您还担心自己入门不顺利,可以点击本站的其他文章进行学习。
⑧ 大数据,数据挖掘在交通领域有哪些应用
交通领域大数据分析和应用的场景会相当多,这里面要注意两点,一个是大数据本身的技术处理平台,一个是数据分析和挖掘算法。具体场景当时写过点内容,如下:
对于公交线路规划和设计是一个大数据潜在的应用场景,传统的公交线路规划往往需要在前期投入大量的人力进行OD调查和数据收集。特别是在公交卡普及后可以看到,对于OD流量数据完全可以从公交一卡通中采集到相关的交通流量和流向数据,包括同一张卡每天的行走路线和换乘次数等详细信息。对于一个上千万人口的大城市而言,每天的流量数据都会相当大,单一分析一天的数据可能没有相关的价值,而分析一个周期的数据趋势变化则会相当有价值。结合交通流量流向数据趋势变化,可以很好的帮助公交部门进行公交运营线路的调整,换乘站的设计等很多内容。这个方法可能很早就有人想到,但是在公交卡没有普及或海量数据处理和计算能力没有跟上的时候确实很难实际落地操作,而现在则是完全可以落地操作的时候了。
从单一的公交流量流向数据动态分析仅仅是一个方面,大数据往往更加强调相关性分析。比如对于在某一个时间段内公交流量和流向数据发生明细的趋势变化的时候,这个趋势变化的究竟和哪些潜在的大事件或其它影响因素的变化存在相关性,如何去分析这些相关性并做出正确的应对。举个简单的例子来说,当市中心区内的房屋租金持续增长的时候一定会影响到交通流的变化,很多人可能会搬离到更远的地方去居住,自然会形成更多的新增公交流量和流向信息。在《大数据时代》里面谈到更多的会关心相关性而不是因果只是一个方面的内容,实际上往往探索因果仍然很重要,就拿尿片和啤酒的例子来说看起来很简单,但是究竟是谁发现了这种相关性才更加重要,发现相关性的过程往往是从果寻因的过程,否则你也很难真正就确定是具备相关性。
其次就智能交通来说,现在的智慧交通应用往往已经能够很方面的进行整个大城市环境下的交通状况监控并发布相应的道路状况信息。在GPS导航中往往也可以实时的看到相应的拥堵路况等信息,而方便驾驶者选择新的路线。但是这仍然是一种事后分析和处理的机制,一个好的智能导航和交通流诱导系统一定是基于大量的实时数据分析为每个车辆给出最好的导航路线,而不是在事后进行处理。对于智能交通中的交通流分配和诱导等模型很复杂,而且面对大量的实时数据采集,根据模型进行实时分分析和计算,给出有价值的结果,这个在原有的信息技术下确实很难解决。随着物联网和车联网,分布式计算,基于大数据的实时流处理等各种技术的不断城市,智能的交通导航和趋势分析预测将逐步成为可能。
还有一个在国外大片中经常能够看到的就是实时的车辆追踪,随着智慧城市的建设,城市里面到处都是摄像头采集数据,当锁定一个车辆后如何根据车辆的特征或车牌号等信息,实时的追踪到车辆的行走路线和位置。这里面往往需要实时的视频数据采集,采集数据的实时分析和比对,给出相应的参考信息和数据。这个个人认为是具有相当大的难度,要知道对于视频流和图像信息的比对和分析往往更加耗费计算资源,需要更长的计算周期,要从城市成千上万个摄像头里面采集数据并进行实时分析完全满足大数据常说的海量数据,异构数据,速度和价值等四个维度的特征。基于车辆能够做到,基于人当然同样也可以做到,希望这类应用能够逐步的出现,至少现在从硬件水平能力和技术基础上已经具备这种大数据应用的能力。
-
⑨ 大数据时代的航运创新
大数据时代的航运创新
当下的航运窘境,或许可在大数据、互联网技术、可再生能源和3D打印等领域的发展浪潮中,从运营模式、战略发展和技术标准等方面进行改革创新
