导航:首页 > 网络数据 > 简单理解大数据

简单理解大数据

发布时间:2022-12-26 12:36:52

『壹』 大数据是什么意思 是怎么解释的

1、大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

2、在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)

『贰』 大数据的含义简短

大数据是指那些数据量特别大、数据类别特别复杂的数据集,这种数据集不能用传统的数据库进行转存、管理和处理,是需要新处理模式才能具有更强大的决策力、洞察发现力和流程优化能力的海量、高增差率和多样化的信息资产。

大数据比想象中复杂。它不只是一项数据存储技术,而是一系列和海量数据相关的抽取、集成、管理、分析、解释技术,是一个庞大的框架系统。更进一步来说,大数据是一种全新的思维方式和商业模式。

大数据的特点

1、大量

大数据的特征首先就体现为“大”,从先Map3时代,一个小小的MB级别的Map3就可以满足很多人的需求,然而随着时间的推移,存储单位从过去的GB到TB,乃至现在的PB、EB级别。只有数据体量达到了PB级别以上,才能被称为大数据。

2、高速

大数据的产生非常迅速,主要通过互联网传输。生活中每个人都离不开互联网,也就是说每天个人每天都在向大数据提供大量的资料。基于这种情况,大数据对处理速度有非常严格的要求,服务器中大量的资源都用于处理和计算数据,很多平台都需要做到实时分析。数据无时无刻不在产生,谁的速度更快,谁就有优势。

3、多样

广泛的数据来源,决定了大数据形式的多样性。比如当前的上网用户中,年龄,学历,爱好,性格等等每个人的特征都不一样,这个也就是大数据的多样性,当然了如果扩展到全国,那么数据的多样性会更强,每个地区,每个时间段,都会存在各种各样的数据多样性。

4、价值

这也是大数据的核心特征。相比于传统的小数据,大数据最大的价值在于通过从大量不相关的各种类型的数据中,挖掘出对未来趋势与模式预测分析有价值的数据,并通过机器学习方法、人工智能方法或数据挖掘方法深度分析,发现新规律和新知识。

『叁』 大数据的定义是什么

大数据首先是一个非常大的数据集,可以达到TB(万亿字节)甚至ZB(十万亿亿字节)。这里面的数据可能既有结构化的数据,也有半结构化和非结构化的数据,而且来自于不同的数据源。

结构化的数据是什么呢?对于接触过关系型数据库的小伙伴来说,应该一点都不陌生。对了,就是我们关系型数据库中的一张表,每行都具有相同的属性。如下面的一张表:

(子标签的次序和个数不一定完全一致)

那什么又是非结构化数据呢?这类数据没有预定义完整的数据结构,在我们日常工作生活中可能更多接触的就是这类数据,比如,图片、图像、音频、视频、办公文档等等。

知道了这三类结构的数据,我们再来看看大数据的数据源有哪些呢?归纳起来大致有五种数据源。

一是社交媒体平台。如有名气的Facebook、Twitter、YouTube和Instagram等。媒体是比较受欢迎的大数据来源之一,因为它提供了关于消费者偏好和变化趋势的宝贵依据。并且因为媒体是自我传播的,可以跨越物理和人口障碍,因此它是企业深入了解目标受众、得出模式和结论、增强决策能力的方式。

二是云平台。公有的、私有的和第三方的云平台。如今,越来越多的企业将数据转移到云上,超越了传统的数据源。云存储支持结构化和非结构化数据,并为业务提供实时信息和随需应变的依据。云计算的主要特性是灵活性和可伸缩性。由于大数据可以通过网络和服务器在公共或私有云上存储和获取,因此云是一种高效、经济的数据源。

三是Web资源。公共网络构成了广泛且易于访问的大数据,个人和公司都可以从网上或“互联网”上获得数据。此外,国内的大型购物网站,淘宝、京东、阿里巴巴,更是云集了海量的用户数据。

四是IoT(Internet of Things)物联网数据源。物联网目前正处于迅猛发展势头。有了物联网,我们不仅可以从电脑和智能手机获取数据,还可以从医疗设备、车辆流程、视频游戏、仪表、相机、家用电器等方面获取数据。这些都构成了大数据宝贵的数据来源。

五是来自于数据库的数据源。现今的企业都喜欢融合使用传统和现代数据库来获取相关的大数据。这些数据都是企业驱动业务利润的宝贵资源。常见的数据库有MS Access、DB2、Oracle、MySQL以及大数据的数据库Hbase、MongoDB等。

我们再来总结一下,什么样的数据就属于大数据呢?通常来大数据有4个特点,这就是业内人士常说的4V,volume容量、 variety多样性、velocity速度和veracity准确性。

『肆』 大数据是什么

大数据是什么意思呢?
如果从字面意思来看,大数据指的是巨量数据。那么可能有人会问,多大量级的数据才叫大数据?不同的机构或学者有不同的理解,难以有一个非常定量的定义,只能说,大数据的计量单位已经越过TB级别发展到PB、EB、ZB、YB甚至BB级别。
最早提出“大数据”这一概念的 是全球知名咨询公司麦肯锡,它是这样定义大数据的:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型以及价值密度低四大特征。
研究机构Gartner是这样定义大数据的:“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流转优化能力来适应海量、高增长率和多样化的信息资产。若从技术角度来看,大数据的战略意义不在于掌握庞大的数据,而在于对这些含有意义的数据进行专业化处理,换言之,如果把大数据比作一种产业,那么这种产业盈利的关键在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

『伍』 如何理解大数据

大数据是现在各行各业都会提到的词汇,那么这个大数据到底是什么意思,该如何理解呢?其实大数据字面意思就是有很多的数据集合,在不同的行业,这个数据是不同的。每一个行业通过对应的大数据可以快速的处理需求,给用户反馈所需要的信息。同时大数据的积累也是一个漫长的过程,需要行业公司不断的做积淀。

大数据是行业内对应数据的集合

很多人一看到大数据就理解为很多数据的集合,其实这本身是没有错误的。只不过这个数据集合是分行业的。比如电商行业的大数据可能是很多的订单信息,用户信息。快消品行业的大数据可能是众多的产品以及经销商数据。而房地产行业的大数据可能就是众多买房者以及房价信息的数据。不同的行业对于数据的需求是不一样的,所以对应的大数据也是不一样的。

针对大数据你还有什么知道的呢?欢迎大家留言评论!

『陆』 大数据是什么

作者:李丽
链接:https://www.hu.com/question/23896161/answer/28624675
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。
"大数据"是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。从数据的类别上看,"大数据"指的是无法使用传统流程或工具处理或分析的信息。它定义了那些超出正常处理范围和大小、迫使用户采用非传统处理方法的数据集。
亚马逊网络服务(AWS)、大数据科学家JohnRauser提到一个简单的定义:大数据就是任何超过了一台计算机处理能力的庞大数据量。
研发小组对大数据的定义:"大数据是最大的宣传技术、是最时髦的技术,当这种现象出现时,定义就变得很混乱。" Kelly说:"大数据是可能不包含所有的信息,但我觉得大部分是正确的。对大数据的一部分认知在于,它是如此之大,分析它需要多个工作负载,这是AWS的定义。当你的技术达到极限时,也就是数据的极限"。 大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。
二、大数据分析
从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?
1、可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了
2、数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3、预测性分析能力
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4、数据质量和数据管理
大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
三、大数据技术
1、数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
2、数据存取:关系数据库、NOSQL、SQL等。
3、基础架构:云存储、分布式文件存储等。
4、数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机"理解"自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage Understanding),也称为计算语言学(Computational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。
5、统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
6、数据挖掘:分类
(Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or
association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text,
Web ,图形图像,视频,音频等)
7、模型预测:预测模型、机器学习、建模仿真。
8、结果呈现:云计算、标签云、关系图等。
四、大数据特点
要理解大数据这一概念,首先要从"大"入手,"大"是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Vol-ume、Variety、Value和Veloc-ity),即体量大、多样性、价值密度低、速度快。
1、
数据体量巨大。从TB级别,跃升到PB级别。
2、
数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。
3、
价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
4、
处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。
大数据技术是指从各种各样类型的巨量数据中,快速获得有价值信息的技术。解决大数据问题的核心是大数据技术。目前所说的"大数据"不仅指数据本身的规模,也包括采集数据的工具、平台和数据分析系统。大数据研发目的是发展大数据技术并将其应用到相关领域,通过解决巨量数据处理问题促进其突破性发展。因此,大数据时代带来的挑战不仅体现在如何处理巨量数据从中获取有价值的信息,也体现在如何加强大数据技术研发,抢占时代发展的前沿。
五、大数据处理
大数据处理之一:采集
大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。
大数据处理之二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
大数据处理之三:统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
大数据处理之四:挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理
六、大数据应用与案例分析
大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。以下是关于各行各业,不同的组织机构在大数据方面的应用的案例,在此申明,以下案例均来源于网络,本文仅作引用,并在此基础上作简单的梳理和分类。
大数据应用案例之:医疗行业
[1] Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。
[2] 在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
[3] 它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。
大数据应用案例之:能源行业
[1] 智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。