当前,航运业正处于重新洗牌、再次组合的过程,航运市场面临运力严重过剩、价格持续低迷的困境,传统的手段与方法已无力帮助航运企业摆脱困局。如何才能使航运企业从现阶段的窘况中脱离出来,已经成为航运界共同的难题。
与此同时,大数据、互联网技术、可再生能源和3D打印等领域的新发展对航运业的运营模式、战略发展和技术标准都将带来深远影响。
大数据的驱动力
毫无疑问,当下世界是一个被数据包围的世界。航运经营自然也会产生很多数据,所有的数据都是相关的,如何处理、利用这些数据成为挑战。
DNV GL执行副总裁、海事咨询总监Albrecht Grell表示:“我们要问的一个问题就是航运数据从哪里来,怎样对这些数据进行认知,看到数据背后真正的含义。”一艘营运中的船舶,24小时内通常会生成高达20GB的数据信息,这些信息内容繁多,涉及天气、发动机、航行位置、速度到燃油消耗等,数据量大、散乱、周期短。确保数据的获得是进行精确分析的第一步,将这些数据进行整合是第二步,这些数据与外部数据如AIS、天气等的结合分析,就可能得出有意义的结论。
DNV GL副总裁、DNV GL大中国区主席、DNV GL 海事公司大中国区总经理Torgeir Sterri表示,数字化是航运发展的驱动力之一,这个驱动力本身就是一项技术。大数据驱动的数字化将使遥感器可实时接受各式各样的结构化和非结构化的数据,且这些数据的来源确定性越来越强。他进一步指出,更智能的数字网络,除了促进科技的应用,在航运业,可以模拟所有船舶周期的现状。DNV GL利用大数据,开发船队绩效监测系统,在增进营运透明度的同时提高了营运效率。
英国劳氏船级社北亚地区船舶业务总裁Jim Smith表示,英国劳氏船级社将把大数据和有效数据应用于未来业务和技术的战略计划中。“1760年开始,我们的工作中就充满了数据,包括入级的每艘船舶的全寿命周期内的所有相关信息。若能获得一艘船舶的核心数据,通过集中分析设计、表现、天气、路线、货物和法规数据相关信息,则可以寻找到最佳航线,便于船舶更高效经济地行驶到指定港口。智能船舶将从根本上改变海运业的业务模式。”
究竟什么是智能船舶呢?中国船级社副总工兼规范与技术中心总经理陈实表示,智能船舶体现在六个方面:一是智能航行。主要是自动航行优化,通过对海况、物流等相关参数的优化,在满足航运周期和安全的情况下,使航运成本降到最低。目前这一技术已较成熟,进一步发展会形成自主航行。二是智能船体。主要指对船体进行全生命周期的管理,包括建立船体数据库,以及结构强度和性能的数据库,为船舶的维修提供决策,如通过数据库预先制定维修计划。应急服务可以提供辅助决策,确保安全。三是智能机舱。基于设备和系统监测为机舱提供辅助决策,高级发展阶段是对机舱设备提供视情维修,大幅度节省维修成本和周期。四是智能能效管理。通过能耗检测、分析与报告,为能效优化辅助决策。五是智能货物控制。从最佳配载以及基于对货物的监测来辅助决策,确保货物安全。六是智能系统集成。通过对大数据的分析和处理,形成集中控制,一个平台一个网络来集中控制。
日本船级社会长兼总裁 Noboru Ueda也分享了大数据在行业里的应用。他表示,由Napa和日本船级社2012年完成的Napa—GREEN监控系统已经在很多船舶上应用,可以提高燃料效率,计算出最佳吃水与船速,从而提高船舶运营效率,有效分析船舶运行情况,精确率达99.6%。“使用珍贵的数据,是我们在大数据时代迈出令人兴奋的一步。”