[2] 维斯塔斯风力系统,依靠的是BigInsights软件和IBM超级计算机,然后对气象数据进行分析,找出安装风力涡轮机和整个风电场最佳的地点。利用大数据,以往需要数周的分析工作,现在仅需要不足1小时便可完成。
大数据应用案例之:通信行业
[1] XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取措施,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。
[2] 电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。
[3] 中国移动通过大数据分析,对企业运营的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。
[4] NTT docomo把手机位置信息和互联网上的信息结合起来,为顾客提供附近的餐饮店信息,接近末班车时间时,提供末班车信息服务。

『柒』 什么叫大数据 怎么理解大数据

1、“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。

2、麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。

3、大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

4、从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。

5、随着云时代的来临,大数据(Bigdata)也吸引了越来越多的关注。大数据(Bigdata)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。

6、大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。

『捌』 什么是“大数据”,如何理解“大数据”

『玖』 用简单的话说说什么是大数据

大数据基本含义其实就是是海量数据。
有人说,大数据就像国王的新衣,每个人都在国王面前说着动听的话,国王信以为真,其实竟然不知道自己在裸奔。
的确,网络上有很多人在谈大数据,但是他们只会谈,不会做,因为他们根本就没有做过,包括那些所谓的“大数据专家”,他们真的做过吗?没有。
事实上,这些人对大数据内在的问题一点儿都不了解,更别说知道大数据的水有多深了。
大数据基本含义其实就是是海量数据。
而现在大家聊得最多的大数据是基于已经存在的大数据的应用开发。目前,在大数据方面,无法深入应用的原因在于,从收集到使用的大数据价值链出现了问题。从理论上来说,从收到用的螺旋式循环是一个巨大的涡轮,只有先数据化运营,然后才能运营数据。而现在的情况是,用数据的人不知道大数据从哪里来,做数据的人不知道大数据如何使用。用的人不敢用,因为大数据的真实性;做的人不知道怎么用,因为大数据的复杂性。这一问题造成的结果就是,数据量变得越来越大,而且越来越无法有效地使用。
大数据怎么玩?
大数据源:首先确保有足够庞大的数据源作为数据资源,才能玩的起来大数据。再次,对于大数据真实性的核实也非常关键。如果所采用的数据为虚假数据,那么基本上可以宣告以此为基础的所有分析,应用都是空中楼阁。或者还可能带来致命的错误。严谨,真实,0误差,是对数据源的基本要求。
玩数据的人员:
人员的素质。包括,技术素质:数据采集,数据录入,数据分析等环节的人员的素质。都包含在大数据体系中。
道德素质:对于有些人员恶意泄露数据,或者对数据恶意篡改的行为都是潜在风险。
数据模型设置:
数据模型建设非常重要。可能只是一个参数或者关注数值的变化,就能给大数据带来巨大的偏差。
数据备份的安全:
庞大的数据,不仅是存储和备份的问题。其本身的安全保障性能也是需要人们亟待去解决的问题。近几年互联网排头兵们庞大的数据库屡屡被攻破和信息泄露,让人们不得不加强对于网络数据安全的关注和保护措施。
大数据应用创新:
对于大数据的核心输出模式。也就是应用场景的创新还需要进行更加精准的定位和创新设计。再好的原材料,碰不上个好厨子,也是白费。
追捧热词和时代的潮流毋庸置疑,但是在追求热潮的时候,作为科技领域的践行者,一定要保持一颗严谨的心。这样才能真正的成为弄潮儿!

阅读全文

与简单理解大数据相关的资料

热点内容
平时用什么app看nba 浏览:503
win10想以管理员身份运行bat文件 浏览:85
合并单元格中的其他数据如何排序 浏览:331
电脑窗口程序在哪 浏览:281
前女友把我微信删了又加什么意思 浏览:655
win10不识别无线xboxone手柄 浏览:403
汽车之家app怎么看成交价 浏览:908
abc文件破解密码 浏览:516
怎么登录米家app账号 浏览:165
兆欧表多少转读数据 浏览:414
多媒体网络通讯 浏览:747
文件上的表填不了内容该怎么办 浏览:899
弟弟迷上网络小说怎么办 浏览:766
网络上有人想访问我的地址怎么办 浏览:730
linux解压zip乱码 浏览:839
看直播数据用哪个平台最好 浏览:730
win10芯片驱动程序版本 浏览:763
如何给word添加公式编辑器 浏览:666
iphone桌面文件夹怎样合并 浏览:919
要我苹果账号密码忘记了怎么办 浏览:578

友情链接