SAP大中华区售前总经理李旭东则认为,数字化是一个渐进的过程,从信息系统建设角度讲,不是简单替换,也不是一味追求数量多而不适的功能。在解决现有问题的同时,要考虑明天可能面临的挑战,并找到应对之策。“我们的责任是解决信息的互联互通,帮助船东更好地实现与货主、收货人等利益相关方的互联互通。我们重新定义了在互联互通的情况下,一个数字化企业支撑其成功运行的信息系统理想模式。与以往相比,产业相关方的合作、联系要比以往更密切,对信息系统的要求也与以前不同,需要合适的系统帮助企业实现这种不同。”
对接与融合“互联网+”
航运业已经无法回避即将到来的智能化工业革命浪潮,也无法断开与信息网络的深层次对接与合作。工业4.0给市场带来了高效的生产效率,也给各行各业带来了发展机遇。它既涉及传统的互联网,还涉及正在发展的物联网,这是一次基于虚实融合的工业革命。这对航运业朝着全面智能加快转型升级起到了助推作用,通过对云计算、大数据的运用,提升航运服务、管理、节能、运营的效率和能级。
如何借助工业4.0之东风,实现航运业自身发展的蜕变,中外运航运董事长李甄认为主要有四个方面。
一是服务定制。工业4.0带来的智能化水平可帮助航运企业实现定制化服务。通过引入应用电子标签功能的信息化系统,一方面,电子标签记录着航运企业实时更新的每艘船舶的运行状态、航线位置等点状定制信息;另一方面,客户可以在定位识别系统的帮助下,根据自身的服务需求自动识别读取电子标签所携带的相关信息,向航运企业提出定制化服务的请求,航运企业在收到请求后自动协调安排相关运输任务。
二是智能管理。利用云计算、大数据等智能化手段,集成信息挖掘、远程监控、实时预警及预测分析,推进智能化管理,提高设备运行效率。例如:通过智能机器人,实时评估船舶设备的运行状态,最大可能地预知设备故障与操作失误,加强管控预控措施,全面实现船舶管理的智能化。同时,机器人的逐步推广也可以应用到一些基本船员的工作上,在提高效率的基础上,使管理的精细化水平得到进一步加强。此外,通过智能化与系统化的管理,既为航运企业积累先进的管理经验,又提高管理人员的综合业务技能,为后续的深化发展夯实基础。
三是节能环保。节能减排是顺应当今世界发展潮流的战略举措,已成为世界人民的共识。随着工业4.0引发的技术革命,在航运业逐步推广与应用环保节能新兴技术,通过船岸之间现代化网络,实时调整船舶设备工况、自动优化吃水、采用经济航速,使之有效降低船舶营运成本、最大程度地减少排放。目前,世界大型航运企业大多对新造船舶进行了LNG准备装置,有的已经投入实际使用,相信不久的将来,新能源及新能源使用装置将会得到广泛的推广和运用。
四是优化运营。在实际营运过程中,航线设计和运营组织的合理与否直接影响着航运企业的经济效益。通过建立智能系统,根据船舶航线途径的航道水深、洋流海况以及天气特点等外部环境信息,自动进行提炼对比、分析判断,设计出最合理、经济的航行路径,确定最理想的积配载方案,制定出效益最佳的运营组织计划。由于工业技术的突飞猛进以及北极冰层的逐步消退,北极航线已成为可能,加上北极航线所具备的独特地缘条件与战略意义,北极航线已成为各国航运企业争相开发的焦点,这也为我们进一步优化运营拓展了空间。
除了航运业,对于航运服务业而言,同样离不开“互联网+”。广州仲裁委员会主任、中国仲裁法学会副会长陈忠谦表示,仲裁及时加上互联网的元素,也就是线上和线下裁案。在线上这个仲裁平台里,通过线上交资料、数据认证进行办案,如仲裁管理、案件管理、电子档案形成、网络视频庭审系统,确保数据的安全性;研究与法院以及航运部门、航运企业的网络对接,在网上备案和受理、答辩,组成仲裁厅、开庭、作出裁决等,在线上解决解纷。
中国船级社总裁孙立成表示,可再生能源对传统化石能源的替代,3D打印引致的规模经济效应减弱和满足客户需求的本地化生产趋势加强,致使部分产业门类将由全球分工变为区域分工,由全球生产变为本地生产,沿海运输替代部分远洋运输,海运运距缩短,以及新一代信息技术与船舶制造的深度融合都将引发影响深远的产业变革,形成新的生产方式、产业形态、商业模式和经济增长点。
航运业创新路径
处于瞬息万变的数字时代,航运业该如何创新发展?交通运输部水运科学研究院副院长贾大山认为,当前海运市场进入了新一轮的漫长调整,诸多政策提供了强有力的战略支持。“要注重调整船队功能结构,分类制定经济政策。如国家安全船队、经济安全船队、商业运输船队,以不同的定位来制定相应的政策。”
从企业层面而言,贾大山认为要优化海运资本结构,推进混合所有制改革。“中国航运业有国有和民营资本两类运营平台,功能性角度主要通过国有资本运营平台完成,商业性船队则可通过国有和民营资本运营平台共同完成。”
从产业链融合角度出发,贾大山认为要构筑海运产业链,推进协同发展。加强与金融企业的沟通,加强融资能力,加强造船、海运和货主企业的合作。
从融资角度而言,贾大山认为,对于海运相关的融资政策、企业海运所得税的问题,还需进一步探索解决,与国际接轨,让中国海运企业与国际海运企业在同一市场进行公平竞争。
上海海事大学校长黄有方认为,航运企业要进行“航运+供应链”的战略思考。“实施‘航运+物流’战略,仅做航运不够,要知道做全程物流。‘航运业+贸易’战略,要更好地关注航运业与贸易的战略结合。‘航运+金融’战略,航运业要有话语权,并维系好供应链关系,金融能力很重要,‘航运+信息’战略也是如此。总之,期望航运企业高度重视与物流、贸易、金融、信息的结合,充分认识到研究供应链就是研究信息流、物流、商品流和现金流,‘航运+供应链’战略的转型和创新是未来航运取胜之道。”
中远集团总经理李云鹏表示,当前,世界经济步入深度调整期,出现了很多不同以往的新特点:区域经济不平衡加剧、国际资本流动性加快、金融市场动荡加强、大宗商品价格深度回落、新兴经济体持续减速等。这些来自宏观经济方面的压力会立竿见影地体现在航运业上,导致运力过剩、运价低迷、无序竞争、惨淡经营等。“低位运行的状态将会持续相当长的时间。所以航运企业想实现突破性发展,将面临革命性的变革。”
航运企业内生型增长将成为必然。李云鹏认为,航运企业未来的成长空间,更多要依靠自身能力和资源的提升利用,要实现增长动力由外到内的转变,通过调整业务结构、客户结构、组织架构、运营机制,不断增强对外部市场需求的适应能力和对外界不利环境的免疫力。未来航运企业的发展,要通过培育“内生型”增长动力,提高自身经营能力、管理水平、服务质量、运营效率和成本优势来实现。具体实现路径,一是要有流程再造能力,即改变航运经营传统流程,提高重新设计、组合内部资源的能力,优化航线设计、服务流程;二是提高市场布局能力,特别是体现经营能力的业务网络布局与区域经济的匹配度,在当前区域经济不平衡的环境下更是如此,这实际是对航运企业捕捉市场机遇能力的要求,要由以往“依赖”市场转向“驾驭”市场;三是有产业链延伸能力,实现与航运相关产业的有效嫁接,通过产业上中下游的有机关联,对冲航运业的既定风险。
产业集群之间的竞争将成为主流。李云鹏认为,仅仅靠航运企业内部资源的优化配置,已越来越难满足客户的需求,包括船东、船货之间的合作形式都可能远远不够。未来航运市场上船东、船货之间的竞争模式,将被集群对集群的竞争模式所取代,因此如何构建产业集群将成为航运企业资源配置的重大战略目标。产业集群在规模、层次、组合方面可能呈现出多样性,一旦形成,将成为航运企业价值创造的主体模式。从构建路径来看,要以现有的船货合作、联盟联营为出发点,以新技术为推手,吸引行业领先的利益相关方,形成航运及相关产业的集群。如船东、货主、物流、贸易、金融、IT、电商平台等企业,可能共同构成一个产业集群,共享资源、共创价值、绑定利益,形成完整的航运产业生态圈。当市场上出现多个这样的产业集群之时,市场竞争的格局就会发生革命性变革。
全程解决方案将成为利器。李云鹏认为,企业的成长过程,也就是为客户创造价值的过程,为客户提供海运服务,是航运企业传统的价值创造方式。但客户的最终需求不仅仅存在于海运环节,而是涉及陆上运输、港口、仓储、信息、安全等各个方面,客户的最终需求是“打通最后一公里”、“门到门”、“安全保质”的全程解决方案。跨境物流的兴起与“在线需求”的爆发正在重新定义很多传统行业,在跨界整合正令传统行业界限愈发模糊的趋势下,今后,提供“全程解决方案”的能力必将成为航运企业赖以生存的核心竞争力。真正的“全程解决方案”需要两个因素:一是对客户的态度;二是提供服务的能力。
以上是小编为大家分享的关于大数据时代的航运创新的相关内容,更多信息可以关注环球青藤分享更多干货
⑩ 大数据的应用领域有哪些
1.了解和定位客户
这是大数据目前最广为人知的应用领域。很多企业热衷于社交媒体数据、浏览器日志、文本挖掘等各类数据集,通过大数据技术创建预测模型,从而更全面地了解客户以及他们的行为、喜好。
利用大数据,美国零售商Target公司甚至能推测出客户何时会有Baby;电信公司可以更好地预测客户流失;沃尔玛可以更准确的预测产品销售情况;汽车保险公司能更真实的了解客户实际驾驶情况。
滑雪场利用大数据来追踪和锁定客户。如果你是一名狂热的滑雪者,想象一下,你会收到最喜欢的度假胜地的邀请;或者收到定制化服务的短信提醒;或者告知你最合适的滑行线路。。。。。。同时提供互动平台(网站、手机APP)记录每天的数据——多少次滑坡,多少次翻越等等,在社交媒体上分享这些信息,与家人和朋友相互评比和竞争。
除此之外,政府竞选活动也引入了大数据分析技术。一些人认为,奥巴马在2012年总统大选中获胜,归功于他们团队的大数据分析能力更加出众。
2.了解和优化业务流程
大数据也越来越多地应用于优化业务流程,比如供应链或配送路径优化。通过定位和识别系统来跟踪货物或运输车辆,并根据实时交通路况数据优化运输路线。
人力资源业务流程也在使用大数据进行优化。Sociometric Solutions公司通过在员工工牌里植入传感器,检测其工作场所及社交活动——员工在哪些工作场所走动,与谁交谈,甚至交流时的语气如何。美国银行在使用中发现呼叫中心表现最好的员工——他们制定了小组轮流休息制度,平均业绩提高了23%。
如果在手机、钥匙、眼镜等随身物品上粘贴RFID标签,万一不小心丢失就能迅速定位它们。假想一下未来可能创造出贴在任何东西上的智能标签。它们能告诉你的不仅是物体在哪里,还可以反馈温度,湿度,运动状态等等。这将打开一个全新的大数据时代,“大数据”领域寻求共性的信息和模式,那么孕育其中的“小数据”着重关注单个产品。
3.提供个性化服务
大数据不仅适用于公司和政府,也适用于我们每个人,比如从智能手表或智能手环等可穿戴设备采集的数据中获益。Jawbone的智能手环可以分析人们的卡路里消耗、活动量和睡眠质量等。Jawbone公司已经能够收集长达60年的睡眠数据,从中分析出一些独到的见解反馈给每个用户。从中受益的还有网络平台“寻找真爱”,大多数婚恋网站都使用大数据分析工具和算法为用户匹配最合适的对象。
4.改善医疗保健和公共卫生
大数据分析的能力可以在几分钟内解码整个DNA序列,有助于我们找到新的治疗方法,更好地理解和预测疾病模式。试想一下,当来自所有智能手表等可穿戴设备的数据,都可以应用于数百万人及其各种疾病时,未来的临床试验将不再局限于小样本,而是包括所有人!
苹果公司的一款健康APP ResearchKit有效将手机变成医学研究设备。通过收集用户的相关数据,可以追踪你一天走了多少步,或者提示你化疗后感觉如何,帕金森病进展如何等问题。研究人员希望这一过程变得更容易、更自动化,吸引更多的参与者,并提高数据的准确度。
大数据技术也开始用于监测早产儿和患病婴儿的身体状况。通过记录和分析每个婴儿的每一次心跳和呼吸模式,提前24小时预测出身体感染的症状,从而及早干预,拯救那些脆弱的随时可能生命危险的婴儿。
更重要的是,大数据分析有助于我们监测和预测流行性或传染性疾病的暴发时期,可以将医疗记录的数据与有些社交媒体的数据结合起来分析。比如,谷歌基于搜索流量预测流感爆发,尽管该预测模型在2014年并未奏效——因为你搜索“流感症状”并不意味着真正生病了,但是这种大数据分析的影响力越来越为人所知。
5.提高体育运动技能
如今大多数顶尖的体育赛事都采用了大数据分析技术。用于网球比赛的IBM SlamTracker工具,通过视频分析跟踪足球落点或者棒球比赛中每个球员的表现。许多优秀的运动队也在训练之外跟踪运动员的营养和睡眠情况。NFL开发了专门的应用平台,帮助所有球队根据球场上的草地状况、天气状况、以及学习期间球员的个人表现做出最佳决策,以减少球员不必要的受伤。
还有一件非常酷的事情是智能瑜伽垫:嵌入在瑜伽垫中的传感器能对你的姿势进行反馈,为你的练习打分,甚至指导你在家如何练习。
6.提升科学研究
大数据带来的无限可能性正在改变科学研究。欧洲核子研究中心(CERN)在全球遍布了150个数据中心,有65,000个处理器,能同时分析30pb的数据量,这样的计算能力影响着很多领域的科学研究。比如政府需要的人口普查数据、自然灾害数据等,变的更容易获取和分析,从而为我们的健康和社会发展创造更多的价值。
7.提升机械设备性能
大数据使机械设备更加智能化、自动化。例如,丰田普锐斯配备了摄像头、全球定位系统以及强大的计算机和传感器,在无人干预的条件下实现自动驾驶。Xcel Energy在科罗拉多州启动了“智能电网”的首批测试,在用户家中安装智能电表,然后登录网站就可实时查看用电情况。“智能电网”还能够预测使用情况,以便电力公司为未来的基础设施需求进行规划,并防止出现电力耗尽的情况。在爱尔兰,杂货连锁店Tescos的仓库员工佩戴专用臂带,追踪货架上的商品分配,甚至预测一项任务的完成时间。
8.强化安全和执法能力
大数据在改善安全和执法方面得到了广泛应用。美国国家安全局(NSA)利用大数据技术,检测和防止网络攻击(挫败恐怖分子的阴谋)。警察运用大数据来抓捕罪犯,预测犯罪活动。信用卡公司使用大数据来检测欺诈交易等等。
2014年2月,芝加哥警察局对大数据生成的“名单”——有可能犯罪的人员,进行通告和探访,目的是提前预防犯罪。
9.改善城市和国家建设
大数据被用于改善我们城市和国家的方方面面。目前很多大城市致力于构建智慧交通。车辆、行人、道路基础设施、公共服务场所都被整合在智慧交通网络中,以提升资源运用的效率,优化城市管理和服务。
加州长滩市正在使用智能水表实时检测非法用水,帮助一些房主减少80%的用水量。洛杉矶利用磁性道路传感器和交通摄像头的数据来控制交通灯信号,从而优化城市的交通流量。据统计目前已经控制了全市4500个交通灯,将交通拥堵状况减少了约16%。
10.金融交易
大数据在金融交易领域应用也比较广泛。大多数股票交易都是通过一定的算法模型进行决策的,如今这些算法的输入会考虑来自社交媒体、新闻网络的数据,以便更全面的做出买卖决策。同时根据客户的需求和愿望,这些算法模型也会随着市场的变化而变化。